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1     Introduction  Generalized finite difference (GFD) method represents a general class of numerical methods that can 
handle problems with complicated geometries. Compared with the unstructured finite volume method, 
this method uses only clouds of points to discretize the partial differential equations and there is no 
need to perform the spatially numerical integration. When the clouds of points are extracted from the 
existing grids, GFD method may be considered as the finite difference method based on the 
unstructured grids. When the clouds of points are independent to any kinds of grid structures, GFD 
method is a certain kind of meshless methods. In the latter case, GFD method may fall under many 
other names including meshless [1-6], meshfree [7, 8], gridfree [9, 10], gridless [11-15], LSFD-U [16, 
17], and finite point [18-21] methods. 

In the past two decades, extensive studies have been carried out in developing GFD or meshless 
methods for solving the compressible and incompressible flows. GFD method was firstly proposed by 
Chung [22]. Batina [1] developed an explicit gridless solver using a least-square curve fit on local 
cloud of points. Lӧhner et al. [19] used a linear polynomial to construct the flux distribution and 
adopted the method similar to one-dimensional MUSCL interpolation to compute the left and right 
states of the corresponding approximate Riemann solvers. Sridar and Balakrishnan [16] proposed an 
upwind least squares to construct the meshless schemes of specified order accuracy and used a linear 
fitting to approximate the spatial flux derivatives. Ding et al. [7] presented a 3rd order meshless 
scheme for incompressible flows and analyzed the error for derivatives. Shu et al. [23], Tota and 
Wang [8] used the radial basis functions to construct the flux derivatives. Katz and Jameson [2] used 
three approaches including Taylor series least-square, polynomial base least-square and radial base 
function methods to approximate spatial derivatives. Su and Yamaoto [5] analyzed some behaviors of 
the meshless methods with a linear fitting. Sundar and Yeo [6] presented a high order meshless 
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method with compact support for solving the incompressible flows. These methods are mainly first or 
second order in accuracy. While there have been some proposals for developing high order GFD 
schemes solving incompressible flows, very little work has been done on developing high order GFD 
schemes to compute compressible flows. 

High order schemes are attractive for their significant potential to improve the spatial accuracy and 
to accelerate the rate of grid convergence compared to the traditional second order scheme. In our 
recent paper [Li , Ren, et al., 24], a general framework has been proposed for constructing high order 
GFD schemes for solving the inviscid compressible flows. The reconstruction and flux evaluation are 
two key ingredients in obtaining high order spatial accuracy. A large stencil is required in obtaining 
high order accuracy for the reconstruction and flux evaluation. The large stencil is a serious problem 
[25-26] for high order GFD schemes, which will reduce the computational efficiency especially in 
parallel computing and brings difficulties in the high order boundary treatment. 

In the present work, a new GFD method is presented to circumvent the large stencil problem. This 
method can achieve arbitrarily high order accuracy on a highly compact stencil for both the 
reconstruction and flux evaluation. Firstly, a variational reconstruction is proposed based on the 
minimization of a cost function which is defined by the continuity of the solution and its derivatives. 
The solutions in the form of high order polynomials are recovered from this procedure by solving a 
system of linear equations. The similar procedure has been proposed for the high order finite volume 
methods in [28]. The present method, however, is based on the point-wise values of the solution 
instead of the cell averages for the finite volume methods. Secondly, a simple and efficient hybrid 
approach is proposed to construct the upwind numerical flux derivatives. Comparing with the 
derivative Riemann solver approach [29] which can also be used to compute the numerical flux 
derivatives, the present approach is several times more efficient. 

The variational reconstruction method is implicit in nature and a large system of linear equations 
needs to be solved. When a direct solver is used, the computation is computationally expensive and 
the compactness of the reconstruction procedure is lost. The use of the iterative solvers can maintain 
the compactness of the solution procedure, which is still very expensive as the solution reaches full 
convergence. To improve the computational efficiency, the reconstruction and time integration 
coupled iterative technique proposed in [27] is used in the context of the GFD schemes. It should be 
noticed that it is required to use the implicit time stepping scheme when using this technique. 

In our previous work [24], the high order boundary treatment consists of two steps, i.e., the 
extrapolation-correction step and the gradient reconstruction step. However, the stencils 
corresponding to these two steps are different and both could be very large. In the present paper, the 
extrapolation can also be carried out with the variational reconstruction technique. By the introduction 
of the boundary cost function, the extrapolation can be solved seamlessly together with the 
reconstruction of the non-boundary points. Furthermore, this extrapolation technique makes both the 
value of the extrapolated variable and its derivatives into one single step. 

The remainder of this paper is organized as follows. The high order GFD schemes, the boundary 
treatment, and the WBAP limiter are described in the second section. Several numerical test cases are 
chosen in the third section to validate the performance of the proposed GFD schemes. Finally, 
conclusions are given in the last section. 
 
2     High order compact GFD method  2.1     Governing equations 
The two-dimensional unsteady compressible Euler equations are used as the governing equations and 
the conservation form can be expressed as 

t x y
       0U F G ,                                                           (1) 

where the conservative variables U  and the inviscid fluxes F , G  are given by 
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Here,   is the density, u  and v  are the velocity components in x  and y  directions, p  is the 
pressure, and E  is the total energy per unit volume. 
 
2.2     Basic framework of high order GFD schemes 
Consider a local 2D cloud of scattered points surrounding a reference point i  and two types of stencil 
points are defined, as shown in Fig. 1. The first stencil points are the support points (the dotted points) 
where the flow variables are stored. The second stencil points are the mid-points (the cross points) 
where the numerical fluxes are evaluated. The mid-points stand halfway between the reference point 
and the surrounding support points. These two stencil points provide the basic data structures of the 
high order accurate GFD schemes. 
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 Fig. 1.  Two types of stencils points defined in the local cloud of points. 
 Similarly to our recent work [24], the new GFD schemes also consist of three basic steps, i.e., the 

reconstruction, the flux evaluation, and the update step. The previous schemes are briefly reviewed 
before presenting the present work. Firstly, a piecewise polynomial is recovered from the point values 
on the reference point and its support points. Secondly, the numerical flux derivatives are computed in 
terms of the numerical fluxes on the mid-points. The numerical fluxes are computed using the high 
order interpolation with the reconstruction step and a certain Riemann solver or flux-splitting 
technique. Thirdly, the flow variables are updated with the time integration. In our pervious work, the 
number of support points is usually large since only the point values are used to construct the solution 
data and its derivatives. To circumvent the large stencil problem, a new high order GFD scheme is 
proposed on a highly compact support nodal set (stencil). The details of the solution procedure are 
described in the following steps. 
(1) Reconstruction step.  

Given the numerical solutions at a certain time step, the distribution of the flow variables around 
the reference point i  can be obtained using the reconstruction step. For simplicity, it is assumed that 

( )u r  is a component of the conservative variables or the primitive variables. A piecewise polynomial 
of degree k  is defined on the reference point i  in the form 

1
( ) ( )K l l

i i i i
l

u u u 


 r r .                                                         (2) 
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In Eq. (2), l
iu  are the unknown coefficients, ( )l

i r  are the polynomial basis functions, and K  is the 
number of unknown coefficients, i.e., ( 3) 2K k k   for the two-dimensional problems. In the 
present work, the polynomial basis functions ( )l

i r  are defined as 
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2

24 5
2 2

( )( ) , ( ) , ( ) ,2
( )( ) ( )( ) , ( ) , ,2

i i ii i i
i i i

i i ii i
i i

x x y y x x
h h h
x x y y y y

h h

  
 

    
   

r r r

r r 
                                 (3) 

where ( , )i ix y  denotes the position of the reference point i , and ih  denotes the characteristic length 
scale of the reference point i . 

In carrying out the reconstruction step, it is necessary to identify the stencil points. For simplicity, 
the stencil points are extracted from the existing grid topology using approaches similar to those of 
Katz and Jameson [1], Su et al. [5], Tota and Wang [8], and Munikrishna and Balakrishnan [17]. In 
the present work, a compact stencil iS  is used that only include the neighboring points sharing the 
common edges with the reference point, as shown in Fig. 2. 

 Fig. 2.  Compact stencil extracted from the existing grid topology. 
 

Based on the compact stencil iS , the variational reconstruction is used in the present work. The 
variational reconstruction method represents a general class of reconstruction method [26]. The basic 
idea of the variational reconstruction is to compute the unknown coefficients by asking Eq. (2) to 
minimize a cost function using the direct variational approach. In the present work, the cost function 
at the reference point i  can be defined as 
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,                        (4) 

where ijr  denotes the distance of the mid-point ij  from the reference point i , and ijw  is the 
weighted function given by 

1
ij Z

ij
w r  , 0Z  .                                                                  (5) 

In Eq. (4), 2n
ijr  is used to balance the dimension of difference terms. The mid-point ij  

corresponding to the support point is ij S  located at 
( , ) ,2 2

i j i j
ij ij

x x y yx y       , 
and the characteristic length scale of the reference point i  in Eq. (3) can be defined by 
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2 2max max ( ) ( )
i i

i ij ij i ij ij S j Sh r x x y y       .                                  (6) 
The unknowns in Eq. (2) can be computed by minimizing the cost function iJ  with unknown 

coefficients q
iu  in Eq. (2), i.e., 

0, 1, 2, ,i
q
i

J q Ku
    .                                                  (7) 

By substituting Eq. (2) into Eq. (8), a series of linear equations can be derived 
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These equations can be written in matrix-vector form, 
i

ii i ij j i
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For all nodal points in the computational domain, the linear system in Eq. (9) can be assembled into a 
large linear system, Au b ,                                                                           (10) 
where { }iu u , { }ib b ,   A D L U , { }iiD A , { , }ij j i L A , and { , }ij j i R A . 

The solution of Eq. (11) relies on all the nodal points in the computational domain. If a direct solver 
is used to solve Eq. (11), the computation is very expensive and the solution procedure is by no means 
compact. In the present work, the iterative solvers are used to solve the above equation to maintain the 
compactness of the solution procedure. There are several iterative solvers, such as the block Jacobi 
method, the block Gauss-Seidel method, and SOR method. In the present paper, the block Gauss-
Seidel method is used, i.e., 

( ) 1 ( ) 1 ( 1) 1
, ,i i

m m m
i ii ij j ii ij j ii i

j S j i j S j i
   

   
   u A A u A A u A b ,                           (11) 

where 1
ii
A  is inverse of the matrix iiA  and m  denotes the iterative step. The matrices 1

ii
A  and 

1
ii ij
A A  are only geometry related, and can be computed only once and stored. 

 (2) Flux evaluation step.  
In this step, the spatial derivatives xF  and yG  at the reference point i  will be computed. Assume 

that f  is a component of the flux term F or G , which can be approximated by a degree k  
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polynomial, 
1 2

1
( ) ( ) (H.O.T.) ( ),K l l f

i i i i i i i i
l i i

x yf f f f f fh h


        r r r                     (12) 
where ,i ix x x y y y      , and (H.O.T.) ( )f

i r  denotes the high order terms, i.e., 
2 22 3 4 5
2 2 2(H.O.T.) ( ) 2 2

f
i i i i i

i i i i

y x x y yf f f fh h h h
            r                            (13) 

There are several possible approaches to compute xF  and yG . The first and simplest approach is to 
derive Eq. (12) directly from the reconstruction polynomial ( )iu r  obtained in the previous step. 
However, this approach does not provide any upwind mechanism and is deemed as unstable. The 
second approach is to firstly compute the mid-point flux using a certain upwind technique, and to use 
the mid-point flux to reconstruct Eq. (12). This is a traditional approach, and has been used in [16, 
24]. The shortcoming of this approach is that it requires a large stencil since the number of known 
coefficients in Eq. (12) increases fast with the degree of the polynomial. Therefore, this approach may 
destroy the compactness of the present scheme. The third approach that may maintain the 
compactness of the scheme is to compute the fluxes of the dependent variables and their derivatives at 
the mid-points. If sufficient higher order derivatives can be computed, then the numerical fluxes can 
be evaluated on a compact stencil. The derivatives of the fluxes at the mid-points can be computed by 
solving the derivative Riemann solvers [29]. However, this approach is computationally expensive.  

In the present work, a new simple and efficient approach is proposed for computing the numerical 
fluxes on a compact stencil. This approach can be considered as the hybridization of the first and 
second approaches. It is noted that the key to compute the spatial derivatives is the evaluation of 1

if  
and 2

if  in Eq. (12). If the high order terms in Eq. (12) are directly derived from the reconstruction 
step, the number of the unknowns in Eq. (12) can be effectively reduced to 2. The compact stencil iS  
that used in the reconstruction step is sufficient for the flux evaluation step. Similarly to the second 
approach, the flux evaluation is carried based on the mid-point ij  to introduce the upwind 
mechanism. The details of the proposed hybrid approach are described in the following. 

On every mid-point ij , there is the following interpolation relation, 
1 2 (H.O.T.) ( )ij ij f

i i ij i ij
i i

x yf f fh h
       r , ij S ,                               (14) 

where ij ij ix x x   , ij ij iy y y   , and ij ij if f f   . The numerical flux ijf  at the mid-point ij  
can computed using a Riemann solver or flux splitting technique, and the high order term 
(H.O.T.) ( )f

i ijr  can be derived from the reconstruction step. Further details will be given later in this 
section. After computing (H.O.T.) ( )f

i ijr  and ijf , the unknown terms in Eq. (14) can be solved by 
minimizing the following cost function, 

2
1 2

, (H.O.T.) ( )
i

ij ijf
i f ij ij i ij i i

j S i i

x yJ w f f fh h
              r ,                          (15) 

where the weights ijw  are the same as those defined in Eq. (5). Once the coefficients are computed 
using the least-squares, the numerical flux derivatives at the reference point i  can be obtained, 

1 (H.O.T.) ( )
ki

f
ij ij i ij

j Si i

f fx h 


           r ,                                          (16) 
1 (H.O.T.) ( )

ki

f
ij ij i ij

j Sii

f fy h 


           r ,                                          (17) 
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where the coefficients ( , )ij ij   are only geometry related and can be calculated as 
2

2 2
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2 2 2
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  
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2
2 2

22 2
2 2 2
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 
  

.                                (19) 

Assume that the high order reconstruction polynomial in Eq. (2) has been recovered with 
variational reconstruction procedure. The left reconstruction state L

iju  on the mid-points can then be 
computed, i.e.,  

1 2 (H.O.T.) ( )ij ijL u
ij i i i i ij

i i

x yu u u uh h
     r ,                                   (20) 

where ,ij ij i ij ij ix x x y y y      , and (H.O.T.) ( )u
i ijr  denotes the high order term in the 

reconstruction polynomial, i.e., 
2 2

3 4 5
2 2 2(H.O.T.) ( ) 2 2
ij ij ij iju

i ij i i i
i i i

x x y yu u uh h h
       r                              (21) 

The left flux state L
ijf  can be derived directly from Eq. (20), i.e., 

1 2 (H.O.T.) ( )ij ijL f
ij i i i i ij

i i

x yf f f fh h
     r ,                                 (22) 

where l
if  are derived coefficients from the reconstruction polynomial coefficients l

iu , and 
(H.O.T.) ( )f

i ijr  is the derived high order terms, i.e., 
2 2

3 4 5
2 2 2(H.O.T.) ( ) 2 2
ij ij ij ijf

i ij i i i
i i i

x x y yf f fh h h
       r                         (23) 

The derived high order terms (H.O.T.) ( )f
i ijr  in Eq. (22) is used for the computation of 

(H.O.T.) ( )f
i ijr  in Eqs. (16) and (17), i.e., 

1 2(H.O.T.) ( ) (H.O.T.) ( ) ij ijf f L
i ij i ij ij i i i

i i

x yf f f fh h
     r r ,                       (24) 

Then Eqs. (16) and (17) can be rearranged into 
1 21 ( )

i i i

ij ijL i iij ij ij ij ij
j S j S j Si i i i i i

x yf ff f fx h h h h h  
  

              ,                       (25) 
1 21 ( )

i i i

ij ijL i iij ij ij ij ij
j S j S j Si i i i ii

x yf ff f fy h h h h h  
  

              .                       (26) 
It can be proved with Eqs. (18) and (19) that there exist the following relations, i.e., 

1
ki

ij
ij

j S i

x
h


  , 0

ki

ij
ij

j S i

y
h


  , 0
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ij
ij

j S i

x
h


  , 1

ki

ij
ij

j S i

y
h


  .                     (27) 

By substituting the above relations into Eqs. (25) and (26), we can obtain 
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1 ( )
i

L
ij ij ij

j Si i i

f f f fx x h 


               ,                                            (28) 

1 ( )
i

L
ij ij ij

j Sii i

f f f fy y h 


               .                                            (29) 
Using Eqs. (28) and (29), the spatial derivatives in Eq. (1) can be expressed as 

1 ( ) ( )
i

L L
ij ij ij ij ij ij

j Sii ix y x y h  


                          F G F G F F G G .                   (30) 
Equation (30) can be rearranged into 

1 ( )
i

L
ij ij ij ij

j Sii ix y x y h 
                     F G F G S H H l ,                                  (31) 

where the inviscid flux terms are 
( ) ( )ij ij ij ij ij ij ij   F U G U S H l , ( ) ( )L L L

ij ij ij ij ij ij ij   F U G U S H l                 (32) 
with 

2 2
ij ij ij  S , 2 2 2 2

ij ij
ij

ij ij ij ij

 
     l i j ,                              (33) 

and 
( ) ( )H = F U i G U j .                                                       (34) 

The numerical flux ij ijH l  in Eq. (31) is then computed using a certain Riemann solver or flux-
splitting technique associated with ijl , i.e., 

ˆ ( , , )L R
ij ij ij ij ij ij H l H U U l .                                                  (35) 

ˆ ijH ijl
L
ijU R

ijUi jij  Fig. 3.  Schematic of the upwind numerical flux. 
 In this paper, the numerical flux is approximated using the Roe approximate Riemann solver [30]. 

It is noted that this approach can result in the upwind fluxes which is suitable to deal with 
compressible flows. The related geometrical setup of the upwind numerical flux is shown in Fig. 3. If 
the numerical flux is evaluated using the flow variables as L

ij iU U  and R
ij jU U , then the spatial 

accuracy is limited to the first order. In order to obtain the high order GFD scheme, the left and right 
states ( , )L R

ij ijU U  on both side of the mid-point ij  are computed using the high order reconstruction 
polynomials of the flow variable, i.e., 

( )L
ij i ijU U r , ( )R

ij j ijU U r ,                                                        (36) 
where ( )i ijU r  and ( )j ijU r  are deduced from the reconstruction step. 

It is noted that the unit vector ijl  that defined by the least-squares behaves similar to the outward 
surface normal in the finite volume method. Generally speaking, the unit vector ijl  is not aligned the 
radial direction ijr . In practical simulations, this misalignment does not produce any difficulties 
according to our experiences. The possible reason is that GFD scheme of Eq. (31) does not explicitly 
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related to the radial direction ijr , which is used solely to determine the mid-points where the fluxes 
are evaluated. The schematic of the unit vector ijl  in the local cloud of points is shown in Fig. 4. It 
can be seen that for the most support points, the corresponding unit vector ijl  is well aligned with 
the radial direction ijr . 

i

1

2

3
4

5

6

 Fig. 4.  Schematic of the unit vector ijl  in the local cloud of points. 
 

 (3) Time integration step.  
In the variational reconstruction procedure, the iterative solvers are used for solving the linear 

system to maintain the compactness of the solution procedure. If the linear system is required to reach 
convergence in every variational reconstruction step, the present high order GFD schemes are 
computationally expensive. To improve the computational efficiency, the reconstruction and implicit 
time integration coupled iterative technique proposed in [27] is used in the context of the present high 
order compact GFD schemes. The basic idea of the coupling iterative technique for steady-state and 
unsteady-state flows is briefly reviewed for completeness. For steady-state flow, as the convergence 
speed of the variational reconstruction is faster than that of the implicit time integration [27], the 
variational reconstruction can be iterated only once in each single time step and achieve convergence 
synchronously with implicit time integration. As the use of dual time stepping technique [31, 32] in 
the implicit time integration, the unsteady-state flow can be considered as a modified steady-state 
problem by advancing in pseudo time at each physical time step. The details of the coupling iterative 
procedure are described in the following. 

By applying Eqs. (31)~(35) to Eq. (1), the semi-discretized high order GFD scheme for 
compressible Euler equations can be written as 

1 ˆ ( , , ) ( )
i

L R Li ij ij ij ij ij ij ij i
j Siit x y h 

                  U F G S H U U l H l R U .            (37) 
Table 1 
Coefficients of singly diagonally implicit, three-stage, 4th-order accurate Runge-Kutta method [33]. 
Parameter 1.06857902130163r  . 

2 2 2

1 1
2 2

1 2 1 4
1 1 111 1 124 12 242 2 2

r r
r r

r r r r

r r r


 

                 
2 2 2

1 1
2 2

1 2 1 4
1 1 111 1 124 12 242 2 2

r r
r r

r r r r

r r r


 

                   
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The singly diagonally implicit, three-stage, 4th-order accurate Runge-Kutta (SDIRK) method [33] 
with dual time stepping LU-SGS [31, 32] is applied to achieve high order temporal accuracy. The 
semi-discretized scheme Eq. (37) can be integrated in time, i.e., 

31
,

1
( )n n

i i k i k
k

t b


   U U R U ,                                                (38) 
where each stage conservative variables ,i kU  is a function of a weighted sum of other intermediate 
residuals, i.e. , 

, ,
1

( )kn
i k i kl i l

l
t a


   U U R U .                                            (39) 

The coefficients kla  and kb  in Eqs. (39) and (38) are listed in Table 1. For each stage, Eq. (39) is 
implicit and nonlinear for the Euler equations. By introducing discretized pseudo time term into Eq. 
(39), we have 

( 1) ( ) ( 1) 1, , , ( 1)
, ,

1
( ) ( )

m m m n ki k i k i k i m
kl i l kk i k

li
a at

   


     U U U U R U R U ,                        (40) 
where the pseudo time step i  can be computed according to the local time step. The k-stage 
conservative variables ,i kU  can be solved using dual time stepping LU-SGS. In solving the Eq. (40), 
the iterative solver in Eq. (11) is solved only once in a pseudo-time step. The variational 
reconstruction and the implicit dual time stepping technique coupled solution procedure is 
summarized in Algorithm 1 for the advancement in one physical time step.  
Algorithm 1 Unsteady flow solver using coupled iteration method in one physical time step. 
Initialize (0)

,1iU  with n
iU  for each inner point i  

Do k  1, 3 
Initialize (0)

,i kU  with , 1i kU  for each inner point i  
Do m  1, inner_iter_step_max 
   1. Reconstruction for each inner point i  as well as the boundary points 
   2. Correct the boundary points’ value with boundary conditions 

3. Compute ( )
,( )m

i kR U  for each inner point i  
4. Compute ( 1)

,
m

i k
U  for each inner point i  with Eq. (40) 

5. Compute the density residual(m) 
6. If residual(m)/residual(1)<   Exit 

End Do 
End Do 
7. Compute 1n

i
U  with Eq. (38) for each inner point i  as well as the boundary points 

It can be seen from Algorithm 1 that the variational reconstruction is carried only once in a point 
by point manner in each pseudo time step. The coupling of the variational reconstruction with the dual 
time stepping diagonally implicit Runge–Kutta method is in fact very close to performing the 
reconstruction in [24] in a dual time stepping implicit scheme. Therefore, by using the coupled 
iteration method, the implicit property of the variational reconstruction does not lead to any extra 
computational cost. Furthermore, the boundary treatment has been added into Algorithm 1 for the 
sake of completeness. It should be noted that both the flow variables of the inner points are updated 
with the diagonally implicit Runge–Kutta method. For the boundary points, the conservative variables 

,i kU  in each stage are computed using the boundary points’ variation reconstruction, which will be 
given in the next section. If ,i kU  are obtained, the corresponding right hand term ,( )i kR U  can be 



 11 

computed with Eq. (39). Then the conservative variables 1n
i
U  at boundary points can be expressed as 

31 1
,

1
n n
i i k i k

k
b 


  U U M U ,                                                       (41) 

where 1M  is the inverse of the matrix M  that is formed with coefficients kla  in Butcher table (see 
Table 1). 
 
2.3     Boundary treatment with variational reconstruction 

The flow variables of the inner points in each stage of the diagonally implicit Runge–Kutta method 
are updated through the time integration. This is not the case for the flow variables at the boundary 
nodal points. The updating of the flow variables at these points needs not only to utilize the 
information of the inner points nearby but also to satisfy the corresponding boundary conditions. The 
implementation of boundary conditions is of critical importance to maintain the overall accuracy of 
the numerical schemes. 

In our previous work [24], the high order boundary treatment consists of two steps, i.e., the 
extrapolation-correction step and the gradient reconstruction step. Firstly, the values of the boundary 
points are obtained from the interior points with high order extrapolation and then corrected to 
enforce corresponding boundary conditions. Secondly, the distributions of the flow variables at these 
boundary points are obtained in terms of the corrected values at the boundary points as well as the 
values of the interior points. The stencils corresponding to these two steps are different and both could 
be very large, as shown in Fig. 5. To circumvent the large stencil problem, a new high order boundary 
treatment technique is proposed and the details are given in the following. 

boundary

      

boundary

 (a) Extrapolation stencil                            (b) Gradient reconstruction stencil 
Fig. 5.  Schematic of the boundary stencil points in our previous work [24]. 

 If the values of the inner points have been updated through the time integration, the flow variables 
at the boundary points can be extrapolated from the inner points. Specifically, let biu  stand for the 
flow variable at the boundary point bi , the flow variable distribution ( )biu r  around the boundary 
point bi  can be approximated by a degree k  polynomial defined by 

0
1

( ) ( ),b b b

K l l
i i i i

l
u u u 


 r r                                                        (42) 

where b
l
iu ( 0,1, 2, ,l K  ) denotes the unknown coefficients of the polynomial. Unlike the 

reconstruction in the inner points, here 0
bu  is the unknown boundary extrapolation value. 

As the variational reconstruction method always provides enough information, the boundary 
treatment can also be implemented on compact support points. The cost function of the boundary 
node is defined as 



 12 

   
   
    

2 22
, ,

2 24
, , , ,

2 2
, , , ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) .

b b b b b b b b b
ib

b b b b b b b

b b b b b

i i j i i j j i j i j i x i j j x i j
j S

i y i j j y i j i j i xx i j j xx i j

i xy i j j xy i j i yy ij j yy i j

J w u u r u u

u u r u u
u u u u


    

       
    

 r r r r

r r r r
r r r r 

                    (43) 

where the weights bi jw  are the same as those defined in Eq. (5). The unknown coefficients 
b
l
iu ( 0,1, 2, ,l K  ) can be determined by the minimizing the cost function, i.e., 

0, 0,1, 2, ,b

b

i
q
i

J q Ku
    .                                              (44) 

The solution procedure is similar to that used in the reconstruction step for the inner points and thus is 
omitted here. As the boundary extrapolation value 0

biu  has been obtained, it needs to be corrected to 
enforce the corresponding boundary conditions. In this paper, the boundary conditions based on 
extrapolation of the characteristic variables (BCECV) [34] is used. For the inviscid solid wall, the 
primitive variables ( , , , ) biu v p  are corrected by 

0 0 0

0 0 0

0 0 0

0 0 0

( )
( )
( )

( )

b b b b b b

b b b b

b b b b

b b b b b b

i i i x i y i i

i i x x i y i

i i y x i y i

i i i i x i y i

n u n v a
u u n n u n v
v v n n u n v
p p a n u n v

  



            

 

 

,                                                (45) 

where bi  is the reference density, bia  is the reference speed of sound, ( , )x yn n  is the unit normal 
vector pointing out of the computational domain. The reference state is set to be equal to the boundary 
extrapolated value. 

It is noted that the boundary treatment with variational reconstruction can use more information 
than our previous work [24]. By the introduction of the boundary cost function, the extrapolation can 
be solved seamlessly together with the reconstruction of the non-boundary points. Furthermore, this 
extrapolation technique makes both the value of the extrapolated variable and its derivatives 
combined into one single step. Therefore, the new boundary treatment is more flexible. 
 
2.4     WBAP limiter 
The WBAP limiter [24, 35, and 36] is used to suppress non-physical numerical oscillations near 
discontinuities. Similar to the limiting procedure of the WENO schemes [37-38], several candidate 
reconstruction polynomials need to be provided on the reference point. Candidate polynomials for the 
WBAP limiter are obtained with the so-called secondary reconstruction (SR) technique. The SR uses 
the continuations of the reconstruction polynomials on neighboring support points of the current 
reference point as the additional candidate polynomials. The resulting candidate polynomials with SR 
can be expressed as 

1
( ) ( ),K l l

j i i j i i i
l

u u u j S 
  r r ,                                              (46) 

where l
j iu   is the coefficient of SR. In the WBAP limiter, the limited reconstruction polynomial 

( )iu r  is computed by a non-linear average of ( )iu r  and ( )j iu  r  in the form 

1
( ) ( ( , ,, ))K l l l l l

i i i i i i j i i
l

u u u u u uL j S 
   r r   ,                         (47) 
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where l
iu  is the coefficients after limited, and the limiting function is given by 

 0 0 0 1
0
11

0
, , , ,( , ) (1, ) ( , ,1, )JJ JL a a L a La a

aaa a        .                    (48) 
with 

 1

1
1

1

,(1, , )
J p

p j
m

J
p

m

J p
j

L
n
n

 












 
 , 4p  , 10pn  .                              (49) 

The WBAP limiter is applied in a successive manner in terms of the characteristic variables. The 
key ingredient of the successive limiting procedure is to apply the limiter to high order derivatives 
first over the entire domain and the lower order derivatives of the SRs are evaluated in terms of the 
already limited high order derivatives. This approach yields a very robust limiting procedure. Further 
details of the property and implementation of the WBAP limiter can be found in [24, 35, and 36]. 
Furthermore, it should be noted that the limiting procedure is applied after obtaining the distribution 
of the flow variables. The flux evaluation is also affected by the limiter since the left/right states of 
the Riemann problems are computed using the limited reconstruction polynomials. 
 
3     Numerical examples 
 
Several numerical test cases are computed to demonstrate the performance of the proposed high order 
GFD schemes. The primitive variables ( , , , )u v p  are used in the reconstruction step as well as the 
boundary treatment. In simulations of all the test cases, the parameter Z  defined in the weighted 
function (see Eqs. (5), (15) and (43)) is set to 2, and the boundary points’ weight ˆb  is set to 1. 
 3.1     Isentropic vortex problem 
This test case [38] is selected to verify the accuracy and efficiency of the proposed high order GFD 
schemes in computing two-dimensional flows without shock waves. The mean flow is 1  , 

1p  , and ( , ) (1,1)u v   . An isentropic vortex is added to the mean flow with the perturbations, 
21 ( , )2( , ) 2

r y xu v e  
  , 22 1

2
( 1)

8
rT e     , 0S  .                      (50) 

where ( , ) ( 5, 5)x y x y   , 2 2 2r x y  , and the vortex strength 5  . If the computational 
domain is infinite large, the exact solution is just the convection of the initial condition as the speed of 
the mean flow velocity. 

                       (a) Mesh 1 (Ne=232)                                           (b) Mesh 2 (Ne =928) 
Fig. 6.  Meshes used for the isentropic vortex problem (Mesh 1 and Mesh 2). 
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The computational domain is taken as [0, 10]×[0, 10] with the periodic boundaries and divided into 
irregular triangular elements, as shown in Fig. 6. The computation is carried out until t=2.0 using the 
2nd and 3rd order GFD schemes with variation reconstruction (V-GFD). The meshes are the same as 
those used in Section 3.1 suitably scaled for the new spatial domain. The CFL number for the local 
pseudo time step is set to 40, and the convergence criterion for the inner iteration is 510  . The 
physical time step t  is set to 0.40, 0.20, 0.10, 0.05, and 0.025 on Mesh 1 to Mesh 5, respectively. 
The L1 and L∞ norms of the errors in density as well as the CPU time for the isentropic vortex problem 
are listed in Table 2. The accuracy results using the 2nd and 3rd order GFD schemes with least-
squares’ reconstruction (LS-GFD) in our previous work [24] using SDIRK+LU-SGS are also listed 
for comparison. The error norms versus the length scale are shown in Fig. 7. The length scale h  in 
Table 2 is define as 

1
e

h N ,                                                              (51) 
where eN  is the number of mesh elements. 
Table 2 Accuracy test for the isentropic vortex problem at t=2.0. 

Schemes h L1 norm Order L∞ norm Order CPU time (s) 
6.57E-02 2.53E-02 - 3.30E-01  7.8E-02  
3.28E-02 7.10E-03 1.83 1.43E-01 1.21 0.55  
1.64E-02 9.28E-04 2.93 2.13E-02 2.74 4.62  
8.21E-03 1.93E-04 2.26 4.45E-03 2.26 55.19  

2nd V-GFD 

4.10E-03 5.38E-05 1.84 1.29E-03 1.78 548.69  
       

6.57E-02 2.36E-02 - 3.10E-01  1.1E-01  
3.28E-02 4.32E-03 2.45 8.97E-02 1.79 0.92  
1.64E-02 2.32E-04 4.22 6.71E-03 3.74 7.69  
8.21E-03 1.24E-05 4.23 3.70E-04 4.18 85.33  

3rd V-GFD 

4.10E-03 9.39E-07 3.72 4.69E-05 2.98 693.83  
 

6.57E-02 1.88E-02 - 3.67E-01 - 7.8E-02  
3.28E-02 9.99E-03 0.91 2.43E-01 0.59 0.64  
1.64E-02 2.92E-03 1.78 6.74E-02 1.85 5.69  
8.21E-03 5.56E-04 2.39 1.25E-02 2.43 63.59  

2nd LS-GFD 

4.10E-03 1.05E-04 2.41 2.31E-03 2.43 631.27  
 

6.57E-02 1.89E-02 - 2.84E-01 - 0.13  
3.28E-02 3.54E-03 2.42 9.01E-02 1.66 0.95  
1.64E-02 2.89E-04 3.62 8.41E-03 3.42 8.85  
8.21E-03 1.98E-05 3.87 5.04E-04 4.06 92.37  

3rd LS-GFD 

4.10E-03 1.17E-06 4.07 3.31E-05 3.93 760.27  
The results in Table 2 and Fig. 7 show that the L1 and L∞ error norms in both V-GFD and LS-GFD 

schemes can reach the nominal order of accuracy. The solutions computed by 2nd V-GFD scheme are 
much more accurate than those computed by 2nd LS-GFD scheme. Furthermore, it should be noted 
that both 3rd order V-GFD and LS-GFD schemes can achieve nearly one order higher than their 
nominal order of accuracy in terms of the L1 error norm. 

The efficiency comparison can be deduced from Table 2. The solution CPU time versus the L1 and 
L∞ error norms are plotted in Fig. 8. It can be seen that the V-GFD schemes (especially the 2nd V-
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GFD scheme) can achieve the same accuracy using less CPU time, which means that the V-GFD 
schemes are more efficient than the LS-GFD schemes of the same level of accuracy. Furthermore, the 
3rd order V-GFD scheme is more efficient than the 2nd order V-GFD scheme at the high accuracy 
level on sufficiently fine meshes. For example, the third order V-GFD scheme on Mesh 4 is more than 
one order of magnitude in accuracy and more efficient compared with the 2nd order V-GFD scheme. 

h
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 (a) L1 error norm                                                 (b) L∞ error norm 
Fig. 7.  Error norms versus the length scale for the isentropic vortex problem. 
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 (a) L1 error norm                                                   (b) L∞ error norm 
Fig. 8.  Error norms versus CPU time for the isentropic vortex problem. 

 
 
3.2     Supersonic vortex flow problem 
This test case [39-40] is considered to verify the accuracy of the proposed high order V-GFD schemes 
in solving problems with physical boundaries and the results are compared with those computed by 
high order LS-GFD schemes. We consider an isentropic supersonic vortex flow between two 
concentric circular arcs of radii 1ir   and 1.384or   in the first quadrant, whose exact solution is 
given in non-dimensional form by 

1
2 12
2

11 12
ii i

rM r
           , i ic MU r , yUu r , xUv r  , p r

 .            (52) 
At the inner boundary, the Mach number iM  is set to 2.25, the density i  is set to 1.0, and the sound 
speed at the inner boundary ic  can be computed as 1.0. 
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               (a) Mesh 1 (Ne=205)                                        (b) Mesh 2 (Ne=772) 
Fig. 9.  Meshes used for the supersonic vortex problem (Mesh 1 and Mesh 2). 

 
Table 3 Accuracy test for the supersonic vortex problem. 

Schemes h L1 norm Order L2 norm Order 
6.98E-02 3.52E-03 - 4.55E-03 - 
3.77E-02 6.78E-04 2.67 1.00E-03 2.46 
1.85E-02 9.45E-05 2.76 1.37E-04 2.78 2nd V-GFD 
9.20E-03 1.87E-05 2.33 2.55E-05 2.41 

      
6.98E-02 2.80E-03 - 4.76E-03 - 
3.77E-02 1.04E-04 5.36 1.34E-04 5.80 
1.85E-02 8.54E-06 3.49 1.18E-05 3.40 3rd V-GFD 
9.20E-03 5.02E-07 4.07 8.44E-07 3.79 

      
6.98E-02 6.08E-03 - 9.08E-03 - 
3.77E-02 1.80E-03 1.97 2.76E-03 1.93 
1.85E-02 2.44E-04 2.80 4.18E-04 2.64 2nd LS-GFD 
9.20E-03 2.88E-05 3.06 5.77E-05 2.84  

      
6.98E-02 4.77E-03 - 7.60E-03 - 
3.77E-02 3.34E-04 4.32 5.61E-04 4.23 
1.85E-02 2.39E-05 3.69 3.41E-05 3.92 3rd LS-GFD 
9.20E-03 1.07E-06 4.46 1.61E-06 4.39 

Four different unstructured meshes (from Mesh 1 to Mesh 4) containing 205, 772, 2930, and 11808 
mesh elements are employed (see Fig. 9). Each mesh has almost four times more mesh elements than 
the immediate coarser level and uniform refinement has been applied in the mesh generation. The 
computation is carried out using the 2nd and 3rd order V-GFD and LS-GFD schemes. All 
computations are performed until the solution reaches the residual being less than 10-12. The L1 and L2 error norms in density for the supersonic vortex flow problem are listed in Table 3. The L1 and L2 error norms versus the length scale are shown in Fig. 10. The results in Table 3 and Fig. 10 show all 
the schemes can reach the nomial order of accuracy and the solutions computed by V-GFD schemes 
are much more accurate than those computed by LS-GFD schemes. Furthermore, it should be noted 
that both 3rd order V-GFD and LS-GFD schemes can achieve nearly one order higher than their 
nominal order of accuracy. 
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 (a) L1 error norm                            (b) L2 error norm 
Fig. 10.  Error norms versus the length scale for the supersonic vortex problem. 

 
 
3.3     Subsonic flow around around the NACA0012 airfoil 
An inviscid subsonic flow around the NACA0012 airfoil is considered to investigate the convergence 
performance of the proposed high order V-GFD schemes for steady flow simulation and the results 
are compared with those computed by high order LS-GFD schemes. The free stream Mach number is 

0.63M   and the angle of attack 2.0   . The far-field is located at 30 chords length. The 
unstructured mesh used in this test case is shown in Fig. 11, which consists of 30 096 mesh elements, 
and 226 wall boundary points.  
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 Fig. 11.  Unstructured mesh used for subsonic flows around the NACA0012 airfoil. 
 The computation is carried out using 2nd and 3rd V-GFD and LS-GFD schemes. All computations 

are started with uniform flow. The CFL number for the local pseudo time step is set to 40. The 
comparison of convergence histories is shown in Fig. 12. The results in Fig. 12 show that the residuals 
of all the schemes can drop to 10-12, which demonstrates the superior convergence property of these 
schemes. Compared with LS-GFD schemes of the same order of accuracy, V-GFD schemes require 
less iterations and CPU time to reach steady-state solution.  

The convergence histories in terms of the L1 entropy error norm is shown in Fig. 13 to compare the 
computational efficiency. It can be seen that the 2nd V-GFD scheme can obtain much more accurate 
solutions than that of the 2nd LS-GFD scheme using nearly the same CPU time, which indicates that 
the 2nd V-GFD scheme is more efficient than the 2nd LS-GFD scheme. The 3rd V-GFD and LS-GFD 
schemes obtain nearly the same accurate solutions and more accurate than that of the 2nd schemes. 
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Fig. 12.  Comparison of the convergence history for subsonic flows around the NACA0012 airfoil. 
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 Fig. 13.  Entropy error comparison for subsonic flows around the NACA0012 airfoil. 
 

 
3.4     Transonic flow around around NACA0012 airfoil 
This test case is chosen to demonstrate the ability of the proposed high order V-GFD schemes in 
simulation of transonic flows around the NACA0012 airfoil with strong and weak shock waves and 
the results are compared with those computed by high order LS-GFD schemes. The free stream Mach 
number is 0.8M   and the angle of attack 1.25   . The comparisons of the pressure and Mach 
counters are shown in Figs. 14 and 15. The comparison of the surface pressure coefficients is shown 
in Fig. 16. It can be seen that the solutions using V-GFD schemes capture sharper shock waves and 
more accurate position of the waves compared with LS-GFD schemes of the same order of accuracy. 
No-oscillatory solutions are found in the V-GFD schemes, and there exists slight oscillatory in the 3rd 
LS-GFD scheme. 
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  (a) 2nd V-GFD                                                  (b) 3rd V-GFD 
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 (c) 2nd LS-GFD                                                 (d) 3rd LS-GFD 
Fig. 14.  Comparison of the Mach counters for transonic flows around the NACA0012 airfoil. 
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 (c) 2nd LS-GFD                                                 (d) 3rd LS-GFD 
Fig. 15.  Comparison of the pressure counters for transonic flows around the NACA0012 airfoil. 
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 (a) 2nd order                                                   (b) 3rd order 
Fig. 16.  Comparison of the surface pressure coefficients for transonic flows around the NACA0012 

airfoil. 
  

4     Conclusions  This paper proposes a general framework for constructing the high order compact GFD method. The 
variational method is used in both the reconstruction and a hybrid approach is used for the flux 
evaluation procedures in terms of up to 3rd order polynomials to achieve high order accuracy on a 
compact stencil. The WBAP limiter based on the secondary reconstruction which was originally 
designed for the high order finite volume methods on unstructured grids is successfully extended to 
the high order compact GFD method. A new flexible high order boundary treatment with the 
variational method is proposed to implement the boundary conditions in high order of accuracy. The 
numerical results demonstrate the high order accuracy, high resolution, and shock capturing capability 
of the proposed high order compact GFD schemes. 
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