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Abstract: In the present paper, a multi-step reconstruction procedure is proposed for 

the development of high order finite volume schemes on unstructured grids using 

compact stencil. A recursive algorithm is proposed which can eventually provide 

sufficient relations for high order reconstruction in a multi-step procedure. Two key 

elements of this procedure are the partial inversion technique and the continuation 

technique. The partial inversion can be used not only to obtain lower order 

reconstruction based on existing reconstruction relations, but also to regularize the 

existing reconstruction relations to provide new relations for higher order 

reconstructions. The continuation technique is to extend the regularized relations on 

the face-neighboring cells to current cell as additional reconstruction relations. This 

multi-step procedure is operationally compact since in each step only the relations 

defined on a compact stencil are used. In the present paper, the third and fourth order 

finite volume schemes based on two-step quadratic and three-step cubic 

reconstructions are studied.  
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1   Introduction 
 

High order methods have shown great capability in the simulation of flows with multi-scale 

structures [1]. To handle complicated geometries, various high order numerical methods on the 

unstructured grids have been developed such as the finite volume (FV) methods [2-9], discontinuous 

Galerkin (DG) methods [10-14], spectral volume (SV)/spectral difference (SD) methods [15-21], 

PNPM procedure [22-24] and the hybrid FV/DG methods [25, 26].  

Historically, the high order FV methods on the unstructured grids were among the numerical 

schemes that received earliest attention since they are simpler to construct and apply. The key point of 

FV schemes is to reconstruct high order representation of the solutions in each cell or control volume. 

The k-exact FV method was developed by Barth and Frederickson [2]. ENO and WENO schemes were 

then developed [6, 27-36]. The high order FV schemes usually require a large number of cells in the 

stencil of the reconstruction procedure. The lack of compactness increases the complexity of the   

schemes on arbitrary unstructured grids and is also a serious drawback for the parallelization of the code 

[25, 37]. To overcome this problem, Wang and Ren developed the compact least squares reconstruction 

(CLSR) scheme [38, 39] on compact stencil. This method is constructed by requiring the variable and 

its derivatives on the control volume of interest to conserve their averages on the face-neighboring cells. 

To ensure the non-singularity of the reconstruction procedure, the variational reconstruction (VR) 

procedure for the high order FV schemes on the unstructured grids was recently proposed [40]. This 

method can be also applied on a compact stencil and more importantly, can be proved to be non-singular 



on general shaped unstructured grids. Both CLSR and VR are implicit, and a large system of linear 

equations should be solved. To design an efficient solution procedure, the CLSR and VR are computed 

using a certain iterative solution procedure. When solving unsteady flows, they should be coupled with 

implicit dual time stepping procedure so that only one iteration is performed in each pseudo time step. 

Using this approach, the FV schemes based on CLSR and VR can be as efficient as those based on the 

k-exact reconstruction when the implicit time stepping schemes are used. However, when using the 

explicit time stepping schemes, these methods becomes less efficient because of the implicit nature of 

these schemes. Therefore, it is desirable to develop an explicit reconstruction algorithm on a compact 

stencil which can be readily applied in both explicit and implicit time marching schemes. 

We notice some approaches with above-mentioned property have been proposed. For example, 

Yang et al [41] used the Gauss-Green theorem successively to obtain high order distribution of the 

solution in a control volume. However, it is not able to prove if this approach has the property of k-

exactness. Haider et al [42] developed the Coupled Least Squares reconstruction by approximating 

derivatives from higher order to lower order. However, on the unstructured grids, this approach is 

depended on some claims that are not easy to prove and is very complicated.  

In the present paper, the FV scheme based on a multi-step reconstruction (MSR) procedure is 

proposed. The MSR is a recursive algorithm which can eventually provide sufficient relations for high 

order reconstruction in a multi-step procedure. Two key elements of this procedure are the partial 

inversion technique and the continuation technique. The partial inversion can be used not only to obtain 

lower order reconstruction based on existing reconstruction relations, but also to regularize the existing 

reconstruction relations to provide new relations for higher order reconstructions. The continuation 

technique is to extend the regularized relations on the face-neighboring cells to current cell as additional 

reconstruction relations. During the implementation of this procedure, the cells involved in the 

reconstruction will increase implicitly. However, this procedure is operationally compact in the sense 

that in every step of this multi-step procedure, only the information of current and face-neighboring 

cells is used. As being discussed in [40], this property is sufficient to ease the data transfer between 

different sub-domains in the parallel computing based on the domain decomposition approach and is 

also beneficial to reduce the cache missing encountered by traditional high order FV schemes using a 

very large stencil. The present approach is k-exact. The computational cost is only slightly larger than 

the traditional k-exact reconstruction using large stencil. 

This paper is organized as follows. Section 2 and Section 3 detail the MSR algorithms on 1D and 

2D unstructured meshes respectively. In Section 4, numerical results of 1D tests and 2D tests are 

presented. Finally, conclusions are given in Section 5.  

 

2   High order compact multi-step reconstructions for FV schemes: the 

1D case 
 

2.1   Notations 
 

In this section, the 1D MSR is introduced and the spectral property for the corresponding high order 

FV schemes is analyzed. To facilitate the derivation, some notations are introduced first. In 1D FV 

methods, the physical domain    is decomposed into N non-overlapping control volumes (cells). 

1 2 1 2,i i ix x 
       is the i-th cell and it implies the boundary of    is  1 2 1 2, Nx x    . 

1 2 1 2i i ih x x    is the length of 
iI  and  1 2 1 2 2i i ix x x    is the center of 

iI . We denote the 

i-th cell average of variable u as 

   
1

i
i

i

u u x dx
h 

  .  



In the reconstruction procedure, the variable  u x  is approximated inside each element 
i  by 

a local polynomial  iu x  of the form 

     ,

1

p
l

i i i l i

l

u x u u x


  ,   (1) 

where p is the order of the local polynomial, and  ,l i x is the zero-mean basis defined by 

       ,

1

i

l l

l i i i

i

x x x dx
h

  


    

with  i i ix x x h   . The use of the zero-mean basis functions guarantees the cell average of Eq. 

(1) to be iu . Generally speaking, the degree p polynomial reconstruction will result in a p+1 order finite 

volume scheme. In what follows, the terms ‘degree p polynomial reconstruction’ and ‘p+1-th order 

reconstruction’ are used interchangeably. Specifically, in the next section, the reconstruction of the cubic 

polynomial using the MSR procedure will be introduced, which can be used to design the 4th order FV 

schemes.  
 

2.2   1D multi-step reconstruction 
 

In this subsection, the cubic reconstruction is used as an example to introduce the basic idea of the 

MSR procedure.  

In the reconstruction procedure, it is necessary to define the reconstruction stencil which consists 

of the cells to be used in the reconstruction. Different from the large stencil used in other FV methods 

(such as k-exact reconstruction or WENO schemes), the compact stencil consists of only face-

neighboring cells, on which the MSR is carried out in each recursive step.  

In 1D case, for the cubic reconstruction, p=3 in Eq. (1), we define 
1 2 3, ,

T

i i i iu u u   u   as the 

coefficient vector so that Eq. (1) can be written in the matrix form 

    1, 2, 3,, ,i i i i i iu x u       u .   (2) 

In what follows, the MSR is described to determine the unknown coefficient vector iu  . Generally 

speaking, to reconstruct a degree p polynomial, a p-step of reconstruction is needed.  

 

Step 1 

Because of the use of the zero-mean basis, Eq. (2) conserve the cell average automatically. On a 

compact stencil, two additional relations can be derived, in which Eq. (2) is required to conserve the 

mean on cells 
1i  and 

1i . This will lead to the following reconstruction relations (RR, in plural 

number) 

  

1 1 1

1, 2, 3, -1

1 1 1

1, 2, 3, +1

i i i

i i i i i

ii i i

i i i i i

u u

u u

  

  

  

  

   
   

  
u .   (3) 

In Eq. (3), 
j

（ ） denotes the averaging operation on cell j . Eq. (3) can be written in a more compact 

form as 

  i i iA u  ,   (4) 

where 

  

1 1 1

1, 2, 3, -1

1 1 1

1, 2, 3, +1

=

i i i

i i i i i

i ii i i

i i i i i

u u
A

u u

  

  

  

  

   
   

  
 .  

There are 3 unknown coefficients in the vector iu , thus Equation (4) is underdetermined. Therefore, 

it is not possible to obtain iu  directly. To proceed, here we introduce the so called partial inversion 



technique (PIT). Instead of solve all the unknown coefficients at once, the PIT deals with the coefficient 

related to linear polynomial i.e. 
1

iu  . Correspondingly, matrix iA   and vector iu   are respectively 

partitioned into two parts: one related to linear polynomial and the other is the rest. Equation (4) is thus 

rearranged as 

  
,1

,1 ,23

,23

i

i i i

i

A A
 

    
 

u

u
    (5a) 

or the equivalently 

  ,1 ,1 ,23 ,23i i i i iA A u u ,   (5b) 

where 

 

1 1 1

1, 2, 3, 1 2 3

,1 ,23 ,1 ,231 1 1

1, 2, 3,

,   ,   ,   

i i i
T Ti i i

i i i i i i ii i i

i i i

A A u u u
  

  

  

  

   
             

   
u u .  

Then, ,1iA
, the Moore-Penrose inverse of ,1iA , is firstly computed. One purpose of introducing ,1iA

 

is to perform linear reconstruction. Indeed, if the contribution of higher order terms corresponding to 

,23iA  is neglected, the use the least-square inversion technique leads to 

  
(1)

,1 ,1i i iAu  ,   (6) 

which is the traditional linear k-exact reconstruction. Eq. (6) can be used as the low order reconstruction. 

However, Eq. (6) is not useful in performing higher order reconstructions. To construct additional 

constitutive relations for higher order reconstruction, ,1iA
is used again to pre-multiply Eq. (4) or Eq. 

(5) to obtain the regularized reconstruction relations (RRR, in plural number)  

  ,1 ,1i i i i iA A A u     (7a) 

or 

  ,1 ,1 ,1 ,23 ,1i i i i i i iA A A A A     u  .   (7b) 

We notice that Eq. (7) is the linear mapping of the original reconstruction relation Eq. (3). This property 

is important which guarantees the k-exactness of the proposed reconstruction procedure. The regulation 

operation in Eq. (7) is used to reduce the number of the RRR being the number of unknown coefficients 

of the linear polynomial (or more general, being the number of the lower order polynomial in PIT as 

shown in Step 2). In summary, the PIT consists of three operations. The first one is to decompose the 

matrix of RR into lower order and higher order terms. The second one is to compute the Moore-Penrose 

inverse of the matrix corresponding to the lower order terms, which can be used to obtain the lower 

order reconstruction when necessary. The third one is to obtain the RRR by the multiplication of the 

inverse matrix and the RR.  

 

Step 2 

The second step is the first recursive step of this MSR scheme. It will be described in detail to 

demonstrate how higher order reconstruction is obtained from lower order one.  

The main idea for achieving higher order reconstruction is to combine the RRR on the current cell 

(Eq.(7)) and its face-neighboring cells derived in step 1 to construct new RR. The direct realization of 

this idea leads to 

  

,1 ,1

1,1 1 1 1,1 1

1,1 1 1 1,1 1

i i i i i

i i i i i

i i i i i

A A A

A A A

A A A

 

 

    

 

    

   
   

   
   
   

u

u

u







.   (8) 

These relations cannot be used directly since iu  ,
1iu  and 

1iu   are the unknown coefficients on 

different cells. To solve this problem, the second technique associated with the MSR, namely the 



continuation technique (CT) is proposed. In this technique, when the solution  u x  is smooth, ju  

( 1j i  or 1i  ) is expressed as the linear transformation of iu , i.e.  

   j ij i
T


u u .   (9) 

In Eq. (9), ( )j iT   (or jT for short ) is a 33 square matrix related to grids and basis functions. 

The derivation of Eq. (9) is given in Appendix A by the continuation of the reconstruction polynomial 

 ju x  defined on j  onto 
i . Also in Appendix A, we prove that if solution u  follows cubic 

polynomial distribution, Eq. (9) is exact. Substituting Eq. (9) into Eq. (8), we can reach a system of 

equations only related to iu , i.e. 

  

,1 ,1

1,1 1 1 1,1 1

1,1 1 1 1,1 1

i i i i

i i i i i i

i i i i i

A A A

A A T A

A A T A

 

 

    

 

    

   
   

   
   
   

u







,   (10a) 

which can be denoted as 

  i i iB u  .   (10b) 

It is worthwhile to notice that j  is a face-neighboring cell of 
i  and Eq. (10) is also k-exact.  

Eq. (10) is the new RR used in the second step. In this step, the PIT deals with the coefficients 

related to quadratic polynomial i.e. 
1

iu   and 
2

iu  . We partition matrix iB   and vector iu   into two 

parts and Eq. (10) represented by partitioned matrices becomes 

  
,12

,12 ,3

,3

i

i i i

i

B B
 

    
 

u

u
    (11a) 

or equivalently 

  ,12 ,12 ,3 ,3i i i i iB B u u ,   (11b) 

where ,12iB  is the first two columns of iB , ,3iB  is the rest of iB  and  

  
1 2 3

,12 ,3,   
T

i i i i iu u u       u u .  

As the PIT in the first step, the Moore-Penrose inverse of ,12iB is computed as ,12iB
. Since there 

are 3 equations in Equation system (11), it is sufficient to determine a least squares quadratic 

reconstruction by neglecting the ,3 ,3i iB u term in Eq. (11b), which is given by 

  
(2)

,12 ,12i i iBu  .   (12) 

To derive higher order reconstruction, the RRR are derived by pre-multiplying Eq. (11) with ,12iB
, 

i.e. 

  
,12 ,3 ,12

,12 ,12 ,12 ,3 ,12or  

i i i i i

i i i i i i i

B B B

B B B B B

 

  



   

u

u




.   (13) 

 

Step 3 

The step 3 is similar to step 2 as the 2nd recursive step. The reconstruction relations are provided 

by the collection of the regularized relations derived in step 2 in Eq. (13) on current cell 
i  and its 

face-neighboring cells j  ( 1j i  and 1i  ) as 

  

,12 ,12

1,12 1 1 1,12 1

1,12 1 1 1,12 1

i i i i i

i i i i i

i i i i i

B B B

B B B

B B B

 

 

    

 

    

   
   

   
   
   

u

u

u







.  



The use of CT leads to 

  

,12 ,12

1,12 1 1 1,12 1

1,12 1 1 1,12 1

i i i i

i i i i i i

i i i i i

B B B

B B T B

B B T B

 

 

    

 

    

   
   

   
   
   

u







,   (14a) 

which can be denoted as 

  
i i iC u  .   (14b) 

There are 6 relations in Eq. (14). It is sufficient to give the least square cubic reconstruction by 

  i i iC u  ,  

where iC
 is the Moore-Penrose inverse of iC . Since we use the cubic reconstruction to demonstrate 

the MSR procedure, the PIT is not needed in the last step.  

 

Remark 1. It can be proved that all RR and RRR presented in step 1-3 are exactly satisfied when 

solution  u x  follows cubic polynomial distribution. Therefore, the present reconstruction is k-exact. 

The k-exactness of the present procedure ensures that the spatially 4th order accuracy can be achieved 

theoretically for the FV schemes using the cubic reconstructions.  

Remark 2.  The RRR can be weighted to change relative importance of different relations. For 

example, Eqs. (10a) and (14a) can be changed respectively to 

  

,1 ,1

1,1 1 1 1,1 1

1,1 1 1 1,1 1

i i i i

i i i i i i

i i i i i

A A A

A A T A

A A T A

 

 

 

 

    

 

    

   
   

   
   
   

u







   (15) 

and  

  

,12 ,12

1,12 1 1 1,12 1

1,12 1 1 1,12 1

i i i i

i i i i i i

i i i i i

B B B

B B T B

B B T B

 

 

 

 

    

 

    

   
   

   
   
   

u







.  (16) 

The weight is chosen as  0,1  since the RRR of the central cell should be more important 

than those of the neighboring cells. It is trivial to show that the introduction of the weights does not 

affect the k-exactness of the reconstruction procedure. The impact of the weights will be discussed in 

Section 2.3.  

Remark 3. Steps 1-3 only demonstrate a 4th order cubic reconstruction procedure with MSR. The 

recursive steps 2 and 3 are used to raise order of reconstruction by 1, respectively. When a 5th order 

reconstruction is required, we use quartic polynomial i.e. p=4 in Equation (1) and the corresponding 

vector 
1 2 3 4, , ,

T

i i i i iu u u u   u  is to be determined. In this case, the reconstructions with 4 stages can be 

used, in which the first and the second stages are basically the same as the cubic reconstruction, the 

third stage is added to construct the RRR for quartic reconstruction, and the last (fourth) stage is similar 

to the third stage of the cubic reconstruction.  It is then clear that arbitrary order reconstruction can be 

easily achieved by repeating the recursive steps. In general, the reconstruction for n-th order FV 

schemes requires n-1 steps with Step 2-Step n-1 implemented recursively.  

 

2.3   Fourier analysis 
 

In this section, Fourier analysis of the semi-discretized FV scheme using the MSR is presented for 

the discussion of dispersion, dissipation and stability properties of the proposed scheme. The governing 

equation is a scalar linear wave equation 

  0
u f

t x

 
 

 
,   (17) 



where f au  and a  is a positive constant. For simplicity, we assume that the grids are uniform i.e. 

ih h . The integral form of Eq. (17) on cell 
i  is 

   1 2 1 2

1i
i i

u
f f

t h
 


  


,   (18) 

where 1 2if   is exact flux. The semi-discrete scheme of Eq. (18) is 

   1 2 1 2

1 ˆ ˆi
i i

u
f f

t h
 


  


,   (19) 

where 1 2
ˆ
if   is numerical flux. In the analysis, upwind fluxes are used such that  

  1 2 1 2
ˆ L

i if au  ,   (20) 

where 1 2

L

iu   denotes approximation of  u x  at 1 2ix   computed using the MSR on the left-side cell 

i .  

Fourier analysis is presented to study the spectral behavior of 4th order FV scheme using cubic 

MSR. A single wave    , mik x

mu x t A t e  with a wavenumber 
mk  is considered as the solution in 

the analysis, leading to the cell average  

   1 2 1 2m i m iik x ik xm
i

m

A
u e e

ik h

      (21) 

and exact flux 

  
1 2

1 2
m iik x

i mf aA e 

    

respectively. These formulations are then introduced to the integral form of Eq. (18) which gives 

  0m
m m

A
ik aA

t


 


.  

Correspondingly, using Eq. (21) in the MSR, the semi-discrete scheme Eq. (19) with the numerical 

flux Eq. (20) becomes  

  0m
m m

A
ik aA

t


 


,  

where  

  
1 2 1 2

1 2 1 2

ˆ ˆ
i im

m i i

f fk

k f f

 

 





 .  

The wavenumber 
mk  and 

mk   can be scaled as 

  ,  m mk h k h    ,  

where   is called scaled wavenumber and   is called modified wavenumber. The relation of these 

two wavenumbers can be written as 

  
1 2 1 2

1 2 1 2

ˆ ˆ
i i

i i

f f

f f
 

 

 


 


.  

In the finite volume schemes, '  is in general complex whose real part is associated with the 

dispersive error and imaginary part is associated with the dissipative error. It can be calculated as a 

function of the scaled wavenumber  . The specific forms of ' for 2nd to 4th order reconstructions are 

given below.  

 

The 2nd order MSR:  

       
3 1

Re sin sin 2
2 4

     , 



       
3 1

Im cos cos 2
4 4

       . 

The 3rd order MSR:  

 
           

 

2 2 2

2

69 78 sin 12 24 sin 2 1 10 sin 3
Re

48 1 2

     




     
 


, 

 
           

 

2 2 2 2

2

34 92 47 106 cos 14 4 cos 2 1 10 cos 3
Im

48 1 2

      




        
 


. 

The 4th order MSR:  

           1 2 3 4

0

1
Re sin sin 2 sin 3 sin 4q q q q

q
         ,  

           5 6 7 8 9

0

1
Im cos cos 2 cos 3 cos 4q q q q q

q
          ,  

where 
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2 4 6
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2 4 6

2

2 4 6
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2 4 6

4

2 4 6
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2 4
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192 1 1 2
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q

q

q

q

q

q

q

q

q
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  

  

  

  

  

  

  

 

  

   

    

   

   
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   

    

    6

2 4 6

9 1 26 80 16q



  
















    

.  

There is a parameter   that is the weight introduced in Eqs. (15) and (16). In the present paper, 

we usually choose 1  . A smaller value of   can be adopted to emphasize the contribution of the 

central cell. An optimization procedure of   is implemented by minimizing cost function [38, 43] 

  
    

2

0

1
ReE e d

e

   


  

   .   (22) 

We choose 4   in Equation (22) for 3rd and 4th order schemes and find that the cost function is 

monotonically increasing with   in  0,1 . It indicates that the smaller the weight , the smaller the 

dispersion error. On the other hand, a very small  tends to make the reconstruction singular. In the 

present paper,  0.2   is chosen as an optimized case since the dispersion relation changes very 

little when   is smaller than 0.2 .  

In Fig. 1a, the real parts of   are plotted for the 2nd, 3rd and 4th order MSRs. The 4th order 

central difference scheme(C4) [44] is also presented for comparison. It is evident that higher order 

schemes produce smaller dispersion errors. Compared to the standard 4th order central difference 

scheme, FV schemes based on the cubic MSR stay closer to the exact dispersion relations over a wider 

range of wavenumber. The optimized 4th order reconstruction with 0.2   is better than the standard 

case with 1  . In Fig. 1b, the imaginary parts of   are plotted for the 2nd, 3rd, 4th order multi-

step schemes and the C4 scheme to compare the dissipation properties of different schemes. It can be 

noted that the increase of the accuracy reduces dissipative errors in the low wavenumber range, but 

slightly affects intermediate wavenumber range. The measure of phase error  Re 1    is more 



intuitive to show the phase speed. In Fig. 2, this information for different schemes is also presented. 

The improved of dispersion property for the optimized multi-step scheme is clearly shown.  

 
 (a)  (b) 

Fig. 1: Dispersion and dissipation properties of the 2nd to 4th order multi-step schemes.  

 

 
Fig. 2: Dispersion errors of the 2nd to 4th order multi-step schemes.  

 

3   High order compact FV schemes based on the multi-step 

reconstruction for the 2D case 
 

3.1   Notations 
 

In 2D case, we are interested in the FV method on the unstructured triangular grids. The 

computational domain   is composed of a collection of N non-overlapping space filling triangles, i.e. 

  
1

N

ii
   ,  

where 
i  is the i-th cell. For a specific triangular cell

i , the boundary is composed of 3 sides or 

interfaces  

  
3

1i mm
I


  .  

Supposing 3 nodes (vertices) of the specific cell 
i  is point 1, 2 ,3 and coordinates of those points 

are      1 1 2 2 3 3, , , , ,X Y X Y X Y  respectively (capital letters are used here to be distinguished from 

coordinates of cell centers). The volume of 
i  is computed using  



        1 2 1 2 2 3 2 3 3 1 3 1

1

2
i X X Y Y X X Y Y X X Y Y            . 

The nodes have to be numbered in the anti-clockwise direction to obtain a positive volume. The center 

of 
i  is defined as 

    1 2 3 1 2 3, ,
3 3

i i

X X X Y Y Y
x y

    
  
 

.  

We denote the i-th cell average of variable  u x  as 

  
1

i
i

i

u ud


 
  .   (23) 

In the reconstruction procedure, the variable  u x  is approximated inside each element 
i  by a 

local polynomial  iu x  of the form:  

     
 

,

1

NOC p

l

i i i l i

l

u u u 


  x x ,   (24) 

where  NOC p   is the number of unknown coefficients for degree p   polynomial e.g. 

     1 2, 2 5, 3 9NOC NOC NOC    . In this paper, we take basis function ,l i   be the zero-

mean basis that is  

   ,

m n m n

l i i i i ix y x y     x ,  

where    ,i i i i i ix x x h y y y h      , 
1

=
i

m n m n

i i i i

i

x y x y d   



   , and ,m n   are powers 

of corresponding l-th basis function. The length scale 
ih  for each triangular cell is given by  

   max ,i i ih r  ,  

where ir   denotes the radius of the circumcircle of cell
i  . The 4th-order reconstruction will be 

presented in Section 3.2 to obtain coefficients of the following cubic polynomial  

       
     

     

1 2 3 2 2

4 5 2 2 6 3 3

7 2 2 8 2 2 9 3 3

i i i i i i i i i i i

i i i i i i i i i i i

i i i i i i i i i i i i i

u u u x x u y y u x x

u x y x y u y y u x x

u x y x y u x y x y u y y

     

       

         

      

     

     

x

.  (25) 

In Section 3.3, we will present high order FV scheme solving 2D Euler equations.  

 

3.2   2-D multi-step reconstruction 
 

The reconstruction procedure on 2D grids is essentially same as that in Section 1. In this section, a 

4th-order MSR is presented as Section 1. The boundary treatment and the selection of weights are also 

studied to demonstrate the differences from 1D case.  

For a 4th order reconstruction, 3p   and   9NOC p   in Eq. (24). The specific form of cubic 

polynomial in element 
i   has been presented in Eq. (25). We define the coefficient vector 

1 2 3 4 5 6 7 8 9
T

i i i i i i i i i iu u u u u u u u u   u , which leads Eq. (24) into the matrix form  

   1, 2, 3, 4, 5, 6, 7, 8, 9,i i i i i i i i i i i iu x u             u .  (26) 



As the reconstruction procedure has been introduced in detail in Section 2. It is only briefly introduced 

here.  

 

Step 1 

For a triangular cell 
i , it has 3 cells 

1 2 3
, ,j j j    as its direct neighbors. We denote ( )

j

 as 

the average on the cell j . The averages of Eq. (26) on 
1 2 3
, ,j j j   give 

  

1 1 1

1

2 2 2
2

33 3 3

1, 2, 9,

1, 2, 9,

1, 2, 9,

...

...

...

j j j
j

i i i
i i

j j j j

i i i i i i

jj j j
i i

i i i

u u

u u

u u

  

  

  

 
  
      
    

 

u .  

The reconstruction procedure requires  iu x to conserve the cell averages on its face neighboring cells, 

i.e. 
j

i ju u , which leads to the following primary RR  

  

1 1 1

1

2 2 2

2

3 3 3

3

1, 2, 9,

1, 2, 9,

1, 2, 9,

...

...

...

j j j

i i i j i

j j j

i i i i j i

j j j

j ii i i

u u

u u

u u

  

  

  

      
    
   
    

u ,  

or in more compact form 

  i i iA u  .   (27) 

There are 9 unknown coefficients in the vector iu , thus the 3-equation system Equation (27) is 

underdetermined.  By using the PIT, Eq. (27) is partitioned as 

  
,1

,1 ,23

,23

i

i i i

i

A A
 

    
 

u

u
    (28a) 

or equivalently 

  ,1 ,1 ,23 ,23i i i i iA A u u ,   (28b) 

where 

 

1 1 1 1

2 2 2 2

3 3 3 3

1, 2, 3, 9,

,1 1, 2, ,23 3, 9,

1, 2, 3, 9,

...

,   ...

...

j j j j

i i i i

j j j j

i i i i i i

j j j j

i i i i

A A

   

   

   

   
   
    
   
   
   

 

  
1 2 3 9

,1 ,23  ,   ...
T T

i i i i i iu u u u       u u .   (28c) 

In Eq. (28), the components of ,1iu are the linear terms, and the components of ,23iu  are higher order 

terms. The least-square solution leads to the coefficient vector for linear polynomial 

  
(1)

,1 ,1 ,1 ,23 ,23i i i i i iA A A  u u ,   (29) 

where ,1iA
 represents the Moore-Penrose inverse of ,1iA . The corresponding RRR are 

  ,1 ,1i i i i iA A A u  .   (29) 

 

Step 2 

We use CT to express the vector of the unknown coefficients ju on j  in terms of that on
i , 

i.e.  



   j ij i
T


u u ,   (30) 

where j  is one of 
1 2 3
, ,j j j   , the face neighboring cell of 

i , and  j i
T


( jT for short) is a 

9 9  transformation matrix whose detailed form is presented in Appendix A. Applying Eq. (30) to the 

RRR defined on j , we obtain the RR of Step 2  

  
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

,1 ,1

,1 ,1

,1 ,1

,1 ,1

i i i i

j j j j j

i

j j j j j
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 
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   
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   

u









,   (31a) 

which can be denoted as  

  i i iB u  .   (31b) 

Applying the PIT to Eq. (31b), we partition matrix iB  and vector iu  into two parts as 

  
,12

,12 ,3

,3

i

i i i

i

B B
 

    
 

u

u
   

or equivalently  

  ,12 ,12 ,3 ,3i i i i iB B u u ,  

where ,12iB  is the first 5 columns of iB corresponding to the linear and quadratic terms, ,3iB  is the 

rest of iB  and 

  
1 5 6 9

,12 ,3... ,  ...
T T

i i i i i iu u u u u       u .  

There are generally 2 4 8    equations in Eq. (31) for triangular grids while the number of 

unknown coefficients of quadratic polynomial is 5. This means the least-square solution to determine 

,12iu  is applicable, which is 

  
(2)

,12 ,12 ,12 ,3 ,3i i i i i iB B B  u u .   (32) 

The multiplication of ,12iB
 with Eq. (31b) results in the RRR of Step 2  

  ,12 ,3 ,12i i i i iB B B u  .  

 

Step 3 

The combination of the RRR on current and face-neighboring cells and the application of CT result 

in the RR of Step 3  

  
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3
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u









,   (33a) 

which can be denoted as  

  
i i iC u  .   (33b) 

For triangular grids, there are 5 4 20   equations in Eq. (33) and it is sufficient to solve the 

vector of unknown coefficients of the cubic reconstruction polynomial using the least-squares technique, 

i.e. 

  i i iC u  ,  

where iC
 is the Moore-Penrose inverse of iC ..  

 



Remark 4. Generally speaking, for the cubic reconstruction, the least-squares solutions of the linear 

and quadratic reconstructions Eqs. (6, 12, 29, 32) for both 1D and 2D cases need not to be solved. 

However, if the p-adaptation procedure is adopted, these equations provide efficient methods to 

compute the lower order reconstructions. The use of the p-adaptation technique together with the MSR 

will be discussed in a future paper. 

   
  Fig. 3: Diagram of a corner cell corner .  

 

Remark 5. Boundary treatment. In the MSR, the technique of least-squares is used in every step. 

Therefore, it is necessary to ensure sufficient number of RR on the boundary cells with at least one edge 

on the boundaries of the domain. It can be found in Fig. 3 that some cells e.g. corner cell corner  may 

not satisfy this requirement. For this reason, some special treatment is needed for the boundary cells. 

We denote that 
i  is a boundary cell usually with two neighboring control volumes   1, 2

kj
k 

as internal cells. For some special case e.g. Fig. 3, there is only one internal neighboring cell. In such 

case, the only internal RR will be presented in equations. To ensure there are always sufficient number 

of relations in the reconstruction algorithms, an asynchronous procedure is proposed. The idea of this 

procedure is in each step to perform the MSR for the internal cells first, then to use the resulting RRR 

on cells that are adjacent to the boundary cell (after applying the CT) as the RR of the boundary cell of 

the same step. In Step 1, the proposed procedure is firstly applied on the internal cells to obtain the RRR 

Eq. (29). Then on boundary cell
i , Eq. (29) of the face-neighboring internal cells   1, 2

kj
k   is 

used as the RR of cell 
i , i.e.  
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u



,  

which can be denoted as  

  i i iA u  ,  

where iA  is a system with 2 2 4   equations when the boundary cell has two neighboring internal 

cells (2 equations for case with only one neighboring internal cell). Therefore, it is sufficient to obtain 

the RRR of the first step. In Step 2, the same procedure is used. At first, we implement Step 2 on internal 

cells. Then Step 2 is implemented on boundary cell 
i  using the following RR  

  
1 1 1 1 1

2 2 2 2 2
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i i i i
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j j j j j
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u







,   (34a) 

which can be denoted as  

  i i iB  u ,   (34b) 

where the first line of Eq. (34a) is the RRR of 
i  obtained in Step 1, the least two lines are the RRR 

obtained in Step 2 for the adjacent internal cells. iB   is a system of 2 5 2 12     equations 

( 2 5 7   equations for case with only one neighboring internal cell). Therefore, they are sufficient to 



obtain the RRR of Step 2. The same procedure can be applied in Step 3. Although the above mentioned 

procedure can obtain the same degree reconstruction polynomials on the boundary cells as on the 

boundary cells, sometimes numerical instability will occur. It is found that when one order lower 

reconstruction polynomials are adopted on the boundary cells, the computation can be stable. Therefore, 

in the present paper, the accuracy of the boundary cells is one order lower than that of the internal cells. 

The physical boundary conditions are applied directly in the numerical fluxes. 

 

3.3   High Order Multi-Step Finite Volume Scheme 
 

Governing Equation 

 

In this section, 2D Euler equations are presented as the governing equations that is 

  0
t x y

  
  

  

U F G
.   (35) 

The conservative variables U  and the inviscid flux ,F G  are given by 
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
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     
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U F G .  (36) 

In Equation (36)   represents the density, p  represents the pressure, u  and v  represent the x- 

and y- velocity component respectively, E   and H   represent the specific total energy and the 

specific total enthalpy respectively, where  2 21 1
,  

1 2

p p
E u v H E

  
    


.  

In finite volume method, we first integrate Equation (35) on the control volume e.g. element 
i   

  0
i i

d d
t  


   

  U ,   (37) 

where  ,  F G . The application of Gauss theorem to Equation (37) yields  

  
3

1
0

i m
m I

d dl
t 


  


 U n .  

The introduction of the cell average of U defined similar to Eq.(23) leads to  

  
3

1

1
0

m

i

m I
i

dl
t 


  

 
 

U
n .  

For high order FVS, integral on each side can be approximated with Gaussian quadrature:  

    3

1 1

1
0

mNGi
m ng ng mm ng

i

l w
t  


   

 
 

U
U n ,  (38) 

where NG  is the number of Gaussian points and 2mNG   for a 4th-order FV schemes.  

 

Curved boundary 

 
The accuracy of high order schemes degrades with the general straight segments approximation of 

curved boundaries used in second order schemes [4]. The method of [45] is implemented to treat curved 

boundaries in this paper.  

 

Limiter 

 



The discontinuities of the solution lead to non-physical oscillations in the reconstruction procedure. 

In this paper, the WBAP-L2 limiter [46, 47] based on the secondary reconstruction [48] is used for 

capturing the discontinuities, which is  

   
1

2 1
1

1

1
1, ,...,

1

J p

P kL k
J J p

P kk

n
W W
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
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






 






,  

where parameters are set as 4, 10Pp n  . To improve the efficiency, a problem-independent shock 

detector [48] is used to determine the “trouble cells” where the WBAP limiter is used. The smoothness 

indicator 
iIS  is defined as  

  
   

   1 2
max ,

i
i i j ij S

i k

i i j i

u u
IS

N h u u







 x x

,  

where 
iN  is the number of face-neighbor cells thus 3iN   for triangular cells. The shock detector is 

based on the utilization of the smoothness indicator:  

   
smooth region

shock region
i dis

True
IS S

False


  


.  

In this paper, 
disS  is chosen to be 1 for multi-step scheme and this parameter works well for numerical 

tests presented.  

 

Numerical Flux 

 
The reconstruction procedure provides the cellwise approximation of U   to the flux function 

 ng U  in Eq. (38). The flux can be evaluated with the flux splitting procedures, i.e.  

        ˆ , ,L R

ng m ng ng m   U n U x U x n .  

The standard Riemann solver [49] is used in this paper with the entropy fix of Harten [50].  

 

Temporal Discretization 

 
The calculation of numerical fluxes leads Eq. (38) to an ODE of the time variable t. In this paper, a 

three stage TVD Runge-Kutta scheme [51] is implemented as we do in 1-D situation.  

 

4   Numerical Results 
 
Numerical tests are presented in this chapter. These tests demonstrate the property of multi-step 

scheme on 1-D and 2-D unstructured grids. 1-D tests are presented in Section 4.1; 2-D tests are 

presented in Section 4.2-4.4.  

 

4.1   Shu-Osher problem 
 

This test is another well-known problem which describes the interaction of an entropy sine wave 

with a Mach 3 right moving shock. The initial conditions are  

 
 

  
 0 0 0

3.857143,2.629369,10.33333   for 0 0.5
, ,   0 10

1 0.2sin 5 ,0,1                     otherwise

x
u p x

x


  
  



 

In this test, 4th-order multi-step schemes with WBAP limiter are implemented. The computation 

domain contains 500 cells and the results are presented until 1.8t  . The density distribution of results 

is shown in Fig. 4. Numerical solution of the 5th order WENO scheme [30] using 20000 cells is used 

as the exact solution. These results also demonstrate high resolution of the scheme.  



    
 (a) Entire view  (b) Enlargements 

Fig. 4: Shu-Osher Problem. Density distribution at t=1.8. 
 

4.2   Isentropic Vortex Problem 
 

This test is chosen to assess the accuracy of multi-step scheme for evolution of a 2-D inviscid 

isentropic vortex in a free stream. The mean flow density,  , velocity, u
 and v , and pressure, 

p  are considered to be a free stream. In this test, mean flow is    , , , 1,1,1,1u v p      and the 

computational domain is    0,10 0,10  with periodic boundaries in two directions.  

An isentropic vortex is added to the mean flow field as an initial condition. The following 

perturbation values are given by  
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,  

where ( , ) ( 5, 5)x y x y   , 2 2 2r x y  , 1.4   and   is the vortex strength. Here 5   and 

p
T


  . The results are presented until 2.0t   . There are 2 types of grids used in the numerical 

computation, namely regular and irregular grids as Fig. 5.  

 
Fig. 5: Regular and irregular grids for the isentropic vortex problem with size 1h   

 

The grid sizes are chosen to be 1 to 1 16 . The CFL number is chosen to be 1. The exact solution 
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is a convection of the vortex with the mean flow and thus the accuracy can be easily calculated. In this 

test, accuracy of 3rd and 4th order multi-step schemes on regular grids are presented in Table 1 

compared with corresponding order k-exact schemes. Tests on irregular grids are presented in Table 2. 

The weight   in multi-step schemes are chosen to be 1 and 0.5 .  

 

Table 1: Accuracy tests for the isentropic vortex problem on regular grids 

Schemes Grid Size L1 error Order L∞ error Order 

4th order 

Multi-Step 

w=1.0 

1 3.69E-03   4.41E-02   

1/2 4.87E-04 2.92  1.09E-02 2.02  

1/4 2.73E-05 4.16  5.97E-04 4.19  

1/8 1.22E-06 4.48  3.08E-05 4.28  

1/16 7.23E-08 4.08  1.69E-06 4.19  

4th order 

Multi-Step 

w=0.5 

1 3.72E-03   4.34E-02   

1/2 4.56E-04 3.03  1.08E-02 2.01  

1/4 2.57E-05 4.15  5.99E-04 4.17  

1/8 1.12E-06 4.52  2.91E-05 4.36  

1/16 6.18E-08 4.18  1.71E-06 4.08  

4th order 

k-exact 

1 4.41E-03   4.63E-02   

1/2 4.21E-04 3.39  1.05E-02 2.14  

1/4 2.66E-05 3.98  5.31E-04 4.31  

1/8 1.21E-06 4.45  3.24E-05 4.04  

1/16 7.12E-08 4.09  1.69E-06 4.26  

3rd order 

Multi-Step 

w=1.0 

1 8.17E-03  1.22E-01  

1/2 1.71E-03 2.26  3.13E-02 1.96  

1/4 2.89E-04 2.57  5.57E-03 2.49  

1/8 3.84E-05 2.91  7.67E-04 2.86  

1/16 4.77E-06 3.01  1.02E-04 2.91  

3rd order 

Multi-Step 

w=0.5 

1 7.35E-03   9.98E-02   

1/2 1.43E-03 2.36  2.70E-02 1.89  

1/4 2.36E-04 2.61  4.67E-03 2.53  

1/8 3.08E-05 2.94  6.25E-04 2.90  

1/16 3.80E-06 3.02  8.48E-05 2.88  

 

Table 2: Accuracy tests for the isentropic vortex problem on irregular grids 

Schemes Grid Size L1 error Order L∞ error Order 

4th order 

Multi-Step 

w=1.0 

1 1.01E-02   1.68E-01   

1/2 2.29E-03 2.14  4.57E-02 1.88  

1/4 2.71E-04 3.08  6.12E-03 2.90  

1/8 2.06E-05 3.72  5.02E-04 3.61  

1/16 1.39E-06 3.89  3.31E-05 3.92  

4th order 

Multi-Step 

w=0.5 

1 1.01E-02   1.67E-01   

1/2 2.26E-03 2.16  4.40E-02 1.92  

1/4 2.67E-04 3.08  6.06E-03 2.86  

1/8 1.81E-05 3.88  4.42E-04 3.78  



1/16 1.12E-06 4.02  2.66E-05 4.05  

4th order 

k-exact 

1 1.03E-02   1.59E-01   

1/2 2.07E-03 2.31  3.74E-02 2.08  

1/4 2.16E-04 3.26  3.51E-03 3.41  

1/8 1.19E-05 4.18  2.35E-04 3.90  

1/16 5.59E-07 4.41  1.16E-05 4.34  

3rd order 

Multi-Step 

w=1.0 

1 1.27E-02  1.91E-01  

1/2 4.99E-03 1.35  8.43E-02 1.18  

1/4 1.18E-03 2.08  2.28E-02 1.89  

1/8 2.02E-04 2.55  3.86E-03 2.56  

1/16 2.78E-05 2.86  5.50E-04 2.81  

3rd order 

Multi-Step 

w=0.5 

1 1.30E-02   1.92E-01   

1/2 4.72E-03 1.46  7.83E-02 1.29  

1/4 1.09E-03 2.12  2.10E-02 1.90  

1/8 1.81E-04 2.59  3.45E-03 2.60  

1/16 2.46E-05 2.88  4.79E-04 2.85  

 

In Table 1 and 2, the numerical accuracy of multi-step scheme is demonstrated to reach the accuracy 

as supposed to be in Section 3. The error can be reduced by the choice of weight. The results show that 

the accuracy of multi-step scheme is very close to the accuracy of k-exact scheme. The accuracy and 

the efficiency comparison are shown in Fig. 6 and Fig. 7, respectively. In Fig. 7, the efficiency of multi-

step scheme also approximates the efficiency of k-exact scheme, which indicates that the excursive 

steps do not cost too much computational resource.  

 
Fig. 6: Accuracy comparison for the isentropic vortex problem on regular grids 

 

 
Fig. 7: Efficiency comparison for the isentropic vortex problem on regular grids 

 

4.3   Subsonic Flows past a Circular Cylinder 



This test is chosen to assess the accuracy of multi-step scheme with boundary treatments for the 

subsonic flow past a circular cylinder at a Mach number of 0.38M  [52]. The problem is calculated 

with curved boundaries. The five successively refined O-type grids used in this test are shown in Fig. 

8, which consist of 16 9 , 32 17 , 64 33 , 128 65  and 256 129  grid points, respectively. 

The first number refers to the number of points in the circular direction, and the second refers to the 

number of concentric circles in the mesh. The radius of the cylinder is 
1 0.5r  , the domain is bounded 

by 129 40r  , and the radii of concentric circles for 256 129  mesh are set up as  
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1 1
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 
 ,  

where 1.03803945  . The coarser grids are generated by successively un-refining the finest mesh.  

 

 

 
Fig. 8: Sequences of five successively globally refined meshes for the subsonic flow past a 

circular cylinder problem 

 

The CFL number used in temporal discretization is 1. In this test, To measure the order of accuracy, 

we used the following entropy production   that  
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as the error measurement. The errors on norm 1L  and 2L  are presented in Table 3 and the results 

demonstrate that the expected order of accuracy can be achieved.  

 

Table 3 Accuracy tests for the subsonic flow past a circular cylinder problem 

Schemes Grid Size L1 error Order L2 error Order 

4th order 

Multi-Step 

w=1.0 

16×9 1.61E-02  3.78E-02  

32×17 1.69E-03 3.25  6.34E-03 2.58  

64×33 1.08E-04 3.97  6.10E-04 3.38  

128×65 6.84E-06 3.98  5.42E-05 3.49  

256×129 4.64E-07 3.88  4.87E-06 3.48  

4th order 

Multi-Step 

w=0.5 

16×9 1.40E-02  3.16E-02  

32×17 1.29E-03 3.44  4.88E-03 2.69  

64×33 8.43E-05 3.94  4.74E-04 3.37  

128×65 5.97E-06 3.82  4.34E-05 3.45  

256×129 4.74E-07 3.66  6.88E-06 2.66  

3rd order 

Multi-Step 

w=1.0 

16×9 1.30E-02  3.05E-02  

32×17 2.44E-03 2.41  7.52E-03 2.02  

64×33 3.15E-04 2.95  1.16E-03 2.69  

128×65 3.89E-05 3.02  1.74E-04 2.74  

256×129 4.86E-06 3.00  2.75E-05 2.66  

3rd order 

Multi-Step 

w=0.5 

16×9 1.10E-02  2.52E-02  

32×17 2.06E-03 2.42  6.10E-03 2.05  

64×33 2.91E-04 2.82  1.02E-03 2.57  

128×65 3.89E-05 2.90  1.70E-04 2.59  

256×129 5.13E-06 2.92  2.90E-05 2.55  

 

4.4   Double Mach Reflection of a strong shock wave 
 

This test [53] is a well-known case for high resolution scheme. The computational domain is 

   0,4 0,1 . An incident shock 10Ma   is located at  1 6,0 , inclined 60  with respect to the 

x-axis. The results are presented until 0.2t  .  

The mesh size in this test is 1 240  and the CFL number is 1. The WBAP limiter which is presented 

in Section 3 is used in computations. In this test, numerical solutions of 3rd- and 4th-order schemes are 

presented with the density contours shown in Fig. 9 and 10. In Fig. 9 and 10, it is clear that all solutions 

oscillation-free and higher order schemes can capture the complicated flow structures near the Mach 

stem better that lower ones. Comparing to the k-exact schemes, multi-step schemes demonstrate the 

higher resolution of the shear layer and the vortex.  

 

 
(a) 4th order multi-step scheme, w=1.0 



 
(b) 4th order multi-step scheme, w=0.5 

Fig. 9: Comparison of density contours for double Mach reflection on grids with size h = 1/240. 

Thirty equally spaced contour lines between 2.05 and 21.31. 
 

   
(a) 4th order multi-step scheme, w=1.0   (b) 4th order multi-step scheme, w=0.5 

Fig. 10: Close-up view around the double Mach stem of Fig. 9. 

 

5   Conclusion 
In this paper, MSR procedure is presented for finite volume method on both 1D grids and 2D 

unstructured grids. The procedure consists of several recursive steps and in each step, the RRR on the 

face-neighboring cells after applying the CT and those on the current cell are utilized to solve 

coefficients of higher order polynomials. In 1D case, the Fourier analysis is presented to study the 

dispersion/dissipation properties of the semi-discretized FV schemes based on the MSR for solving the 

scalar linear advection equation. In 2D case, the application of the MSR in high order FV schemes 

solving 2D Euler equations are presented in detail. Several numerical tests are solved to show the 

properties of multi-step schemes. The advantage of the present schemes is that they can achieve 

arbitrarily high order of accuracy on compact stencil.  
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Appendix A  
In this appendix, the CT for the 1D and 2D cases are presented in detail. To ensure that the CT 

preserving the k-exactness of the reconstruction, the CT is derived assuming the exact solution is a 

cubic polynomial.  

 

1D case 

We assume that  u x is in the form of 



        
2 31 1

2! 3!
i i i i i i i iu x u u x x u x x u x x           (A.1) 

where subscript i denotes value at point ix . In MSR, u is approximated as 
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Comparing Equation (A.1) and Equation (A.2), the relationship between derivatives 
 l
iu   and 

coefficients 
l

iu  can be derived as 
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which can be denoted as 

  
D

i i iRu u    (A.3) 

Equation (A.3) is then substituted into Equation (A.1) 

         
2 31 2 3

i i i i i i i iu x u u x u x u x         (A.4) 

When the relationship (A.3) holds, the equivalence between Equation (A.1) and (A.2) requires the 

equivalence of constant term of two equations 
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or the equivalent form 
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Equation (A.5b) can be derived straightforward by integrating (A.4) in cell 
i  . This means 

Equation (A.3) is exact. Taylor expansions of derivate 
 l
ju  at ix  gives 
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The expansion terms are up to 3rd derivative terms since u follows cubic polynomial distribution. 

These expansions lead to transformation from 
D

iu  to 
D

ju   
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which can be denoted as 

  
D D

j j i iT u u    (A.6) 

Introduction of Equation (A.3) into (A.6) yields 
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2D case 

The CT of the 2D case can be derived similarly as the 1D case. The resulting transformation matrix 

is a a 9 9  square matrix given by 
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and 

  1 1 2 2 2 3 3 3 3, , 2! , , 2! ,3! , 2! , 2! ,3!i i i i i i i i i iR diag h h h h h h h h h         ,  

respectively, where ,  ji j i ji j ix x x y y y       and length scale is given by  

   max ,i i ih r  .  
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