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Abstract: Direct and large-eddy numerical simulations have been performed for a heated sphere
at Reynolds numbers 200, 300, 500, 750, 1000 and 104, in the context of the development of
a spherical wind sensor for Mars atmosphere intended for missions after Rover 2020. A low-
dissipation finite element scheme implemented in the multi-physics code Alya has been used to
do so. The main heat transfer and aerodynamic parameters are presented, followed by detailed
analysis of the wake and boundary layer development and the local heat transfer coefficients.
Viscous and thermal boundary layer thicknesses decrease with the Reynolds number, the thermal
one being thicker than the viscous layer. However, in all cases shape factor is the same in the zone
with the favourable pressure gradient. The local Nusselt number is found to be asymmetric in the
rear zone of the sphere for the laminar cases and recover its statistical symmetry once the wake
transition to turbulent flow. It is also found that the stagnation Nusselt number scales as Re0.47,
in fair agreement with previous studies.
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1 Introduction
The knowledge about fluid dynamics and heat transfer from spherical bluff bodies is of key importance
in many engineering applications and science such as dispersed particle-laden, sprays, etc. For Reynolds
numbers larger than 300 (Re = 300), the flow is dominated by the shedding of vortices with a laminar
wake up to Re = 800 [1]. For larger Reynolds numbers, a Kelvin-Helmholtz instability is responsible for
the inception of small-scales structures in the separated shear layer and the transition to turbulence in the
wake. However, although the wake becomes turbulent, the attached boundary layer remains laminar up
until Re < 3 × 105; this regime is also known as subcritical regime. The turbulent wake and the unsteady
shedding of vortices from a sphere have been subject of many experimental investigations (see for instance
[1, 2, 3, 4]) and in less extent by numerical simulations (e.g. [5, 6, 7] and citations therein). Moreover, at
low-to-moderate Reynolds numbers the flow characteristics are dominated by a low-frequency mechanism
that alters the way vortex are shed and thus, the wake dynamics [5].

Regarding the heat transfer, measurements of the local and overall Nusselt number have been extensively
reported in the literature (e.g. [8, 9, 10]). However few studies can be found about the boundary layer
development and its role on the wake dynamics from heated spheres.

The present work is motivated for the development of a spherical wind sensor for Mars atmosphere[11],
intended for future missions after Rover 2020. Thus, the analysis of the thermal interaction of the sphere
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with the wind for Mars atmosphere is a key aspect of its design, although other applications for the Earth
atmosphere have also been considered.

In this sense, the present works aims at analysing the boundary layer development and heat transfer
from a sphere at the moderate Reynolds numbers in the range of Re = 300 − 104 and Pr = 0.7. The
lower Reynolds numbers are related to conditions in Mars, including extreme conditions such as dust devils,
whereas the larger Reynolds number are for Earth atmosphere applications.

2 Mathematical and numerical models
The incompressible Navier-Stokes and energy equations can be written as
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where xi are the spatial coordinates (or x, y, and z), ui (or u, v, and w) stands for the velocity components
and p and T are the pressure and temperature fields; ν is the kinematic viscosity, ρ the density of the fluid
and κ is its thermal diffusivity.

For the LES, the above equations are spatially filtered, so the filtered equations are,
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where (·) stands for the filtered variables. The terms Tij and TTij , the sub-grid stresses and subgrid-scale
heat fluxes in equations 5 and 6 resulting from the filtering of the non-linear terms must be modelled. The
anisotropic part of the subgrid stress tensor (SGS) is given as,

Tij −
1

3
Tkkδij = −2νsgsSij (7)

where Sij = 1
2 (gij + gji) is the large-scale rate-of-strain tensor, and gij = ∂ui/∂xj ; δij is the Kronecker

delta. The formulation is closed by an appropriate expression for the subgrid-scale viscosity, νsgs. In this
work, the model proposed by Vreman [12] is used. TTij is modelled in a similar manner as Tij but in the
expression νsgs is substituted by κsgs = νsgs/Prt, being Prt the turbulent Prandtl number. Here, it is
assumed Prt = 0.7.

The above equations are solved by means of a low-dissipation finite element (FE) scheme [13]. The basic
idea behind this approach is to mimic the fundamental symmetry properties of the underlying differential
operators, i.e., the convective operator is approximated by a skew-symmetric matrix and the diffusive opera-
tor by a symmetric, positive-definite matrix. The chosen low dissipation FE scheme presents good accuracy
compared to other low dissipation finite volume and finite difference methods with the advantage of being
able to increase the order of accuracy at will without breaking the fundamental symmetry properties of the
discrete operators. A non-incremental fractional-step method is used to stabilise the pressure. This allows
for the use of finite element pairs that do not satisfy the inf-sup conditions, such as equal order interpolation
for the velocity and pressure used in this work. The set of equations is time integrated using an energy con-
serving Runge-Kutta explicit method lately proposed by Cappuano et al. [14] combined with an eigenvalue
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Table 1: Meshes used in the simulation. NCV s, total number of elements, Ndof number of degree-of-freedom,
∆sph size of the elements on the surface of the sphere, ∆z1 to ∆z4 size of the elements in the regions 1 to 4
in the wake of the sphere.

Mesh NCV s Ndof ∆sph ∆z1 ∆z2 ∆z3 ∆z4

m1 9.6× 106 1.7× 106 0.0050 0.05 0.08 0.12 0.75
m2 3.27× 107 5.6× 106 0.0025 0.025 0.05 0.12 0.75

based time-step estimator [15]. This methodology is implemented into Alya code, which is a multi-physics
parallel code organized in a modular way: kernel, services and modules, which can be separately compiled
and linked. Each module represents a single set of Partial Differential Equations (PDE) for a given physical
model. To solve a coupled multi-physics problem, all the required modules must be active and interacting
following a well-defined workflow. For more details, the reader is referred to [16].

2.1 Definition of the cases and boundary conditions
The fluid dynamics and heat transfer around a heated sphere at Reynolds numbers of Re = 200, 300, 500, 750,
1000, 104 and Prandtl number Pr = ν/κ = 0.7 are considered. Here, the Reynolds number Re = Uref D/ν is
defined in terms of the free-stream velocity Uref and the sphere diameter D. The thermo-physical properties
are set so as to obtain the desired Reynolds and Prandtl numbers. For Reynolds numbers up to Re = 1000,
direct numerical simulations (DNS) have been performed, whereas for Re = 104 the flow has been solved by
means of large-eddy simulations (LES).

The cases are solved in a cylindrical computational domain of dimensions x ≡ [−5.5D : 25.5D]; r ≡
[0, 10D]; φ ≡ [0, 2π] with the sphere located at (0, 0, 0). This domain has similar dimensions to that used in
the DNS of Rodriguez et al. [5, 6].

The boundary conditions at the inflow consist of a uniform velocity and temperature (u/Uref , v/Uref ,
w/Uref ) = (1, 0, 0). Being the non-dimensional temperature expressed as Θ = (T −Tin)/(Tsph−Tin), Θ = 0
has been set at the inlet. Tsph and Tin are the actual values of the temperature at the sphere surface and at
the inlet, respectively, but their values are irrelevant to the problem studied as the velocity and temperature
fields are not coupled and the temperature is treated here as a passive scalar. At the outlet, a pressure-based
condition has been used (see for instance [5]). At the sphere surface, a non-slip boundary condition has been
defined for the velocities and a Dirichlet condition for the temperature Θ = 1 has been prescribed. In the
lateral boundary of the domain, tangential velocities and the derivative of the stream-wise component of the
velocity are set to zero. For the temperature, Neumann conditions (∂T/∂n = 0) are used at the lateral and
outflow boundaries.

2.2 Grid sensitiveness study
The computational meshes are designed as follows. Three inner cylindrical regions of radius 1.5D, the outer
boundary extends to x/D = 3.5, 8.5, 20 from the sphere center are generated. The sizes of the elements
at these zones are given in Table 1 and are denoted as ∆z1, ∆z2 and ∆z3, respectively. The size of the
outer/external zone ∆z4 is also given in the table. To generate the mesh, first the superficial mesh with
element size of ∆sph (see Table 1) is generated. A view of the central plane of the domain, where the different
zones can be seen is shown in figure 1.

The grid sensitivity study has been performed for the two largest Reynolds numbers, which are the more
demanding from a computational point of view. The results of the simulations for the two levels of refinement
are compared to those of the literature. At Re = 1000, with the DNS results by Tomboulides & Orszag
[17], where are at Re = 104, the statistical data have been compared to the DNS results of Rodriguez et al.
[6]. All the results presented in the present paper have been integrated in time, once the flow has entered
in the statistical stationary regime. For the lower Reynolds numbers (up to Re = 750), except for Re=200
where the flow is steady, solutions have been averaged during 150 TU. For the larger Reynolds numbers, i.e.
Re = 1000 and Re = 104, the integration time has been for about 300TU and 250TU.
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Figure 1: Projection of the central plane of the computation domain. The mesh distribution with the
different zones in the domain can be observed. The sphere is located at (0,0,0).

Table 2: Mesh sensitiveness study. Flow parameters for Reynolds numbers Re = 1000 and Re = 1× 104 and
comparison with literature results. Drag coefficient Cd, fluctuating drag Cd,rms, fluctuating y-force Cy,rms,
base pressure coefficient −Cpb, separation angle θsep, non-dimensional vortex shedding frequency St.

mesh Cd Cd,rms Cy,rms −Cpb θsep St
Re = 1000 (DNS)

m1 0.466 0.0072 0.0186 0.211 101.1 0.178
m2 0.466 0.0076 0.0210 0.213 101.4 0.200

Sakamoto & Haniu [18] - - - - - 0.200
Tomboulides &Orszag (DNS) [17] - - - - 102.0 0.195

Re = 104 (LES)
m1 0.406 0.0093 0.025 0.298 89.9 0.213
m2 0.402 0.0071 0.022 0.293 90.0 0.216

Constantinescu et al.[19] (LES) 0.393 - - 0.229 85.0 0.195
Yun et al. [20](LES) 0.393 - - 0.274 90.0 0.170

Rodriguez et al.[6](DNS) 0.402 - - 0.272 84.7 0.195

4



Table 3: Heat transfer and aerodynamic coefficients at different Reynolds numbers. Drag coefficient Cd,
fluctuating drag Cd,rms, fluctuating y-force Cy,rms, separation angle θsep, non-dimensional vortex shedding
frequency St, Nusselt number Nu.

Re Cd Cd,rms Cy,rms θsep St Nu
200 0.773 3.63× 10−4 4.58× 10−5 117.2 - 9.04
300 0.659 3× 10−3 0.011 113.7 0.133 10.63
500 0.562 0.011 0.031 108.5 0.152 13.16
750 0.502 0.009 0.028 104.1 0.175 15.61
1000 0.466 0.0076 0.021 101.5 0.200 17.40
104 0.402 0.0071 0.022 90.0 0.216 54.93

The results of some of the flow features obtained are shown in Table 2, where the mean drag coefficient,
Cd, and its root mean square Cd,rms value, the root mean square value of the y-force coefficient, Cy,rms, the
base pressure coefficient, −Cpb, the separation angle θsep measured from the front stagnation point and the
non-dimensional vortex shedding-frequency, St are given. As can be seen, even the coarse mesh reproduces
quite well the main flow features for both Reynolds numbers. However, as expected, m2 gives slightly better
results. In what follows, all the results presented for the larger Reynolds numbers are given with mesh m2,
whereas for Reynolds numbers up to Re = 750, m1 is used.

3 Results
The main heat transfer and aerodynamic parameters for all Reynolds numbers are given in Table 3. In the
table the drag coefficient, the fluctuating lift and drag, the separation angle and non-dimensional vortex
shedding frequency are given.As expected, the drag coefficient rapidly decreases with the Reynolds number
for the laminar cases. When the wake flow enters in the subcritical regime Re > 1000, the drag coefficient
stabilizes being almost constant about CD = 0.4 up until turbulent transition occurs in the attached boundary
layer and the flow enters the critical regime (Re ≈ 2 × 105)[2]. In general, there is a good agreement with
the experimental results reported in the literature (not shown here). It should be pointed out that at
Re = 200, the flow is steady and axisymmetric and thus there are not fluctuations of the lift and drag
coefficients. Actually, it has been reported in the literature that the onset of vortex shedding is about
Re ≈ 210 [4, 21, 17].

3.1 Wake and boundary layer development
In the range of Reynolds numbers concerning the present paper, significative changes in the wake of the sphere
occur. The vortical structures in the range of Re = 300 to Re = 104 are shown in figures 2 and 3. These
structures are represented by means of iso-countours of the second-invariant of the velocity gradient tensor
Q[22]. According to the Q criterion, a vortical structure is identified in a region with positive Q, i.e. a region
where vorticity overcomes strain. To well capture these structures the value of the Q-isosurface represented is
increased as the Reynolds number increases. At the lower Reynolds numbers, vortical structures are laminar
and thus, correspond with low values of Q. After the onset of the vortex shedding (i.e. at Re ≈ 210), vortices
are shed in an asymmetric manner and then, the wake behind the sphere is also asymmetric as can be seen
from the figure 2. Actually, the vertical and lateral forces on the sphere are not equal, being their value
larger than zero. This asymmetry is a characteristic thread of the laminar vortex shedding in the sphere and
has been reported before both experimentally and numerically (see for instance [2, 21, 17, 23]).

Once the Reynolds number increases beyond Re = 800 [1], the shedding of vortices occurs at random
locations and thus, the wake recovers its statistic symmetry. At Reynolds number, Re = 1000 (see figure 3),
the hairpin-like structures detached from the sphere form regular vortex packets that move downstream in
a helical-like manner similar to the ones observed at a relatively larger Reynolds number of Re = 3700 by
Rodriguez et al. [5]. The large scale vortices shed from the sphere break into small-scale structures forming
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(a)

(b)

(c)

Figure 2: Laminar vortical structures in the wake of the sphere. (a) Re = 300, (b) Re = 500, (c) Re = 750.

a turbulent wake at Re = 104. Notice also the Kelvin-Helmholtz like structures in the separated laminar
part of the shear layer and how these instabilities trigger the transition to turbulence (figure 3b).

Apart from the differences in the vortical structures shed into the wake, separation from the sphere
changes when the Reynolds numbers increase from 200 to 104. At Re ≤ 1000, separation occurs past the
apex of the sphere (see location reported in table 2). When the flow stabilizes around Re = 3000, the
separation point moves backwards towards the apex and it remains in the same location during the whole
sub-critical regime up until the drag crisis occurs [1].

The viscous and thermal boundary layer thicknesses and the shape factor for all Reynolds numbers are
given in figures 4 and 5. Here, viscous boundary layer thickness (δ95) is defined as the location where the
velocity is the 95% of the velocity at the outer edge of the boundary layer. In a similar manner, the thermal
boundary layer thickness δΘ is defined as the location where the non-dimensional temperature is 5% above
the temperature of the free-stream, i.e. Θin = 0. The shape factor, H, is the ratio of the displacement, δ1,
to the momentum thicknesses, δ2. Being vθ the stream-wise velocity in the boundary layer of the sphere, Ue
the velocity at the edge of the boundary layer and n the normal direction to the surface of the sphere, these
quantities are defined as,

δ1 =

∫ δ95

0

(
1− vθ

Ue

)
dn; δ2 =

∫ δ95

0

vθ
Ue

(
1− vθ

Ue

)
dn. (8)

As expected, as the Reynolds number increases the boundary layer becomes thinner, and as Pr < 1, the
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(a)

(b)

Figure 3: Vortical structures in the wake of the sphere. (a) Re = 1000, (b) Re = 104.

(a) (b)

Figure 4: (a) Viscous and (b) thermal boundary layer thicknesses at the different Reynolds numbers. (red
dot) location of the separation point.
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Figure 5: Boundary layer shape factor at the different Reynolds numbers. (red dot) location of the separation
point, (blue line) Blausius boundary layer shape factor, (open circles) circular cylinder shape factor.

thermal boundary layer is thicker than the viscous one (see figure 4). Notice that in both figures the location
of the separation point is marked as a red dot.

The shape factor shows a more interesting behaviour. For all Reynolds numbers, at low angles from
the front stagnation point, the boundary layers have the same shape factor which is slightly lower than the
value predicted by Blasius solution for a laminar boundary layer, H = 2.59 (blue line in figure 5). Initially,
the shape factor shows a slight and constant increase trend up until a certain angle θ ≈ 70◦. This zone
corresponds with the favorable pressure gradient zone, where the flow in the boundary layer accelerates. The
viscous and thermal boundary layer thicknesses (see figure 4) keep almost constant with a slight increment
in this zone. Once the boundary layer enters the adverse pressure gradient zone and approaches separation,
the boundary layer thicknesses and the shape factor rapidly increase. The separation of the boundary layer
is eventually reached at H ≈ 3.8 − 4.7. The location of the separation point is marked in the figure with
a solid red dot. The value of the shape factor at separation slightly increases with the Reynolds number.
Notice also that the shape factor for the circular cylinder at subcritical Reynolds numbers is also included in
the figure for comparison [24]. It is interesting to point out that shape factors for both sphere and cylinder
at these Reynolds numbers behave similarly as in both cases the boundary layer is laminar before separation.
As the minimum pressure gradient being attained at around θ = 70◦, the zone where the boundary layer
accelerates and enters the adverse pressure gradient is approximately the same in both cases.

3.2 Heat transfer from the sphere
The Nusselt number at the surface of the sphere is defined as Nu = h D/k, h being the local dimensional
convective heat transfer coefficient and k the thermal conductivity, defined as:

h =
k∂ < T > /∂n

(Tsph − Tin)D
= k

∂Θ

∂n
(9)

where < · > stands for the average in time fields. Surface average Nusselt numbers are given in Figure
6. Reference values obtained from correlations reported in the literature are also given. In general, the
agreement of the average Nusselt number with those reported in the literature is quite good. Yet, among
the different references there are also some discrepancies. Actually, there are different issues that can affect
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Figure 6: Nusselt number as a function of the Reynolds number. Comparison with the literature:(dashed
line) Whitaker [26], (dash-dotted line) Frossling [27]

the experimental measurements, especially those of the heat transfer coefficient. Among these, the support
mechanism and its relative position respect the main stream, the turbulence intensity, the scale of turbulence
and the heat losses through the support can be found. For instance, Raithby and Eckert [25] analysed some
of these aspects and found that placing the stem crossflow results in an increase of the Nusselt number in
10% respect at its position in the rear end of the sphere. Similarly, they detected that 5% increase in the
turbulence intensity might represent an increase in the Nusselt number by 7.5% and 17.5% for Reynolds
number 3.6× 103 to 5.2× 104, respectively.

The local Nusselt number at all Reynolds numbers is shown in figure 7. In figure 7, results of the sphere
surface are projected onto a 2D plane; a normal cylindrical projection is used. In the center of this projection,
i.e. [φ, ψ] ≡ [0, 0], the front stagnation point is located, whereas the lines [φ, ψ] ≡ [φ,±90◦] correspond to
single points in the spherical coordinates. In the figure, the white lines indicate the location of the boundary
layer separation (see also table 2 where these values are reported). Complementing these contours, plots
of the time-average Nusselt number as a function of the angle θ measured from the front stagnation point
(figure 8 ).

At all Reynolds numbers, the attached boundary layer is laminar. Fluctuations in the front zone are
rather small up until the flow approaches the line corresponding with the flow separation. In the front
stagnation point, the largest value of the Nusselt number is attained (see also figure 8). Then, it decreases
monotonically up to a minimum as the laminar boundary layer thickens. This minimum occurs just after
the boundary layer separation point (see figure 8 and also the separation location reported in table 2). At
Re = 200, as the flow is steady and axisymmetric so does the Nusselt number at the surface (see figure 7a).
As mentioned before, after the onset of the vortex shedding the wake is asymmetric and this asymmetry also
affects the distribution of the heat transfer coefficient in the aft zone of the sphere as can also be noticed in
figures 7b-d. As the Reynolds number approaches the chaotic regime Re ≈ 800 and enters the formation of
turbulent vortices in the wake of the sphere, the flow recovers its statistic symmetry and so does the average
Nusselt number (see figure 7e,f).

The circumferentially and time averaged Nusselt number is also given in figure 8. In the figure, the Nusselt
number is scaled with Re0.5 and is compared to data reported in the literature. For Reynolds numbers up
to Re = 750 (see figure 8a), results are compared to the numerical ones of Bagchi et al. [23] at Re = 350
and Re = 500 with very good agreement. As the Reynolds increases, the separation point moves towards
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Time average Nusselt number at (a) Re = 200, (b) Re = 300, (c) Re = 500, (d) Re = 750, (e)
Re = 1000 (f) Re = 104.
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(a) (b)

Figure 8: Nusselt number variation as a function of the sphere circumference. (a) At low Reynolds numbers,
(b) at Re = 1000 and Re = 104, comparison with results from the literature [23, 28, 8].

the sphere apex and the position of the minimum Nusselt number also moves towards lower angular values.
However, this local minima is comparable for all Reynolds numbers. For the larger Reynolds numbers, i.e.
for Re=1000 and Re = 104 (see figure 8b), the agreement with the experimental results is fair. Yet, a large
scattering is observed probably due to the same issues commented before. As the wake behind the sphere
is turbulent, the flow becomes more unstable to disturbances introduced by the support mechanism or the
even the incoming turbulence. For these Reynolds numbers, the minimum value is attained at θ ≈ 114◦ and
θ ≈ 95◦, respectively, after this point the Nusselt number increases moderately towards the rear stagnation
point. However, as at Re = 104 the transition to turbulence is closer to the surface of the sphere than at
Re=1000, there is more mixing in the aft region of the sphere and therefore the local values of the Nusselt
number are larger in the whole zone.

As commented before, the maximum value of the local Nusselt number is attained at the front stagnation
point (see also figure 8); this value does not scale well with Re0.5 but slightly decreases as the Reynolds
number increases. In figure 9 the Nusselt number at the stagnation point is reported as a function of the
Reynolds number. In the figure, correlations from Wadswortht [29] and Sibulkin [30] and the numerical data
by Bagchi et al. [23] are also included. The Nusselt number obtained in the present study can be correlated
with the Reynolds number as,

Re = 1.361Re0.474 (10)

As can be seen from the figure, the agreement of the present data to those reported by Bagchi et al. [23]
is quite good. Moreover, although there with some differences the correlation of the present results are also
is fair agreement with the correlation proposed by Sibulkin [30] for the range of Reynolds numbers of the
present study.

4 Conclusions
High-fidelity numerical simulations of the fluid dynamics and heat transfer of the flow past a sphere at Re
numbers of 200, 300, 500, 750, 1000 and 104, with Pr = 0.7, have been performed in the context of the
development of a spherical wind sensor for Mars atmosphere intended for missions after Rover 2020.

After the onset of the vortex shedding (at Re ≈ 210), the wake behind the sphere is asymmetric for
laminar regimes, up to Re = 800. This results in non-null lateral forces and non-symmetric heat transfer
coefficients. For Re = 1000 and 104, the shedding occurs at random locations and statistic symmetry is
recovered. For Re = 104, the large scale vortices break into smaller structures forming a turbulent wake.

For all Reynolds numbers, at low angles from the stagnation point the boundary layers have the same
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Figure 9: Nusselt number at the front stagnation point. Comparison with correlations reported from
the literature (dashed line) Wadswortht (Nust = 1.57 Re0.49) [29], (dash-dotted line) Sibulkin (Nust =
1.144Re0.5)[30] and results from [23] (open circles).

shape factor up until the angle corresponding with the minimum pressure coefficient. The shape factor is
slightly lower than the Blasius solution for a laminar boundary layer, with a slight increase in the favorable
pressure gradient, followed by a rapid increase in the adverse pressure gradient zone. Separation is reached
at H ≈ 3.8− 4.7, the larger values correspond with the larger Reynolds numbers. Such behaviour is similar
to the subcritical flow around a circular cylinder.

Surface averaged Nusselt numbers obtained are in good agreement with the published experimental
results. The discrepancies obtained, especially in local Nusselt numbers at Re = 1000 and Re = 104 are
probably due to the sphere supports and the inlet turbulence intensity, that are known to have an important
effect and most likely cause scattering of the experimental results. Future numerical simulation works should
be aimed to improve the understanding of the effect of turbulent inlet conditions.

As the Reynolds number increases, the separation point and the position of the minimum Nusselt number
move towards the sphere apex. At Re = 104, the transition to turbulence is closer to the surface of the sphere
than at Re = 1000 and therefore, there is more mixing and larger Nusselt number values in the aft region.
The maximum Nusselt number is attained at the front stagnation point; this value can be correlated with
Re as Re = 1.361Re0.474, in good agreement with published results.
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