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Abstract: We compare three approximations for predicting the viscosity of a 

material resulting from blending a main raw material and additives in an 

industrial semi-batch mixer. These approaches are: a data-based model build 

from experimental data collected in a real process; a theory-based model build 

by means of an integral analysis of transport equations describing the mixing 

process; and CFD simulations of this process. The comparison leads to a 

model proposal in which the selection of principal components for building 

the data-driven model is guided by the theory-based model. This theory-based 

model is enriched with results from the CFD simulations, which allows an 

efficient and accurate inverse analysis for fitting experimental data and 

numerical models. The proposed model can predict, with a minimal amount 

of process information and on-line, the final viscosity with the same 

uncertainty of the current experimental off-line quality approach. 
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1     Introduction 
 
Mixing operation efficiency is typically critical to the successful manufacturing of a product. At 

industrial scale, efficient mixing can be difficult to achieve but failing in providing the necessary 

mixing could lead to significant increase of manufacturing costs[1]. That is why industries are 

investing in gaining a deeper control and understanding of mixing processes by installing 

sensors that provide more information along the process. 

Thanks to sensor technology advances, data acquisition and storage is cheap and data is 

becoming much more abundant and accurate, therefore data-driven methods are gaining 

attention in the field of scientific computing versus model-driven methods [2], [3]. But data can 

be very often distorted by noise and its availability is limited depending on sensor system design 

and process characteristics. 

On the other hand, progresses in computer-aided engineering (CAE) are making possible to 

implement models that simulate complex processes, like multiphase flows. But these models 

usually are not in full agreement with physical reality. This gap between experimental and 

computed results is due to either simplifications of the model, made to avoid unaffordable 

computational costs, or to other physical phenomena occurring during the process of whose 

relevance (or existence) the model was unaware of. 

In finding the best blending among data-driven models and CAE models arises the opportunity 

to overcome each approach’s limitations. Aiming at discovering this optimal way of combining 

data-based and model-based estimations, in this work three different approaches are compared, 
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focusing on improving data-based model. The interest in this analysis is caused by the widely 

use of mixing as unit operation in chemical process engineering [4], and the possibility of 

applying the described method to analyze additional unit operations. 

This work has been carried out using real process data to take noise into account the way it is 

presented in actual working conditions. Experimental data is provided by a private company; 

therefore most of experimental values are not displayed, or are normalized when it is required. 

The present paper includes: description of data analysis and model methods (section 2); main 

results of the different models and comparison among them (section 3); and final conclusions of 

the work (section 4). 

 

2     Methods 

 
2.1     Data-based model 

 
The aim is to build a data model of mixing process. Data-based model intends to relate viscosity 

of material after processing to measured process variables. Viscosity is represented by ML. Data 

was collected from approximately 1500 mixing cycles. For every cycle, mixing data includes 

several process variables (every 3.0 or 0.125 seconds, depending on the sensor), ordered/served 

compound fed to the mixer, and processed material tests, carried out in a moving die rheometer. 

Data cleaning eliminates the cycles where data recording was noticeable mistaken (like empty 

recording periods or test’s results out of rheometer limits). 

Among the recorded process variables, intensity, pressure, rotor speed, mixing temperature, 

cylinder intensity and position are selected.  

 

a) b)  

c) d)  
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e) f)  

 

Figure 1: Mean and standard deviation of measured data:  

a) Temperature, b) Intensity, c) Position, d) Pressure, e) Rotor speed, f) Cylinder intensity 

 

They build a tensor of shape (variable, lecture, cycle), which is flattened in x-axis; therefore, it is 

turned into a matrix of shape (cycle, variables x lectures).  

The served weight of each compound in each cycle is also considered. Together with flattened 

tensor of process variables, they constitute the input for the data model.  

From the rheometer results of curing curve of processed material of each cycle, ML is chosen as 

output, since it is related to viscosity of the compound heated to vulcanization temperature.  

 

 
 

Figure 2: Input to data-based model 

 

The input data matrix’s shape is 481x483. To reduce the dimensions of the problem, Principal 

Component Analysis (PCA) is applied. As previous step, optimal number of reduced 

components is studied, regarding not only explained covariance but also the coefficient of 

correlation of a simple linear regression. 

 

a)      b)  

 

Figure 3: a) Sum of reduced components explained variance ratio vs number of reduced 

components; b) Coefficient of correlation (R
2
) of linear regression of reduced components model 

vs number of reduced components 

 

It is observed that highest coefficient of correlation is in the range of 15-50 reduced components. 
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Less components do not contain enough information (<80%) and including more components 

means introducing noise from the process into the reduced model. Considering explained 

covariance, coefficient of correlation and computational cost, 21 is selected as optimal number 

of reduced components for PCA in this case. 

Reduced components are ordered by explained covariance; in this case, the first two reduced 

components contain approximately 40% of the unreduced information. When representing these 

two components for each cycle, it is observed that cycles clearly gather in two clusters, which 

are also grouped in periods of time. 

 

 
Figure 4: Division of cycles in two clusters 

 

2.2     Theory-based model 

 
The aim is to develop a system of ordinary differential equations that simulate and predict 

process variables’s evolution in the mixer. 

The model mixer is composed by a single cylindrical cavity of radius Rw and height L, 

representing one of the chambers of the Banbury mixer. The model mixer dimensions are chosen 

to make the volume of the model half of the total fluid volume in the real mixer (real mixer 

dimensions are unknown). In this approach, it is assumed that there is no free volume inside the 

mixing chamber. The characteristic, spiral-shaped, blades of the Banbury mixer are replaced in 

the model mixer by two simple radial impellers of radius Ri, height L and negligible thickness.  

 

 

       
 

Figure 5: Model mixer  

Nomenclature 

Rw  Wall radius 

Ri Impeller radius 

L Mixer height  

ωi Impeller angular speed 

V Voltage 

I Intensity 

    Power 

T Temperature 

t Time 

ρ Density 

n Power-law index 

K Consistency index 

      Viscosity pre-exponential index 

α  Viscosity temperature index 

β   Viscosity pressure index 

Tα Reference temperature 

Ttest, Ptest Vulcanization test conditions 

        Rheometer parameter 
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It is considered that fluid within the impeller radius rotates at the same speed than the impeller, 

ωi. Fluid velocity between impeller’s tip and wall is calculated solving Navier-Stokes equation 

and imposing no slip condition on the wall. 

 

      
      

         
      

 
 

 
 

      
      

             

                                                             

   Eq. 1 

 

The momentum’s conservation law shows that the system’s power consumption is due to: 

 

                               Eq. 2 

 

The power consumed by rotor speed is derived from the variation of kinetic energy in the mixer: 

 

        
   

 
  
             

   

  
  Eq. 3 

 

On the other hand, the power dissipated by viscous effects is obtained by integrating the shear 

stress in the control volume: 

                    
      Eq. 4 

  

         
   

    
      

 
   

        
    Eq. 5 

 

Parameter K is the flow consistency index of power law viscosity model. It varies with 

temperature and pressure, according to an exponential Arrhenius and exponentia relationl, 

respectively, as follows:  

     
  

 
 
 
 
  
    

  Eq. 6 

 

The correlation among process variables is hereby presented and every variation in any of them 

would cause a response in the power consumption in the form of intensity change. 

 

 
  

  
 
         
   

 
            

   
  Eq. 7 

  

         
   

 
   

 
  
            

   

  
    Eq. 8 

  

            

   
         

       
   

  
     

  

  
 

 

   

  

  
   Eq. 9 

  

On the other hand, ML is related to viscosity of processed material through a proporcionality 

constant that depends upon the rheometer and working parameters. Considering that all tests are 

carried out under the same experimental conditions: 

 

                  
  

 
     

 
 
  

        
  Eq. 10 

 

This model is applied to every cycle and fed by experimental process variables of temperature, 

pressure and rotor speed. Regarding material properties, density is selected among typical rubber 

density values, but five more parameters are required for the viscosity model: Kp, n, α, β, Tα. Tα 
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is set to room temperature, pressure viscosity dependence (β) is obtained from bibliography [5] 

and n from a generic rubber characterization, while Kp and α will result after applying a least 

squares optimization to minimize the difference among experimental and calculated intensity.  

 

 
Figure 6 : ODE’s model scheme  

 
The complete process is shown in the above figure. Finally, calculated Kp and α through 

optimization can be related to ML as in Eq. 10.  

 

2.3     CFD model 

 
The flow inside the mixer is simulated using Ansys Polyflow to validate ODE’s based model.  

The geometry consists of two tangential counter rotating rotors of the same size (Ri, Rw, L) as 

the ODE’s mixer model, which results in a 40% increase in the fluid volume compared to mixer 

model’s volume. 
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Figure 7: Mixer mesh  

 
The fluid volume is initialized at constant temperature, calculated as mean initial temperature 

from experimental data, and adiabatic conditions are imposed. 

Rotor speed is constant and equal to initial value of mean experimental rotor speed. It is 

assumed that the fluid sticks to the walls and to the rotor surfaces, and that the mixer is fully 

filled.  At this stage actual material properties are unknown, so they are chosen from a generic 

rubber. Since a simulation of the full mixing cycle is computationally very expensive, only the 

first five revolutions are calculated. 

The interpolation scheme is mini-elements for velocity with linear pressure, Picard iterations on 

viscosity and quadratic elements for temperature. The selected solver is AMF direct solver with 

secant iterative process and implicit Euler method for transient integration. 

 

 

2.4 Data-driven physically-informed model 
 

Complete experimental data allows to build a data-based model that predicts ML values through 

PCA and regression. On the other hand, by applying transport equations an ODE’s model is 

developed and few specific process variables are required to get to ML prediction. By relating 

these two models, both of them can improve if information is wisely observed, beyond merely 

comparing its prediction capabilities. 

While data-based model uses six process variables (intensity, pressure, rotor speed, mixing 

temperature, cylinder intensity and position) and nine compounds, ODE’s proves that only the 

first four of them are relevant. At the same time, if theory’s based prediction is worse than data-

based model’s, that would mean that experimental data still contains some information that 

ODE’s model is omitting. Afterward, these missed variables can be found through data analysis 

and introduced in the ODE’s model or input. 

As mentioned above, CFD  model’s computational cost is very expensive, so only the first few 

seconds of the process are simulated. CFD provides very accurated but very small amount of 

information, therefore the output is employed to validate the ODE’s model.  

Later on this investigation and bearing in mind that mixer model dimesions are only an 

estimation, CFD model will be used to account for geometric uncertainties; this means, study the 

influence of fluid volume and mixer dimensions on the output. 
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Figure 8: Data-driven physically informed model scheme  

 

3     Results 
 

3.1     Data-based model 

 
First of all, low-pass filter is applied on data using a cut-off value based on measurement 

variance estimation, acting similarly to a Kalman filter. Explained variance ratio and coefficient 

of correlation depending on number of reduced components is studied for data before and after 

filtering. 

 

 
Figure 9: a) Comparison of sum of reduced components explained variance ratio vs number of 

reduced components; b) Comparison coefficient of correlation (R
2
) of linear regression of 

reduced components model vs number of reduced components 

 

The figure shows that the main improvement using filtered data is that the information gathered 

by the reduced components is larger, while filtering does not seem to affect significantly to 

coefficient of correlation; therefore filtering does not result in a better data model. 
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Figure 10: Linear regression to data and filtered data  

 

Gaussian process regressor is applied to reduced data and reduced filtered data. Two thirds of 

the data are used to train the data model and one third to test it. The coefficient of correlation 

increases compared to previous linear regression; so does the computational cost. 

 

 
Figure 11: Gaussian regression to data and filtered data  

 
The results of applying PCA and linear regression (LR) or gaussian regression (GR) to data and 

filtered data are summarized in the next table: 

 
 Data Filtered data 

Reduced components 21 21 

Explained covariance 82.5% 96.9% 

Predicted data st. deviation (LR) 0.134 0.144 

R2 (LR) 0.493 0.519 

MSE (LR) 0.019 0.018 

Predicted data st. deviation (GR) 0.142 0.150 

R2 (GR) 0.611 0.594 

MSE (GR) 0.014 0.015 
Table 1: Comparison of PCA and linear regression (LR) or gaussian regression (GR) results among data 

and filtered data 

 

Gaussian regressor increases the coefficient of correlation in 24% and 14% for data and filtered 

data, respectively, while decreasing the mean squared error (MSE) in around 20%. In this case, 

there is not significant differences bewteen applying a filter previous to PCA, besides the 

already mentioned increase in explaned covariance. 

 

3.2     Theory-based model 

 
In order to test the ODE’s model, the input process variables in a first approach are the mean 

experimental values: mean temperature, mean pressure, mean rotor speed; in the same way, least 

squares optimization proceeds comparing calculated intensity to mean experimental intensity. 
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Figure 12: Fitting using mean experimental values  

 
 

Experimental data is filtered previously to be introduced into the least squares optimization, to 

smooth the minimization, since the provided intensity data has zero precision. Once the 

optimization is runned for all cycles, and a pair of values Kp-α is obtained for each one of them, 

K is calculated at test temperature and pressure (Ktest) as in Eq.6. 

 

 
Figure 13: Ktest vs ML – Linear regression 

 
In the above figure, paired values Ktest-normalized ML for each cycle are represented. According 

to Eq. 10, direct proportionality was expected. However, results fit a linear regression with 

significant Y-intercept. It is reasonable to consider that the rheometer has a working range and 

that the offset is related to the lower working limit of the instrument. 

A gaussian regressor is applied, as in the case of data-based model, but only one dimension is 

required, the ODE’s model output (Ktest). 

 

 
Figure 14: ML prediction from Ktest  
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Regression Linear Gaussian 

Predicted data st. deviation  0.194 0.078 

R
2 
 0.141 0.161 

MSE  0.032 0.029 
Table 2: Linear and gaussian regression results of ML prediction from Ktest 

 
While the standard deviation of predicted data is similar or lower than the data-based model, the 

coefficient of correlation and squared error worsen noticeably. 

 

 

3.3     CFD model 

 
As stated before, CFD is the most computationally expensive model. It was not feasible to run a 

full-time mixing cycle simulation, but only 5% of the process. Nevertheless, it is still worthy to 

evaluate the results, since ODE’s and CFD model share some hypothesis, like mixer dimensions. 

 

 
Figure 15: Comparison of intensity 

 
Raw intensity from CFD-simulation is over twice times experimental intensity.But when 

removing viscous dissipation contribution to power requirement, experimental intensity values 

reach, after certain transient period, computed intensity. Viscous dissipation rate depends highly 

on material properties which, for CFD simulation, are chosen from a generic rubber. In addition, 

this effect was not taken into account in ODE’s model due to its complexity. 

 

3.4 Data-driven physically-informed model 

 
Although at this point ODE’s model has not improved ML prediction in comparison to data-

based model,   theory-based model provides useful insight into mixing process: intensity is 

highly correlated to ML. In a first approach, intensity is integrated for every cycle and 

represented againts  its respective ML value. 
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Figure 16: Integral intensity vs Normalized ML  

 
 

The figure above highly ressembles to Figure 13. Once again, a gaussian regressor is applied, 

using only a single dimension as input (integral intensity), to predict ML. 

 
Figure 17: ML prediction from Integral Intensity  

 

Still the results are not as good as the data-based model, so it is assumed that ODE’s model is 

missing some relevant information to ML.  

 

The PCA created in the data-based model allows to analyse the importance of each variable: by 

representing the first two dimensions and detecting the heaviest weights, which belong to the 

most influencial variables. 

 

 
Figure 18: Variables’ weights of first two dimensions of PCA 

 
Components are not included in ODE’s model. By depicting component’s weights, it is observed 

that the most important component in PCA is component D. 
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Figure 19: Components’ weights of first two dimensions of PCA   

 
Including component D in the previous regressor results in a simple model with two dimensions 

(Integral Intensity,  component D) as input, but high correlation, as shown in figure below: 

 
Figure 20: ML prediction from Integral Intensity and Component D  

 
Dimensions 1 2 

Predicted data st. deviation  0.111 0.131 

R
2 
 0.283 0.470 

MSE  0.027 0.020 
Table 3: Gaussian regression results of ML prediction from Integral Intensity, and Integral Intensity plus 

Component D 

 
Using only two dimensons (integral intensity and compound D), results are almost as good as 

the data based-model (21 dimensions) in terms of coefficient of correlation and error, with 

significant reduction in computational cost. 

 

3.5 Comparison among models 

 
The table below summarizes the best results of each model: reduced data without filter for data-

based model, theory-based model and Data-Drive Physically-Informed (DDPI) with two 

dimensions; using gaussian regressor in all of them. 

 
Model Data-based Theory DDPI 

Dimensions 21 1 2 

Predicted data st. deviation  0.142 0.078 0.131 

R2 0.611 0.161 0.470 

MSE  0.014 0.029 0.020 
Table 4: Comparison among data-based, theory and DDPI model 
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Although data-based model shows the highest correlation and lowest error, it should be outlined 

that data-based requires 21 dimensions. On the other hand DDPI model reduces the dimensions 

in 90%, but loses 21% of correlation and increases the error in 40% compared to data-based 

model. 

 

4     Conclusions 
 

A data-driven physically-informed method is presented where theory and numerical simulations 

help to clean and select the most relevant information to build a data-driven model. This is a 

novel approach where instead of focusing on data-assimilation into numerical simulation, we 

focus on improving the classical PCA approach to decide most relevant information based on 

physically-informed restrictions. The main conclusion is that, for operation-units analysis of 

material manufacturing process, the information provided by the integral analysis of transport 

process is relevant for limiting the information used in data driven models. We relate this 

limitation to the thermodynamic consistency that a predictive model (without regards of its 

origin) should have. 
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