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Abstra
t: We study the 
lustering of inertial parti
les in relation to turbulent �ow stru
ture

in the presen
e of gravity using Kinemati
 simulation (KS). The inertial parti
le 
lusters are


hara
terized using Stokes number and Froude number ranging 0 ≤ St ≤ 1 and 0.4 ≤ Fr ≤ 1.4.
Turbulent �ow predominately 
onsists of vorti
ity stru
tures is de�ned by Eulerian velo
ity �eld

and these vorti
es are identi�ed by using Q-
riterion. In the end, the parti
les' 
lusters are lo
ated

within the isosurfa
es of vorti
ity stru
ture based on di�erent values of Stokes and Froude numbers.
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1 Introdu
tion

In the last de
ades, the 
lustering of inertial parti
les in turbulent �ow is the subje
t of various studies

[1, 2, 3, 4, 5, 6, 7, 8, 9, ℄. The parti
les 
lustering in a turbulent �ow is of key importan
e for natural

as well as for industrial appli
ations. A better understanding of parti
le-turbulen
e relationship 
an help

to solve the mysteries of the Universe. In this paper, we fo
us on the 
lustering of gravity-driven inertial

parti
les in relation to turbulen
e stru
ture. Generally, a turbulent �ow is 
onsidered as a mixture of various

vorti
ity stru
tures. It has been observed that varying vorti
ity regions are the major 
ause of preferential


on
entration of inertial parti
les in the turbulent �ow. Using the experiments, Eaton and Fessler [10℄ found

that the heavier parti
les are eje
ted by the vorti
al stru
tures and develop as a 
luster in the low vorti
ity

regions.

Similar settling patterns are also reported in many numeri
al studies. Q-
riterion (a method to identify the

vortex regions in turbulent �ow) is used to lo
ate parti
le 
lustering in the di�erent �ow regions su
h as

streaming, eddies, rotational, et
. [11℄; they di�erentiated the 
on
entration levels by plotting the parti
les

number density distributions fun
tions and found that the average 
on
entration of the parti
les (parti
ularly

of the intermediate size) in the strain regions is 
learly di�erent from high vorti
ity regions. An identi
al

trend of 
lustering for the di�erent sized parti
les is shown by Wang and Maxey [12℄ and Be
 et al. [13℄ who

identi�ed the preferential 
lustering of inertial parti
les using di�erent statisti
al measures.

Further to this, Calzavarini et al. [14℄ used the Minkowski fun
tional to des
ribe the eje
tion of parti
les

from vorti
es and Q-
riterion was used to show that there is no di�eren
e in the Q-
riterion distributions for

�uid tra
ers and the parti
les with St ≃ 3 [15℄. Altogether all of these previous studies 
on�rm the eje
tion

of inertial parti
les from the vorti
ity regions and the parti
les tend to settle in the strain regions based on

St.

Most re
ently, Nilson et al. [16℄ analyzed the parti
le 
lustering in the Gaussian and non-Gaussian syntheti


turbulent �ows. They found that inertial parti
les 
luster in the lo
al low vorti
ity regions depending on
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Stokes number and it has been reported that the parti
les with low St 
luster as a result of the vortex


entrifugal e�e
t in small-s
ale turbulen
e.

In the light of above dis
ussion, it is interesting to see the lo
ations of gravity-driven inertial parti
les'


lusters in turbulent �ow. For this purpose, we divide this paper into two parts. First, we brie�y explain the

formation and types of inertial parti
les Lagrangian attra
tors and then, their lo
ations are determined in the

turbulen
e stru
ture using visualization and statisti
al approa
hes. The paper is organised as follows: in � 2

we introdu
e the Kinemati
 Simulation (KS) and development of Lagrangian attra
tors. The mathemati
al

ba
kground related to turbulen
e stru
ture is dis
ussed in � 3. The results of lo
ations of attra
tors based

on visualization and statisti
s are explained in � 4 and � 5 respe
tively. Se
tion 6 summarises our main


on
lusions.

2 Kinemati
 Simulation and Lagrangian Attra
tors

Kinemati
 Simulation (KS) is a parti
ular 
ase of syntheti
 turbulen
e where the fo
us is on parti
le's

traje
tory at the expense of solving the Navier-Stokes equation. An analyti
al formula `syntheti
 �ow' is

used for the Eulerian �ow �eld. Though the syntheti
 turbulen
e retains less information than the whole

�ow 
ontains, its su

ess relies on keeping what is paramount for the Lagrangian story.

The simpli
ity of the KS model ex
ludes some features of real turbulent �ows but 
aptures the part of

the physi
s whi
h is required to perform Lagrangian parti
le analysis.

KS modelling has been su

essfully employed and validated [?, 17, 18℄. This kind of simulation is mu
h

less 
omputing-time 
onsuming than DNS, whi
h is important for the present study where we need to run

many 
ases (more than a 1000 
ases for 100 turnover times). Ea
h 
ase 
orresponds to a given St, Fr, p and
time and involves 15625 parti
les.

With syntheti
 simulations, one 
an develop models where turbulen
e ingredients and 
omplexity 
an

be added step by step helping to understand their respe
tive importan
e. These syntheti
 models 
an be

a useful 
omplement to Dire
t Numeri
al Simulation. In parti
ular with KS it is possible to play with the

spe
tral law [19℄ and its 
onsequen
es in terms of parti
le's dispersion.

As we are not interested in two-parti
le dispersion, we limit our study to the s
ale ratio kimax/kimin = 9 1

used in [8℄.

In KS, the 
omputational task redu
es to the 
al
ulation of ea
h parti
le traje
tory. This traje
tory is, for

a given initial 
ondition, X0, solution of the di�erential equation set:

dX

dt
= V(t) (1)

dV

dt
= F(uE(X, t),V, t) (2)

where X(t) is the parti
le's position, V(t) its Lagrangian velo
ity and uE the analyti
al Eulerian velo
ity

used in KS. F is a fun
tion relating the Lagrangian a

eleration to the Eulerian and Lagrangian velo
ities.

In KS uE takes the form of a trun
ated Fourier series, sum of Nk = N3
Fourier modes:

u(x) =

N∑

i=1

N∑

j=1

N∑

l=1

aijlcos(kijl.x) + bijlsin(kijl.x) (3)

where aijl and bijl are the de
omposition 
oe�
ients 
orresponding to the waveve
tor kijl. In its general

form the KS �eld 
an also be a fun
tion of time but we limit the study to a steady KS.

1i = 1, 2 or 3
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2.1 Periodi
 KS method for periodi
 �ow

Following [8℄, the waveve
tors kijl = (ki, kj , kl) follow an arithmeti
 distribution to enfor
e a periodi
 
ondi-

tion for the velo
ity �ow �eld:

ki =
2π

Lx
(ni − 1), kj =

2π

Ly
(nj − 1), kl =

2π

Lz
(nl − 1) (4)

where (ni, nj , nl) are integers satisfying 1 6 ni 6 N . In pra
ti
e, we 
hoose (Lx = Ly = Lz) for 
reating an
isotropi
 turbulen
e and to ensure the �ow in
ompressibility the Fourier 
oe�
ient ve
tors aijl and bijl are

set orthogonal to the waveve
tor:

aijl · kijl = bijl · kijl = 0 (5)

Their magnitude is �xed by the energy spe
trum, E(k) (??).

|aijl|
2
= |bijl|

2
= 2E(k)∆kijl/mk (6)

where mk is the number of waveve
tors of wavenumber k = ‖kijl‖. This is the key point for using KS for

this study. The use of (??) in (6) is straightforward and does not require 
ompli
ated for
ing te
hniques.

From the spe
tral law, the rms velo
ity (??) and the integral length s
ale 
an be de�ned:

L =
3π

4

∫ kmax

kmin

k−1E(k)dk
∫ kmax

kmin

E(k)dk
(7)

The Kolmogorov length s
ale is de�ned as η = 2π/kmax, whereas the largest physi
al s
ale is L = 2π/kmin

whi
h determines the inertial range [η, L] over whi
h (??) is observed. It is worth noting that L ≃ L for

su�
iently large inertial ranges. However, here in 
ontrast to other KS studies the inertial range is small

and L ≃ 5L. In this paper, non-dimensional numbers (St and Fr) are based on the integral length s
ale L.
The ratio between the largest length s
ale and the Kolmogorov length s
ale is kmax/kmin and the asso
iated

Reynolds number is: ReL = (kmax/kmin)
4/3

. This is the standard way to de�ne a Reynolds number in KS

and a DNS or an experiment yielding the same ratio kmax/kmin would have a mu
h larger Reynolds number.

Finally, a 
hara
teristi
 time for normalisation 
an be td = L/urms or T = L/urms. The parti
les are initially

homogeneously distributed and whenever a parti
le leaves the turbulen
e box domain (e.g. Xi > Lx) it is

re-inje
ted from the opposite side to keep the periodi
 
ondition.

2.2 Equation of motion

Following [20℄ the equation of motion for the inertial parti
le is derived from [21, 22℄ and 
onsists of a drag

for
e and drift a

eleration (weight):

dV

dt
=

1

τa
(u(xp(t), t)−V(t) +Vd) (8)

where τa is the parti
le's aerodynami
 response time and Vd = τag the parti
le's terminal fall velo
ity or

drift velo
ity.

2.3 Types of Lagrangian Attra
tors

The parti
les initially uniformly distributed in the �ow �eld are allowed to evolve until a Lagrangian attra
tor

is a
hieved. The shape of the attra
tor varies from 
lear one-dimensional stru
tures to three-dimensional

distributed stru
tures depending on Stokes number and Froude number. These attra
tors are 
ategorised

as;

i) 1D-H : horizontal one-dimensional Lagrangian attra
tor as in Fig. 1(a),

ii) 1D-V : verti
al one-dimensional Lagrangian attra
tor as in Fig. 1(
),
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iii) 1D-HV : Intermediate one-dimensional Lagrangian attra
tor as in Fig. 1(b).

iv) 2D-L : two-dimensional verti
al 
urtain-like layer as in Fig. 1(d) (see also [23℄).

Figure 1: Di�erent 
hara
teristi
 attra
tor shapes.

3 Mathemati
al ba
kground and de�nitions

3.1 Vortex dete
tion

A number of vortex dete
tion methods have been developed to identify vorti
es in the �ow and, in general,

vortex dete
tion s
hemes are 
ategorized as follows:

• Vortex regions may be dete
ted on the basis of s
alar quantities. For example, the high magnitude of

vorti
ity and positive Q-
riterion show the regions of high vorti
ity in the �ow. These approa
hes 
an

be visualized either by isosurfa
es or volume rendering method.

• In the se
ond 
ase of the vortex 
ore dete
tion, instead of regions, the line types features are redu
ed

as high vorti
ity zones.

Both of these 
ategories 
an be studied using the established te
hniques based on di�erent types of appli
a-

tions. As in 
ase of parti
les' 
lustering, it is more important to see the regions of high and low vorti
ity, we

fo
us on the vortex regions te
hniques for lo
ating the inertial parti
les' 
lusters.

3.2 Vortex regions dete
tion methods

There is no 
lear de�nition of vortex regions and they are 
onsidered as the �ow regions with high vorti
ity or

low strain. The models developed to identify the vortex 
an be based on di�erent �ow parameters. Normally,

the vortex region quantities are de�ned by splitting velo
ity gradient as

∇u = S +Ω, (9)

i.e., into strain rate tensor (S) and vorti
ity tensor (Ω) whi
h are also known as symmetri
al and anti-

symmetri
al parts of �ow respe
tively:

S =
1

2
[∇u+ (∇u)t], (10)

Ω =
1

2
[∇u− (∇u)t]. (11)

The strain rate tensor (S) measures the stret
hing and folding in the �ow whi
h 
auses the mixing of

parti
les while vorti
ity tensor (Ω) is relevant to rotational a
tivities in the �ow �eld. The methods of vortex

identi�
ation (Q-
riterion, λ2-
riterion, ∆− criterion, et
.) are mostly based on the 
hara
teristi
 equation

of ∇u;
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λ3 + Pλ2 +Qλ+R = 0 (12)

where P, Q, and R are the three invariants of velo
ity gradient ∇u and expressed in terms of symmetri
 and

anti-symmetri
 �ow parts.

3.2.1 Q-
riterion

The Q-
riterion, also known as Okubo- Weiss 
riterion, is based on the se
ond invariant of velo
ity gradient

∇u. It was �rst used by [24℄ for three-dimensional �ows and mathemati
ally 
an be expressed as;

Q =
1

2
(‖Ω‖

2
− ‖S‖

2
) (13)

where the values of Q gives the physi
al meanings with both positive and negative signs. Q > 0 represents the
regions of high vorti
ity while negative values of Q < 0 shows the strain dominant regions. The advantage of

using this method is easiness of viewing the results by plotting the isosurfa
es for both steady and unsteady

�ow without any serious modi�
ation. On the other hand, these isosurfa
es are sensitive to the threshold

values and it is 
hallenging to pi
k a right value after a series of iterations.

3.2.2 Vorti
ity

Vorti
ity (ω) is de�ned as the 
url of the velo
ity (∇×u) and is twi
e of the �ow rotation at any point. The

material element along with ω is stret
hed by velo
ity gradient 
ausing the vortex stret
hing.

where s is the distan
e along the vortex line. So, the vorti
ity 
an be used to identify the vortex based on

the region and line methods as 
lassi�ed at the beginning of the se
tion.

Vortex regions are identi�ed dire
tly by using the magnitude of vorti
ity. But the limitation of this

method is not to di�erentiate between swirling and shearing motions. Similar to Q-
riterion, the vorti
ity is

visualized by using the isosurfa
es of ω depending on the threshold values of ω.

4 Results and dis
ussion

We use kinemati
 simulation to identify the lo
ations of inertial parti
les' 
lustering using Kolmogorov and

non-Kolmogorov energy spe
tra. The formations and 
lassi�
ation of Lagrangian attra
tors with varying

values of Stokes number and Froude number 
an be found in [8, 9℄. In order to develop better positioning

of these attra
tors, we explore their lo
ations within the turbulen
e stru
ture. First, the visualization

approa
h is used to lo
ate the di�erent types of attra
tors and then, a statisti
al approa
h is used to 
on�rm

the positioning.

4.1 Lo
ations of attra
tors with Kolmogorov Energy Spe
trum

We develop the relationship of Lagrangian attra
tors with vortex regions of turbulent �ow using Q-
riterion.

In pra
ti
e, the velo
ity 
omponents are used to �nd the velo
ity gradients and hen
e to 
al
ulate the Q-


riterion. The results of Q-
riterion are plotted as isosurfa
es using an appropriate threshold value. A


ombined isosurfa
e plot in Fig. 2 representing the high vorti
ity regions as green isosurfa
es (Q > 0) and
the low vorti
ity regions as blue isosurfa
es (Q < 0) for Kolmogorov energy spe
trum (P = 5/3).
After attempting a number of Q-
riterion values, the major task is to 
hoose a reasonable threshold value

so that we may able to see the attra
tors' lo
ations within the isosurfa
es. In order to do this, we plot

the isosurfa
es using di�erent threshold values to see the exa
t lo
ation of an attra
tor. As a result of our

investigation, we lo
ate the di�erent type of Lagrangian attra
tors with the threshold value of isoQ = ±180.
Following the results of past studies i.e. inertial parti
les are normally 
entrifuged by high vorti
ity regions

and they preferably settle in the strain regions, we emphasize the position of present two di�erent one-

dimensional (1D-H and 1D-V) along with isosurfa
es in Fig. 3 and Fig. 4 respe
tively. It 
an be observed

that both one-dimensional attra
tors develop in the low vorti
ity regions for Kolmogorov energy spe
trum.
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Figure 2: Vorti
ity regions isosurfa
es (green) for Q=180 and Strain regions (blue) isosurfa
es for Q=-180

with p = 5/3

Figure 3: Lo
ation of 1D-H attra
tor (St=0.207 and Fr=1.10) in �ow with p = 5/3
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Figure 4: Lo
ation of 1D-V attra
tor (St=0.165 and Fr=0.49) in �ow with p = 5/3

Figure 5: (a)-(f) Q-
riterion isosurfa
es for threshold values of Q=180 for di�erent power laws.
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4.2 Identi�
ation of attra
tors with non-Kolomogorov Energy Spe
trum

Similar results are obtained with non-Kolmogorov power law (p) and 
lusters are developed in the low vor-

ti
ity region. In order to identify the lo
ations of Lagrangian attra
tors, isosurfa
es of turbulen
e stru
tures

are drawn with in
reasing values of the power law (p). As the value of (p) in
reases, the smaller length s
ales

disappear as shown in Fig. 5. As expe
ted; the most of the energy is utilized at the larger length s
ales

imparting random motion to the parti
les and as a result, the one-dimensional attra
tors may destroy.

Figure 6: Lo
ation of 1D-V attra
tor (St=0.165 and Fr=0.49) in �ow with p = 1.5 at t=100 s.

As an example, we present a 
ase with 1D-V attra
tor with the in
reasing power law (p) of energy spe
trum.

It is noted that the attra
tor �rst moves and 
hanges its position in the �ow stru
ture (Fig. 6-Fig. 8) with

the modi�
ation and ultimately rearranges to the 3D distribution (Fig. 9). This shows di�erent formations

of turbulen
e stru
ture for Kolmogorov and non-Kolmogorov energy spe
tra.

Figure 7: Lo
ation of 1D-V attra
tor (St=0.165 and Fr=0.49) in �ow with p = 5/3 at t=100 s.
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Figure 8: Lo
ation of 1D-V attra
tor (St=0.165 and Fr=0.49) in �ow with p = 2.0 at t=100 s.

Figure 9: Lo
ation of 1D-V attra
tor (St=0.165 and Fr=0.49) in �ow with p = 2.5 at t=100 s..
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5 Statisti
al analysis of 
lusters' Lo
ations

The Lagrangian attra
tors are tra
ked using visualization, but in order to 
on�rm the lo
ations of the

parti
les' 
lusters with more meaningful approa
h, we perform a statisti
al analysis. The variations in

Q-
riterion distributions are studied for di�erent shapes of attra
tors with Kolmogorov as well as non-

Kolmogorov energy spe
trum.

5.1 With Kolmogorov energy spe
trum

We use the frequen
y distribution initial three-dimensional parti
les as a referen
e. In order to �nd the

attra
tors position, we use the velo
ities at the attra
tors' �nal positions to 
al
ulate the Q-
riterion. As

Q-
riterion 
learly de�nes the strain and vorti
ity regions, hen
e it is used to dete
t the exa
t lo
ations of the

parti
les' attra
tors. For the purpose 
omparison with initial uniform distribution, an attra
tors' Q-value

distributions are plotted along with the parti
les' initial distribution in Figs. 10- 12.

Figure 10: Q-values distribution for a horizontal attra
tor 
omparing with initial three-dimensional distri-

bution for p = 5/3.

In Fig. 10, the Q-values for a 1D-H attra
tor 
an be shown and it is evident that most of the parti
les

are on the negative side of the distribution i.e. in the strain regions with Q < 0. So, it is 
on�rmed that

the horizontal attra
tors evolve in the low vorti
ity regions of the �ow. Similar distribution of Q-values is

obtained for 1D-V attra
tor as shown in Fig. 11.

The di�eren
e in Q-values distributions between 1D-H and 1D-V attra
tors 
an be analyzed with 
areful

examination of Fig. 10 and Fig. 11. In both of these 
ases, parti
les have St=0.207 with di�erent values of

Fr. For the 1D-H attra
tor, multi-peaks is shown in Fig. 10 des
ribe the dominant behavior of turbulen
e-

stru
ture over gravity e�e
t. on the other hand, 1D-V attra
tor with a single peak is the 
onsequen
e of

strong drift. Moreover, the Q-values distribution of the 1D-HV attra
tor shows features of both 1D-H and

1D-V attra
tors that is, we 
an see a spike as well as a negative skewness as shown in Fig. 12. All of three


ases are put together in Fig. 13 whi
h 
learly elaborates the lo
ations of di�erent one-dimensional attra
tors

in di�erent vorti
ity regions.

In addition to the one-dimensional attra
tors, it is interesting to see the Q-values distribution of a 2D-L

attra
tor in relation to the initial parti
le distribution. More pre
isely, we 
an di�erentiate the lo
ations of

1D-V and 2D-L attra
tors on basis of vortex regions. The 1D-V attra
tors develop for small sized parti
les

and they 
an easily move in the vortex regions. For the 2D-L attra
tors, the size of the parti
les (St) is big
enough su
h that they 
annot be trapped by the smaller length s
ales of vortex regions. Therefore, the Q-

values distribution for the 2D-L is 
learly di�erent from the 1D-V attra
tor as shown in Fig. 14. Altogether,
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Figure 11: Q-values distribution for a verti
al attra
tor 
omparing with initial three-dimensional distribution

for p = 5/3.

Figure 12: Distribution of Q-values at parti
les positions for 1D-HV attra
tor in 
omparison to initial

distribution of the parti
les with p = 5/3.
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Figure 13: Comparison of Q-value distributions for di�erent one-dimensional attra
tors with p = 5/3.

the statisti
al analysis is proved to be quite helpful to verify the lo
ations of di�erent types of attra
tors in

vortex regions.

Figure 14: Distribution of Q-values at parti
les positions for 2D-L attra
tor in 
omparison to initial distri-

bution of the parti
les with p = 5/3.

5.2 With non-Kolmogorov energy spe
trum

Here, we apply the Q-
riterion distributions by varying the power law of energy spe
trum. As we have already

visualized the modi�
ations of the attra
tors with in
reasing or de
reasing the p, the Q-value distribution

of the parti
les will also di�er from what we obtain with p = 5/3. In Fig. 15, Q-value distributions of initial

parti
les' positions with di�erent power law are plotted whi
h shows that the parti
les have the tenden
y to

settle in the low vorti
ity regions with the redu
ed range of s
ales for the higher values of p.
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Figure 15: Q-values distributions at initial three-dimensional positions for di�erent power laws.

We analyze the di�erent types of Lagrangian attra
tor with the modi�ed power laws. For a 1D-H attra
tor,

the in
rease in p destroys the attra
tor. Therefore, Q- value distributions shift towards right for p = 2.0 and
p = 2.5 (in Fig. 16) showing that the lighter parti
les tend to move randomly with the in
rements in p. A
somewhat similar trend is noted for a 1D-V attra
tor as shown in Fig. 17 where we found the most of the

Q-values on the negative side of distribution with p = 5/3. It means that there are some spe
ially featured

s
ales in turbulen
e with Kolmogorov energy spe
trum whi
h hold the parti
les in the strain regions.

Finally, we do not observe any kind of 
lear variations in the shape of the Q-values distribution for a 2D-L

attra
tor with the modi�ed power laws. The only noti
eable 
hange with p = 2.5 is a small de
rement in

the dispersion of distribution and this happens be
ause of the redu
tion in the s
ales.

6 Con
lusion

We have dis
ussed in detail the 
lustering of inertial parti
les in relation to the �ow stru
ture using Q-


riterion. A

ording to visualizations and statisti
al analysis, we have found that the parti
les 
luster in the

�ow depending on �ow parameters and parti
les' 
hara
teristi
s. We present the following �ndings from this

study:

• The visualization shows that the parti
les tend to 
luster in the straining regions (Q < 0) depending
on St, Fr and input energy spe
trum (Kolmogorov or non-Kolmogorov).

• We found that di�erent Lagrangian attra
tors (1D-H or 1D-V) develop as the result of the di�eren
e

in the vorti
ity 
omponents of the lo
al turbulen
e stru
tures.

• The multi-peaks as shown in Fig. 10 
an be 
onsidered as a distin
tive feature of the 1D-H attra
tor

revealed as the result of statisti
al analysis. It shows that the parti
les in a horizontal one-dimensional

attra
tor may evolve in more than one types of vortex region.
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Figure 16: (top)Frequen
y distribution of Q-
riterion at parti
les positions for St=0.207 and Fr=1.10 and

(bottom) 3D plots for di�erent power laws.
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Figure 17: (top) Frequen
y distribution of Q-
riterion at parti
les positions for St=0.207 and Fr=0.63 and
(bottom) 3D plots for di�erent power laws.
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• The parti
les with St < 0.5 tend to a

umulate in the very low vorti
ity regions depnding di�erent

values of Fr and 
an result into a 1-D attra
tor [8℄. This is 
on�rmed by plotting the Q-values

distributions using velo
ity 
omponents at the parti
les' �nal positions. Our �ndings are also in

agreement with the re
ent results of [16℄ who found that the lighter parti
les preferentially 
on
entrated

in the syntheti
 �ow.

• The parti
les with St > 0.5 do not form any of the one-dimensional attra
tors [8℄ and hen
e the Q-value

distribution of the attra
tor almost overlaps with that of the initial distribution of parti
les.

• Using the Q-
riterion distributions, it is also observed that the one-dimensional attra
tors start juggling

in the �ow stru
tures with modi�ed power laws of the energy spe
trum. While the p variations are

less e�e
tive for the 2D-L stru
tures.
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