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Abstract: We study the clustering of inertial particles in relation to turbulent flow structure
in the presence of gravity using Kinematic simulation (KS). The inertial particle clusters are
characterized using Stokes number and Froude number ranging 0 < St < 1 and 0.4 < Fr < 1.4.
Turbulent flow predominately consists of vorticity structures is defined by Eulerian velocity field
and these vortices are identified by using Q-criterion. In the end, the particles’ clusters are located
within the isosurfaces of vorticity structure based on different values of Stokes and Froude numbers.

Keywords: Turbulence Structures, Particles’ Clusters, Kinematic Simulation.

1 Introduction

In the last decades, the clustering of inertial particles in turbulent flow is the subject of various studies
1, 2,3,4,5 6,7, 8 9, ] The particles clustering in a turbulent flow is of key importance for natural
as well as for industrial applications. A better understanding of particle-turbulence relationship can help
to solve the mysteries of the Universe. In this paper, we focus on the clustering of gravity-driven inertial
particles in relation to turbulence structure. Generally, a turbulent flow is considered as a mixture of various
vorticity structures. It has been observed that varying vorticity regions are the major cause of preferential
concentration of inertial particles in the turbulent flow. Using the experiments, Eaton and Fessler [10] found
that the heavier particles are ejected by the vortical structures and develop as a cluster in the low vorticity
regions.

Similar settling patterns are also reported in many numerical studies. Q-criterion (a method to identify the
vortex regions in turbulent flow) is used to locate particle clustering in the different flow regions such as
streaming, eddies, rotational, etc. [11]; they differentiated the concentration levels by plotting the particles
number density distributions functions and found that the average concentration of the particles (particularly
of the intermediate size) in the strain regions is clearly different from high vorticity regions. An identical
trend of clustering for the different sized particles is shown by Wang and Maxey [12] and Bec et al. [13] who
identified the preferential clustering of inertial particles using different statistical measures.

Further to this, Calzavarini et al. [14] used the Minkowski functional to describe the ejection of particles
from vortices and Q-criterion was used to show that there is no difference in the Q-criterion distributions for
fluid tracers and the particles with St ~ 3 [15]. Altogether all of these previous studies confirm the ejection
of inertial particles from the vorticity regions and the particles tend to settle in the strain regions based on
St.

Most recently, Nilson et al. [16] analyzed the particle clustering in the Gaussian and non-Gaussian synthetic
turbulent flows. They found that inertial particles cluster in the local low vorticity regions depending on



Stokes number and it has been reported that the particles with low St cluster as a result of the vortex
centrifugal effect in small-scale turbulence.

In the light of above discussion, it is interesting to see the locations of gravity-driven inertial particles’
clusters in turbulent flow. For this purpose, we divide this paper into two parts. First, we briefly explain the
formation and types of inertial particles Lagrangian attractors and then, their locations are determined in the
turbulence structure using visualization and statistical approaches. The paper is organised as follows: in § 2
we introduce the Kinematic Simulation (KS) and development of Lagrangian attractors. The mathematical
background related to turbulence structure is discussed in § 3. The results of locations of attractors based
on visualization and statistics are explained in § 4 and § 5 respectively. Section 6 summarises our main
conclusions.

2 Kinematic Simulation and Lagrangian Attractors

Kinematic Simulation (KS) is a particular case of synthetic turbulence where the focus is on particle’s
trajectory at the expense of solving the Navier-Stokes equation. An analytical formula ‘synthetic flow’ is
used for the Eulerian flow field. Though the synthetic turbulence retains less information than the whole
flow contains, its success relies on keeping what is paramount for the Lagrangian story.

The simplicity of the KS model excludes some features of real turbulent flows but captures the part of
the physics which is required to perform Lagrangian particle analysis.

KS modelling has been successfully employed and validated [?, 17, 18]. This kind of simulation is much
less computing-time consuming than DNS, which is important for the present study where we need to run
many cases (more than a 1000 cases for 100 turnover times). Each case corresponds to a given St, F'r, p and
time and involves 15625 particles.

With synthetic simulations, one can develop models where turbulence ingredients and complexity can
be added step by step helping to understand their respective importance. These synthetic models can be
a useful complement to Direct Numerical Simulation. In particular with KS it is possible to play with the
spectral law [19] and its consequences in terms of particle’s dispersion.

As we are not interested in two-particle dispersion, we limit our study to the scale ratio Kimas/Kimin = 9 *
used in [8].

In KS, the computational task reduces to the calculation of each particle trajectory. This trajectory is, for
a given initial condition, Xg, solution of the differential equation set:

T V(1) (1)
dV
i F(up(X,t),V,t) (2)

where X(t) is the particle’s position, V(t) its Lagrangian velocity and ug the analytical Eulerian velocity
used in KS. § is a function relating the Lagrangian acceleration to the Eulerian and Lagrangian velocities.
In KS ug takes the form of a truncated Fourier series, sum of N, = N3 Fourier modes:

N N N
u(x) = Z Z Z aijlcos(kijl.x) + bijlsin(kijl.x) (3)
i=1 j=1 =1

where ajj; and by; are the decomposition coefficients corresponding to the wavevector k;ji. In its general
form the KS field can also be a function of time but we limit the study to a steady KS.

li=1,20r3



2.1 Periodic KS method for periodic flow

Following [8], the wavevectors kiji = (ki, k;, ki) follow an arithmetic distribution to enforce a periodic condi-
tion for the velocity flow field:

= 2y 1), b= 2y - 1) (4)
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where (n;,n;,n;) are integers satisfying 1 < n; < N. In practice, we choose (L, = L, = L,) for creating an
isotropic turbulence and to ensure the flow incompressibility the Fourier coefficient vectors aj; and bjj are
set orthogonal to the wavevector:

aij - kiji = by - ki =0 (5)

Their magnitude is fixed by the energy spectrum, E(k) (?7).
laig|” = bii|* = 2B(k) Ak /my, (6)

where my, is the number of wavevectors of wavenumber & = | ki;|. This is the key point for using KS for
this study. The use of (??) in (6) is straightforward and does not require complicated forcing techniques.
From the spectral law, the rms velocity (??) and the integral length scale can be defined:

3 fk’:jjj kLB (k)dk
4 e Bk)dk

min

(7)

The Kolmogorov length scale is defined as 7 = 27/kpqz, whereas the largest physical scale is L = 27 /kpnin
which determines the inertial range [n, L] over which (??) is observed. It is worth noting that £ ~ L for
sufficiently large inertial ranges. However, here in contrast to other KS studies the inertial range is small
and L ~ 5L. In this paper, non-dimensional numbers (St and Fr) are based on the integral length scale L.
The ratio between the largest length scale and the Kolmogorov length scale is kpqz/kmin and the associated
Reynolds number is: Rer, = (kmaz/kmin)*/>. This is the standard way to define a Reynolds number in KS
and a DNS or an experiment yielding the same ratio kyqq/kmin would have a much larger Reynolds number.
Finally, a characteristic time for normalisation can be t4 = L/tms or T = L/tpms. The particles are initially
homogeneously distributed and whenever a particle leaves the turbulence box domain (e.g. X; > L) it is
re-injected from the opposite side to keep the periodic condition.

2.2 Equation of motion

Following [20] the equation of motion for the inertial particle is derived from [21, 22] and consists of a drag
force and drift acceleration (weight):

% . Ti (u(, (£), ) — V(1) + Va) (8)

where 7, is the particle’s aerodynamic response time and V; = 7,g the particle’s terminal fall velocity or
drift velocity.

2.3 Types of Lagrangian Attractors

The particles initially uniformly distributed in the flow field are allowed to evolve until a Lagrangian attractor
is achieved. The shape of the attractor varies from clear one-dimensional structures to three-dimensional
distributed structures depending on Stokes number and Froude number. These attractors are categorised
as;

i) 1D-H : horizontal one-dimensional Lagrangian attractor as in Fig. 1(a),

ii) 1D-V : vertical one-dimensional Lagrangian attractor as in Fig. 1(c),



iii) 1D-HV : Intermediate one-dimensional Lagrangian attractor as in Fig. 1(b).

iv) 2D-L : two-dimensional vertical curtain-like layer as in Fig. 1(d) (see also [23]).

Figure 1: Different characteristic attractor shapes.

3 Mathematical background and definitions

3.1 Vortex detection

A number of vortex detection methods have been developed to identify vortices in the flow and, in general,
vortex detection schemes are categorized as follows:

e Vortex regions may be detected on the basis of scalar quantities. For example, the high magnitude of
vorticity and positive Q-criterion show the regions of high vorticity in the flow. These approaches can
be visualized either by isosurfaces or volume rendering method.

e In the second case of the vortex core detection, instead of regions, the line types features are reduced
as high vorticity zones.

Both of these categories can be studied using the established techniques based on different types of applica-
tions. As in case of particles’ clustering, it is more important to see the regions of high and low vorticity, we
focus on the vortex regions techniques for locating the inertial particles’ clusters.

3.2 Vortex regions detection methods

There is no clear definition of vortex regions and they are considered as the flow regions with high vorticity or
low strain. The models developed to identify the vortex can be based on different flow parameters. Normally,
the vortex region quantities are defined by splitting velocity gradient as

Vu=5+Q, (9)

i.e., into strain rate tensor (S) and vorticity tensor (2) which are also known as symmetrical and anti-
symmetrical parts of flow respectively:

S= %[w +(Va)l), (10)

0- %[Vu ~ (Va)l. (11)

The strain rate tensor (S) measures the stretching and folding in the flow which causes the mixing of
particles while vorticity tensor ({2) is relevant to rotational activities in the flow field. The methods of vortex
identification (Q-criterion, As-criterion, A — criterion, etc.) are mostly based on the characteristic equation
of Vu;



M +PN+QAN+R=0 (12)

where P, Q, and R are the three invariants of velocity gradient Vu and expressed in terms of symmetric and
anti-symmetric flow parts.

3.2.1 Q-criterion

The Q-criterion, also known as Okubo- Weiss criterion, is based on the second invariant of velocity gradient
Vu. It was first used by [24] for three-dimensional flows and mathematically can be expressed as;

Q = (121 - 151) (13)

where the values of Q gives the physical meanings with both positive and negative signs. @ > 0 represents the
regions of high vorticity while negative values of @) < 0 shows the strain dominant regions. The advantage of
using this method is easiness of viewing the results by plotting the isosurfaces for both steady and unsteady
flow without any serious modification. On the other hand, these isosurfaces are sensitive to the threshold
values and it is challenging to pick a right value after a series of iterations.

3.2.2 Vorticity

Vorticity (w) is defined as the curl of the velocity (V x u) and is twice of the flow rotation at any point. The
material element along with w is stretched by velocity gradient causing the vortex stretching.
where s is the distance along the vortex line. So, the vorticity can be used to identify the vortex based on
the region and line methods as classified at the beginning of the section.

Vortex regions are identified directly by using the magnitude of vorticity. But the limitation of this
method is not to differentiate between swirling and shearing motions. Similar to Q-criterion, the vorticity is
visualized by using the isosurfaces of w depending on the threshold values of w.

4 Results and discussion

We use kinematic simulation to identify the locations of inertial particles’ clustering using Kolmogorov and
non-Kolmogorov energy spectra. The formations and classification of Lagrangian attractors with varying
values of Stokes number and Froude number can be found in [8, 9]. In order to develop better positioning
of these attractors, we explore their locations within the turbulence structure. First, the visualization
approach is used to locate the different types of attractors and then, a statistical approach is used to confirm
the positioning.

4.1 Locations of attractors with Kolmogorov Energy Spectrum

We develop the relationship of Lagrangian attractors with vortex regions of turbulent flow using Q-criterion.
In practice, the velocity components are used to find the velocity gradients and hence to calculate the Q-
criterion. The results of Q-criterion are plotted as isosurfaces using an appropriate threshold value. A
combined isosurface plot in Fig. 2 representing the high vorticity regions as green isosurfaces (@ > 0) and
the low vorticity regions as blue isosurfaces (Q < 0) for Kolmogorov energy spectrum (P = 5/3).

After attempting a number of Q-criterion values, the major task is to choose a reasonable threshold value
so that we may able to see the attractors’ locations within the isosurfaces. In order to do this, we plot
the isosurfaces using different threshold values to see the exact location of an attractor. As a result of our
investigation, we locate the different type of Lagrangian attractors with the threshold value of isog = £180.
Following the results of past studies i.e. inertial particles are normally centrifuged by high vorticity regions
and they preferably settle in the strain regions, we emphasize the position of present two different one-
dimensional (1D-H and 1D-V) along with isosurfaces in Fig. 3 and Fig. 4 respectively. It can be observed
that both one-dimensional attractors develop in the low vorticity regions for Kolmogorov energy spectrum.
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Figure 2: Vorticity regions isosurfaces (green) for Q=180 and Strain regions (blue) isosurfaces for Q=-180
with p =5/3
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Figure 3: Location of 1D-H attractor (St=0.207 and Fr=1.10) in flow with p =5/3
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Figure 5: (a)-(f) Q-criterion isosurfaces for threshold values of Q=180 for different power laws.



4.2 Identification of attractors with non-Kolomogorov Energy Spectrum

Similar results are obtained with non-Kolmogorov power law (p) and clusters are developed in the low vor-
ticity region. In order to identify the locations of Lagrangian attractors, isosurfaces of turbulence structures
are drawn with increasing values of the power law (p). As the value of (p) increases, the smaller length scales
disappear as shown in Fig. 5. As expected; the most of the energy is utilized at the larger length scales
imparting random motion to the particles and as a result, the one-dimensional attractors may destroy.

Figure 6: Location of 1D-V attractor (St=0.165 and F'r=0.49) in flow with p = 1.5 at t=100 s.

As an example, we present a case with 1D-V attractor with the increasing power law (p) of energy spectrum.
It is noted that the attractor first moves and changes its position in the flow structure (Fig. 6-Fig. 8) with
the modification and ultimately rearranges to the 3D distribution (Fig. 9). This shows different formations
of turbulence structure for Kolmogorov and non-Kolmogorov energy spectra.

Figure 7: Location of 1D-V attractor (St=0.165 and Fr=0.49) in flow with p = 5/3 at t=100 s.



Figure 8: Location of 1D-V attractor (St=0.165 and F'r=0.49) in flow with p = 2.0 at t=100 s.

Figure 9: Location of 1D-V attractor (St=0.165 and Fr=0.49) in flow with p = 2.5 at t=100 s..



5 Statistical analysis of clusters’ Locations

The Lagrangian attractors are tracked using visualization, but in order to confirm the locations of the
particles’ clusters with more meaningful approach, we perform a statistical analysis. The variations in
Q-criterion distributions are studied for different shapes of attractors with Kolmogorov as well as non-
Kolmogorov energy spectrum.

5.1 With Kolmogorov energy spectrum

We use the frequency distribution initial three-dimensional particles as a reference. In order to find the
attractors position, we use the velocities at the attractors’ final positions to calculate the Q-criterion. As
Q-criterion clearly defines the strain and vorticity regions, hence it is used to detect the exact locations of the
particles’ attractors. For the purpose comparison with initial uniform distribution, an attractors’ Q-value
distributions are plotted along with the particles’ initial distribution in Figs. 10- 12.
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Figure 10: Q-values distribution for a horizontal attractor comparing with initial three-dimensional distri-
bution for p = 5/3.

In Fig. 10, the Q-values for a 1D-H attractor can be shown and it is evident that most of the particles
are on the negative side of the distribution i.e. in the strain regions with @ < 0. So, it is confirmed that
the horizontal attractors evolve in the low vorticity regions of the flow. Similar distribution of Q-values is
obtained for 1D-V attractor as shown in Fig. 11.

The difference in Q-values distributions between 1D-H and 1D-V attractors can be analyzed with careful
examination of Fig. 10 and Fig. 11. In both of these cases, particles have St=0.207 with different values of
Fr. For the 1D-H attractor, multi-peaks is shown in Fig. 10 describe the dominant behavior of turbulence-
structure over gravity effect. on the other hand, 1D-V attractor with a single peak is the consequence of
strong drift. Moreover, the Q-values distribution of the 1D-HV attractor shows features of both 1D-H and
1D-V attractors that is, we can see a spike as well as a negative skewness as shown in Fig. 12. All of three
cases are put together in Fig. 13 which clearly elaborates the locations of different one-dimensional attractors
in different vorticity regions.

In addition to the one-dimensional attractors, it is interesting to see the Q-values distribution of a 2D-L
attractor in relation to the initial particle distribution. More precisely, we can differentiate the locations of
1D-V and 2D-L attractors on basis of vortex regions. The 1D-V attractors develop for small sized particles
and they can easily move in the vortex regions. For the 2D-L attractors, the size of the particles (St) is big
enough such that they cannot be trapped by the smaller length scales of vortex regions. Therefore, the Q-
values distribution for the 2D-L is clearly different from the 1D-V attractor as shown in Fig. 14. Altogether,

10
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Figure 11: Q-values distribution for a vertical attractor comparing with initial three-dimensional distribution
for p=5/3.
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Figure 12: Distribution of Q-values at particles positions for 1D-HV attractor in comparison to initial
distribution of the particles with p =5/3.
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Figure 13: Comparison of Q-value distributions for different one-dimensional attractors with p = 5/3.

the statistical analysis is proved to be quite helpful to verify the locations of different types of attractors in
vortex regions.
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Figure 14: Distribution of Q-values at particles positions for 2D-L attractor in comparison to initial distri-
bution of the particles with p = 5/3.

5.2 With non-Kolmogorov energy spectrum

Here, we apply the Q-criterion distributions by varying the power law of energy spectrum. As we have already
visualized the modifications of the attractors with increasing or decreasing the p, the Q-value distribution
of the particles will also differ from what we obtain with p = 5/3. In Fig. 15, Q-value distributions of initial
particles’ positions with different power law are plotted which shows that the particles have the tendency to
settle in the low vorticity regions with the reduced range of scales for the higher values of p.
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Figure 15: Q-values distributions at initial three-dimensional positions for different power laws.

We analyze the different types of Lagrangian attractor with the modified power laws. For a 1D-H attractor,
the increase in p destroys the attractor. Therefore, Q- value distributions shift towards right for p = 2.0 and
p = 2.5 (in Fig. 16) showing that the lighter particles tend to move randomly with the increments in p. A
somewhat similar trend is noted for a 1D-V attractor as shown in Fig. 17 where we found the most of the
Q-values on the negative side of distribution with p = 5/3. It means that there are some specially featured
scales in turbulence with Kolmogorov energy spectrum which hold the particles in the strain regions.
Finally, we do not observe any kind of clear variations in the shape of the QQ-values distribution for a 2D-L
attractor with the modified power laws. The only noticeable change with p = 2.5 is a small decrement in
the dispersion of distribution and this happens because of the reduction in the scales.

6 Conclusion

We have discussed in detail the clustering of inertial particles in relation to the flow structure using Q-
criterion. According to visualizations and statistical analysis, we have found that the particles cluster in the
flow depending on flow parameters and particles’ characteristics. We present the following findings from this
study:

e The visualization shows that the particles tend to cluster in the straining regions (Q < 0) depending
on St, Fr and input energy spectrum (Kolmogorov or non-Kolmogorov).

e We found that different Lagrangian attractors (1D-H or 1D-V) develop as the result of the difference
in the vorticity components of the local turbulence structures.

e The multi-peaks as shown in Fig. 10 can be considered as a distinctive feature of the 1D-H attractor
revealed as the result of statistical analysis. It shows that the particles in a horizontal one-dimensional
attractor may evolve in more than one types of vortex region.

13
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Figure 16: (top)Frequency distribution of Q-criterion at particles positions for St=0.207 and Fr=1.10 and
(bottom) 3D plots for different power laws.
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Figure 17: (top) Frequency distribution of Q-criterion at particles positions for St=0.207 and F'r=0.63 and
(bottom) 3D plots for different power laws.
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e The particles with St < 0.5 tend to accumulate in the very low vorticity regions depnding different
values of F'r and can result into a 1-D attractor [8]. This is confirmed by plotting the Q-values
distributions using velocity components at the particles’ final positions. Our findings are also in
agreement with the recent results of [16] who found that the lighter particles preferentially concentrated
in the synthetic flow.

e The particles with St > 0.5 do not form any of the one-dimensional attractors [8] and hence the Q-value
distribution of the attractor almost overlaps with that of the initial distribution of particles.

e Using the Q-criterion distributions, it is also observed that the one-dimensional attractors start juggling
in the flow structures with modified power laws of the energy spectrum. While the p variations are
less effective for the 2D-L structures.
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