
Tenth International Conferene on

Computational Fluid Dynamis (ICCFD10),

Barelona,Spain, July 9-13, 2018

ICCFD10-2018-0236

Investigation of gravity-driven inertial partiles lusters

and their loations in turbulene struture using

Kinemati simulation

M. Farhan

∗,∗∗
, F.C.G.A. Niolleau

∗∗
, M.S. Kamran

∗
, M. Farooq

∗
and I.A. Chaudry

∗

Corresponding author: m.farhan�uet.edu.pk

∗
Department of Mehanial Engineering, University of Engineering and Tehnology Lahore.

∗∗
She�eld Fluid Mehanis Group, The University of She�eld United Kingdom

Abstrat: We study the lustering of inertial partiles in relation to turbulent �ow struture

in the presene of gravity using Kinemati simulation (KS). The inertial partile lusters are

haraterized using Stokes number and Froude number ranging 0 ≤ St ≤ 1 and 0.4 ≤ Fr ≤ 1.4.
Turbulent �ow predominately onsists of vortiity strutures is de�ned by Eulerian veloity �eld

and these vorties are identi�ed by using Q-riterion. In the end, the partiles' lusters are loated

within the isosurfaes of vortiity struture based on di�erent values of Stokes and Froude numbers.
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1 Introdution

In the last deades, the lustering of inertial partiles in turbulent �ow is the subjet of various studies

[1, 2, 3, 4, 5, 6, 7, 8, 9, ℄. The partiles lustering in a turbulent �ow is of key importane for natural

as well as for industrial appliations. A better understanding of partile-turbulene relationship an help

to solve the mysteries of the Universe. In this paper, we fous on the lustering of gravity-driven inertial

partiles in relation to turbulene struture. Generally, a turbulent �ow is onsidered as a mixture of various

vortiity strutures. It has been observed that varying vortiity regions are the major ause of preferential

onentration of inertial partiles in the turbulent �ow. Using the experiments, Eaton and Fessler [10℄ found

that the heavier partiles are ejeted by the vortial strutures and develop as a luster in the low vortiity

regions.

Similar settling patterns are also reported in many numerial studies. Q-riterion (a method to identify the

vortex regions in turbulent �ow) is used to loate partile lustering in the di�erent �ow regions suh as

streaming, eddies, rotational, et. [11℄; they di�erentiated the onentration levels by plotting the partiles

number density distributions funtions and found that the average onentration of the partiles (partiularly

of the intermediate size) in the strain regions is learly di�erent from high vortiity regions. An idential

trend of lustering for the di�erent sized partiles is shown by Wang and Maxey [12℄ and Be et al. [13℄ who

identi�ed the preferential lustering of inertial partiles using di�erent statistial measures.

Further to this, Calzavarini et al. [14℄ used the Minkowski funtional to desribe the ejetion of partiles

from vorties and Q-riterion was used to show that there is no di�erene in the Q-riterion distributions for

�uid traers and the partiles with St ≃ 3 [15℄. Altogether all of these previous studies on�rm the ejetion

of inertial partiles from the vortiity regions and the partiles tend to settle in the strain regions based on

St.

Most reently, Nilson et al. [16℄ analyzed the partile lustering in the Gaussian and non-Gaussian syntheti

turbulent �ows. They found that inertial partiles luster in the loal low vortiity regions depending on
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Stokes number and it has been reported that the partiles with low St luster as a result of the vortex

entrifugal e�et in small-sale turbulene.

In the light of above disussion, it is interesting to see the loations of gravity-driven inertial partiles'

lusters in turbulent �ow. For this purpose, we divide this paper into two parts. First, we brie�y explain the

formation and types of inertial partiles Lagrangian attrators and then, their loations are determined in the

turbulene struture using visualization and statistial approahes. The paper is organised as follows: in � 2

we introdue the Kinemati Simulation (KS) and development of Lagrangian attrators. The mathematial

bakground related to turbulene struture is disussed in � 3. The results of loations of attrators based

on visualization and statistis are explained in � 4 and � 5 respetively. Setion 6 summarises our main

onlusions.

2 Kinemati Simulation and Lagrangian Attrators

Kinemati Simulation (KS) is a partiular ase of syntheti turbulene where the fous is on partile's

trajetory at the expense of solving the Navier-Stokes equation. An analytial formula `syntheti �ow' is

used for the Eulerian �ow �eld. Though the syntheti turbulene retains less information than the whole

�ow ontains, its suess relies on keeping what is paramount for the Lagrangian story.

The simpliity of the KS model exludes some features of real turbulent �ows but aptures the part of

the physis whih is required to perform Lagrangian partile analysis.

KS modelling has been suessfully employed and validated [?, 17, 18℄. This kind of simulation is muh

less omputing-time onsuming than DNS, whih is important for the present study where we need to run

many ases (more than a 1000 ases for 100 turnover times). Eah ase orresponds to a given St, Fr, p and
time and involves 15625 partiles.

With syntheti simulations, one an develop models where turbulene ingredients and omplexity an

be added step by step helping to understand their respetive importane. These syntheti models an be

a useful omplement to Diret Numerial Simulation. In partiular with KS it is possible to play with the

spetral law [19℄ and its onsequenes in terms of partile's dispersion.

As we are not interested in two-partile dispersion, we limit our study to the sale ratio kimax/kimin = 9 1

used in [8℄.

In KS, the omputational task redues to the alulation of eah partile trajetory. This trajetory is, for

a given initial ondition, X0, solution of the di�erential equation set:

dX

dt
= V(t) (1)

dV

dt
= F(uE(X, t),V, t) (2)

where X(t) is the partile's position, V(t) its Lagrangian veloity and uE the analytial Eulerian veloity

used in KS. F is a funtion relating the Lagrangian aeleration to the Eulerian and Lagrangian veloities.

In KS uE takes the form of a trunated Fourier series, sum of Nk = N3
Fourier modes:

u(x) =

N∑

i=1

N∑

j=1

N∑

l=1

aijlcos(kijl.x) + bijlsin(kijl.x) (3)

where aijl and bijl are the deomposition oe�ients orresponding to the wavevetor kijl. In its general

form the KS �eld an also be a funtion of time but we limit the study to a steady KS.

1i = 1, 2 or 3
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2.1 Periodi KS method for periodi �ow

Following [8℄, the wavevetors kijl = (ki, kj , kl) follow an arithmeti distribution to enfore a periodi ondi-

tion for the veloity �ow �eld:

ki =
2π

Lx
(ni − 1), kj =

2π

Ly
(nj − 1), kl =

2π

Lz
(nl − 1) (4)

where (ni, nj , nl) are integers satisfying 1 6 ni 6 N . In pratie, we hoose (Lx = Ly = Lz) for reating an
isotropi turbulene and to ensure the �ow inompressibility the Fourier oe�ient vetors aijl and bijl are

set orthogonal to the wavevetor:

aijl · kijl = bijl · kijl = 0 (5)

Their magnitude is �xed by the energy spetrum, E(k) (??).

|aijl|
2
= |bijl|

2
= 2E(k)∆kijl/mk (6)

where mk is the number of wavevetors of wavenumber k = ‖kijl‖. This is the key point for using KS for

this study. The use of (??) in (6) is straightforward and does not require ompliated foring tehniques.

From the spetral law, the rms veloity (??) and the integral length sale an be de�ned:

L =
3π

4

∫ kmax

kmin

k−1E(k)dk
∫ kmax

kmin

E(k)dk
(7)

The Kolmogorov length sale is de�ned as η = 2π/kmax, whereas the largest physial sale is L = 2π/kmin

whih determines the inertial range [η, L] over whih (??) is observed. It is worth noting that L ≃ L for

su�iently large inertial ranges. However, here in ontrast to other KS studies the inertial range is small

and L ≃ 5L. In this paper, non-dimensional numbers (St and Fr) are based on the integral length sale L.
The ratio between the largest length sale and the Kolmogorov length sale is kmax/kmin and the assoiated

Reynolds number is: ReL = (kmax/kmin)
4/3

. This is the standard way to de�ne a Reynolds number in KS

and a DNS or an experiment yielding the same ratio kmax/kmin would have a muh larger Reynolds number.

Finally, a harateristi time for normalisation an be td = L/urms or T = L/urms. The partiles are initially

homogeneously distributed and whenever a partile leaves the turbulene box domain (e.g. Xi > Lx) it is

re-injeted from the opposite side to keep the periodi ondition.

2.2 Equation of motion

Following [20℄ the equation of motion for the inertial partile is derived from [21, 22℄ and onsists of a drag

fore and drift aeleration (weight):

dV

dt
=

1

τa
(u(xp(t), t)−V(t) +Vd) (8)

where τa is the partile's aerodynami response time and Vd = τag the partile's terminal fall veloity or

drift veloity.

2.3 Types of Lagrangian Attrators

The partiles initially uniformly distributed in the �ow �eld are allowed to evolve until a Lagrangian attrator

is ahieved. The shape of the attrator varies from lear one-dimensional strutures to three-dimensional

distributed strutures depending on Stokes number and Froude number. These attrators are ategorised

as;

i) 1D-H : horizontal one-dimensional Lagrangian attrator as in Fig. 1(a),

ii) 1D-V : vertial one-dimensional Lagrangian attrator as in Fig. 1(),
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iii) 1D-HV : Intermediate one-dimensional Lagrangian attrator as in Fig. 1(b).

iv) 2D-L : two-dimensional vertial urtain-like layer as in Fig. 1(d) (see also [23℄).

Figure 1: Di�erent harateristi attrator shapes.

3 Mathematial bakground and de�nitions

3.1 Vortex detetion

A number of vortex detetion methods have been developed to identify vorties in the �ow and, in general,

vortex detetion shemes are ategorized as follows:

• Vortex regions may be deteted on the basis of salar quantities. For example, the high magnitude of

vortiity and positive Q-riterion show the regions of high vortiity in the �ow. These approahes an

be visualized either by isosurfaes or volume rendering method.

• In the seond ase of the vortex ore detetion, instead of regions, the line types features are redued

as high vortiity zones.

Both of these ategories an be studied using the established tehniques based on di�erent types of applia-

tions. As in ase of partiles' lustering, it is more important to see the regions of high and low vortiity, we

fous on the vortex regions tehniques for loating the inertial partiles' lusters.

3.2 Vortex regions detetion methods

There is no lear de�nition of vortex regions and they are onsidered as the �ow regions with high vortiity or

low strain. The models developed to identify the vortex an be based on di�erent �ow parameters. Normally,

the vortex region quantities are de�ned by splitting veloity gradient as

∇u = S +Ω, (9)

i.e., into strain rate tensor (S) and vortiity tensor (Ω) whih are also known as symmetrial and anti-

symmetrial parts of �ow respetively:

S =
1

2
[∇u+ (∇u)t], (10)

Ω =
1

2
[∇u− (∇u)t]. (11)

The strain rate tensor (S) measures the strething and folding in the �ow whih auses the mixing of

partiles while vortiity tensor (Ω) is relevant to rotational ativities in the �ow �eld. The methods of vortex

identi�ation (Q-riterion, λ2-riterion, ∆− criterion, et.) are mostly based on the harateristi equation

of ∇u;
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λ3 + Pλ2 +Qλ+R = 0 (12)

where P, Q, and R are the three invariants of veloity gradient ∇u and expressed in terms of symmetri and

anti-symmetri �ow parts.

3.2.1 Q-riterion

The Q-riterion, also known as Okubo- Weiss riterion, is based on the seond invariant of veloity gradient

∇u. It was �rst used by [24℄ for three-dimensional �ows and mathematially an be expressed as;

Q =
1

2
(‖Ω‖

2
− ‖S‖

2
) (13)

where the values of Q gives the physial meanings with both positive and negative signs. Q > 0 represents the
regions of high vortiity while negative values of Q < 0 shows the strain dominant regions. The advantage of

using this method is easiness of viewing the results by plotting the isosurfaes for both steady and unsteady

�ow without any serious modi�ation. On the other hand, these isosurfaes are sensitive to the threshold

values and it is hallenging to pik a right value after a series of iterations.

3.2.2 Vortiity

Vortiity (ω) is de�ned as the url of the veloity (∇×u) and is twie of the �ow rotation at any point. The

material element along with ω is strethed by veloity gradient ausing the vortex strething.

where s is the distane along the vortex line. So, the vortiity an be used to identify the vortex based on

the region and line methods as lassi�ed at the beginning of the setion.

Vortex regions are identi�ed diretly by using the magnitude of vortiity. But the limitation of this

method is not to di�erentiate between swirling and shearing motions. Similar to Q-riterion, the vortiity is

visualized by using the isosurfaes of ω depending on the threshold values of ω.

4 Results and disussion

We use kinemati simulation to identify the loations of inertial partiles' lustering using Kolmogorov and

non-Kolmogorov energy spetra. The formations and lassi�ation of Lagrangian attrators with varying

values of Stokes number and Froude number an be found in [8, 9℄. In order to develop better positioning

of these attrators, we explore their loations within the turbulene struture. First, the visualization

approah is used to loate the di�erent types of attrators and then, a statistial approah is used to on�rm

the positioning.

4.1 Loations of attrators with Kolmogorov Energy Spetrum

We develop the relationship of Lagrangian attrators with vortex regions of turbulent �ow using Q-riterion.

In pratie, the veloity omponents are used to �nd the veloity gradients and hene to alulate the Q-

riterion. The results of Q-riterion are plotted as isosurfaes using an appropriate threshold value. A

ombined isosurfae plot in Fig. 2 representing the high vortiity regions as green isosurfaes (Q > 0) and
the low vortiity regions as blue isosurfaes (Q < 0) for Kolmogorov energy spetrum (P = 5/3).
After attempting a number of Q-riterion values, the major task is to hoose a reasonable threshold value

so that we may able to see the attrators' loations within the isosurfaes. In order to do this, we plot

the isosurfaes using di�erent threshold values to see the exat loation of an attrator. As a result of our

investigation, we loate the di�erent type of Lagrangian attrators with the threshold value of isoQ = ±180.
Following the results of past studies i.e. inertial partiles are normally entrifuged by high vortiity regions

and they preferably settle in the strain regions, we emphasize the position of present two di�erent one-

dimensional (1D-H and 1D-V) along with isosurfaes in Fig. 3 and Fig. 4 respetively. It an be observed

that both one-dimensional attrators develop in the low vortiity regions for Kolmogorov energy spetrum.
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Figure 2: Vortiity regions isosurfaes (green) for Q=180 and Strain regions (blue) isosurfaes for Q=-180

with p = 5/3

Figure 3: Loation of 1D-H attrator (St=0.207 and Fr=1.10) in �ow with p = 5/3

6



Figure 4: Loation of 1D-V attrator (St=0.165 and Fr=0.49) in �ow with p = 5/3

Figure 5: (a)-(f) Q-riterion isosurfaes for threshold values of Q=180 for di�erent power laws.
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4.2 Identi�ation of attrators with non-Kolomogorov Energy Spetrum

Similar results are obtained with non-Kolmogorov power law (p) and lusters are developed in the low vor-

tiity region. In order to identify the loations of Lagrangian attrators, isosurfaes of turbulene strutures

are drawn with inreasing values of the power law (p). As the value of (p) inreases, the smaller length sales

disappear as shown in Fig. 5. As expeted; the most of the energy is utilized at the larger length sales

imparting random motion to the partiles and as a result, the one-dimensional attrators may destroy.

Figure 6: Loation of 1D-V attrator (St=0.165 and Fr=0.49) in �ow with p = 1.5 at t=100 s.

As an example, we present a ase with 1D-V attrator with the inreasing power law (p) of energy spetrum.

It is noted that the attrator �rst moves and hanges its position in the �ow struture (Fig. 6-Fig. 8) with

the modi�ation and ultimately rearranges to the 3D distribution (Fig. 9). This shows di�erent formations

of turbulene struture for Kolmogorov and non-Kolmogorov energy spetra.

Figure 7: Loation of 1D-V attrator (St=0.165 and Fr=0.49) in �ow with p = 5/3 at t=100 s.
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Figure 8: Loation of 1D-V attrator (St=0.165 and Fr=0.49) in �ow with p = 2.0 at t=100 s.

Figure 9: Loation of 1D-V attrator (St=0.165 and Fr=0.49) in �ow with p = 2.5 at t=100 s..
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5 Statistial analysis of lusters' Loations

The Lagrangian attrators are traked using visualization, but in order to on�rm the loations of the

partiles' lusters with more meaningful approah, we perform a statistial analysis. The variations in

Q-riterion distributions are studied for di�erent shapes of attrators with Kolmogorov as well as non-

Kolmogorov energy spetrum.

5.1 With Kolmogorov energy spetrum

We use the frequeny distribution initial three-dimensional partiles as a referene. In order to �nd the

attrators position, we use the veloities at the attrators' �nal positions to alulate the Q-riterion. As

Q-riterion learly de�nes the strain and vortiity regions, hene it is used to detet the exat loations of the

partiles' attrators. For the purpose omparison with initial uniform distribution, an attrators' Q-value

distributions are plotted along with the partiles' initial distribution in Figs. 10- 12.

Figure 10: Q-values distribution for a horizontal attrator omparing with initial three-dimensional distri-

bution for p = 5/3.

In Fig. 10, the Q-values for a 1D-H attrator an be shown and it is evident that most of the partiles

are on the negative side of the distribution i.e. in the strain regions with Q < 0. So, it is on�rmed that

the horizontal attrators evolve in the low vortiity regions of the �ow. Similar distribution of Q-values is

obtained for 1D-V attrator as shown in Fig. 11.

The di�erene in Q-values distributions between 1D-H and 1D-V attrators an be analyzed with areful

examination of Fig. 10 and Fig. 11. In both of these ases, partiles have St=0.207 with di�erent values of

Fr. For the 1D-H attrator, multi-peaks is shown in Fig. 10 desribe the dominant behavior of turbulene-

struture over gravity e�et. on the other hand, 1D-V attrator with a single peak is the onsequene of

strong drift. Moreover, the Q-values distribution of the 1D-HV attrator shows features of both 1D-H and

1D-V attrators that is, we an see a spike as well as a negative skewness as shown in Fig. 12. All of three

ases are put together in Fig. 13 whih learly elaborates the loations of di�erent one-dimensional attrators

in di�erent vortiity regions.

In addition to the one-dimensional attrators, it is interesting to see the Q-values distribution of a 2D-L

attrator in relation to the initial partile distribution. More preisely, we an di�erentiate the loations of

1D-V and 2D-L attrators on basis of vortex regions. The 1D-V attrators develop for small sized partiles

and they an easily move in the vortex regions. For the 2D-L attrators, the size of the partiles (St) is big
enough suh that they annot be trapped by the smaller length sales of vortex regions. Therefore, the Q-

values distribution for the 2D-L is learly di�erent from the 1D-V attrator as shown in Fig. 14. Altogether,
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Figure 11: Q-values distribution for a vertial attrator omparing with initial three-dimensional distribution

for p = 5/3.

Figure 12: Distribution of Q-values at partiles positions for 1D-HV attrator in omparison to initial

distribution of the partiles with p = 5/3.
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Figure 13: Comparison of Q-value distributions for di�erent one-dimensional attrators with p = 5/3.

the statistial analysis is proved to be quite helpful to verify the loations of di�erent types of attrators in

vortex regions.

Figure 14: Distribution of Q-values at partiles positions for 2D-L attrator in omparison to initial distri-

bution of the partiles with p = 5/3.

5.2 With non-Kolmogorov energy spetrum

Here, we apply the Q-riterion distributions by varying the power law of energy spetrum. As we have already

visualized the modi�ations of the attrators with inreasing or dereasing the p, the Q-value distribution

of the partiles will also di�er from what we obtain with p = 5/3. In Fig. 15, Q-value distributions of initial

partiles' positions with di�erent power law are plotted whih shows that the partiles have the tendeny to

settle in the low vortiity regions with the redued range of sales for the higher values of p.
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Figure 15: Q-values distributions at initial three-dimensional positions for di�erent power laws.

We analyze the di�erent types of Lagrangian attrator with the modi�ed power laws. For a 1D-H attrator,

the inrease in p destroys the attrator. Therefore, Q- value distributions shift towards right for p = 2.0 and
p = 2.5 (in Fig. 16) showing that the lighter partiles tend to move randomly with the inrements in p. A
somewhat similar trend is noted for a 1D-V attrator as shown in Fig. 17 where we found the most of the

Q-values on the negative side of distribution with p = 5/3. It means that there are some speially featured

sales in turbulene with Kolmogorov energy spetrum whih hold the partiles in the strain regions.

Finally, we do not observe any kind of lear variations in the shape of the Q-values distribution for a 2D-L

attrator with the modi�ed power laws. The only notieable hange with p = 2.5 is a small derement in

the dispersion of distribution and this happens beause of the redution in the sales.

6 Conlusion

We have disussed in detail the lustering of inertial partiles in relation to the �ow struture using Q-

riterion. Aording to visualizations and statistial analysis, we have found that the partiles luster in the

�ow depending on �ow parameters and partiles' harateristis. We present the following �ndings from this

study:

• The visualization shows that the partiles tend to luster in the straining regions (Q < 0) depending
on St, Fr and input energy spetrum (Kolmogorov or non-Kolmogorov).

• We found that di�erent Lagrangian attrators (1D-H or 1D-V) develop as the result of the di�erene

in the vortiity omponents of the loal turbulene strutures.

• The multi-peaks as shown in Fig. 10 an be onsidered as a distintive feature of the 1D-H attrator

revealed as the result of statistial analysis. It shows that the partiles in a horizontal one-dimensional

attrator may evolve in more than one types of vortex region.
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Figure 16: (top)Frequeny distribution of Q-riterion at partiles positions for St=0.207 and Fr=1.10 and

(bottom) 3D plots for di�erent power laws.
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Figure 17: (top) Frequeny distribution of Q-riterion at partiles positions for St=0.207 and Fr=0.63 and
(bottom) 3D plots for di�erent power laws.
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• The partiles with St < 0.5 tend to aumulate in the very low vortiity regions depnding di�erent

values of Fr and an result into a 1-D attrator [8℄. This is on�rmed by plotting the Q-values

distributions using veloity omponents at the partiles' �nal positions. Our �ndings are also in

agreement with the reent results of [16℄ who found that the lighter partiles preferentially onentrated

in the syntheti �ow.

• The partiles with St > 0.5 do not form any of the one-dimensional attrators [8℄ and hene the Q-value

distribution of the attrator almost overlaps with that of the initial distribution of partiles.

• Using the Q-riterion distributions, it is also observed that the one-dimensional attrators start juggling

in the �ow strutures with modi�ed power laws of the energy spetrum. While the p variations are

less e�etive for the 2D-L strutures.
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