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1 Introduction
Use of airplane for Mars exploration is expected to be a new and attractive approach because the Mars
airplane can explore larger regions than ground rovers and obtain more detailed information than orbiting
satellites. However, the Mars airplanes are required to fly at low Reynolds numbers, and complicated flow
phenomena such as laminar separation bubbles occur on the wing surface and strongly affect the aerodynamic
performance of airfoils [1]. Moreover, there exist many uncertainties such as the Martian atmospheric
condition that may deteriorate the airfoil performances. Hence, it is important to evaluate the effects of
those uncertainties in order to enhance the success probability of the Mars exploration mission.

The objective of this study is to quantify the effects of uncertain flow conditions on the aerodynamic
performances of the Ishii airfoil, which has high performance at low Reynolds number. Ishii airfoil was
adopted as the main wing airfoil of the Mars airplane used in the scientific balloon experiment conducted
by the Japanese Mars airplane working group [2]. These uncertainty effects on the performances of the Ishii
airfoil are compared with those of the NACA0012 airfoil to discuss the difference in the stochastic behavior
for the uncertain flow conditions.

2 Problem Statement
The stochastic behaviors of the aerodynamic performances are investigated under uncertain flow conditions
of angle of attack α, Reynolds number based on the chord length Re, and freestream Mach number M∞,
which follow independent uniform probability distributions. The nominal conditions of Re and M∞ are
twofold:

• Case A: Re = 3.3× 104 and M∞ = 0.28,

• Case B: Re = 7.0× 104 and M∞ = 0.57.

The variation intervals of Reynolds number and freestream Mach number in each case are ±1.0 × 104 and
±0.05, respectively. The nominal conditions of α are the values at which the lift-to-drag ratio of each airfoil
reaches maximum under the nominal Re and M∞, and the variation interval of α is ±0.5 degree in each case.
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3 Computational Setup
The non-intrusive pseudo-spectral projection method based on the polynomial chaos expansion (PCE) [3]
is coupled with two-dimensional flow simulations. The contributions of each uncertain parameter to the
variance of the airfoil characteristics are quantified with Sobol’s sensitivity indices [4].

3.1 Uncertainty and Sensitivity Analysis Methods
3.1.1 Stochastic Spectral Projection Method

Although the typical method for uncertainty quantification is the direct Monte Carlo simulation, the compu-
tational cost associated with the numerous analysis evaluations of outputs can be prohibitive for complicated
problems such as computational fluid dynamics. The non-intrusive spectral projection method based on PCE
is adopted to efficiently analyze the uncertainty.

In PCE, the expensive analysis of output f(ξ) for random variable vector ξ is replaced by the approxi-
mation given as follows:

f(ξ) ≈
P∑

j=0

αjψj(ξ), (1)

where αj(j = 1, · · · , P ) are the coefficients corresponding to the polynomial basis ψj(j = 1, · · · , P ). ψj

satisfy the following orthogonality equation:

⟨ψiψj⟩ = ⟨ψ2
i ⟩δij , (2)

where δij is Kronecker’s delta and the inner product ⟨ψiψj⟩ is defined as follows:

⟨ψiψj⟩ =
∫
Ω

ψiψjp(ξ)dξ. (3)

The weight function p(ξ) is the probability density function of the random variable vector ξ and Ω is the
random space.

The spectral projection method employed in this study is based on the orthogonality of the basis function
ψj for determination of the coefficients αj . αj are determined from the inner product of f(ξ) and ψj , and
the inner product involves a integral in Ω. Numerical integration is then required:

αk =
⟨fψk⟩
⟨ψ2

k⟩
=

1

⟨ψ2
k⟩

∫
Ω

f(ξ)ψk(ξ)p(ξ)dξ ≈ 1

⟨ψ2
k⟩

N∑
j=1

wjf(ξ
j), (4)

where wj are weights and the samples of ξ, {ξj}Nj=1 are the nodes in a quadrature scheme. Note that f(ξ)
is only evaluated for the nodes {ξj}Nj=1.

The Legendre polynomials corresponding to the uniform probability distributions of the uncertain input
parameters are used as the basis of PCE. The degree of PCE is five in each stochastic dimension and the
Gauss-quadrature formula extended to three dimensional integration by full tensor product is employed to
calculate the PCE coefficients. Thus, the number of sampling evaluations of outputs becomes 53 = 125 in
each case.

3.1.2 Sobol’s Global Sensitivity Analysis

In this study, the relative contributions of each uncertain input parameter to the variance of the output
of interest by Sobol’s global sensitivity analysis approach [4]. In Sobol’s approach, the total variance of
the output is decomposed into the contributions of each uncertain parameter alone and of the interaction
between the parameters. A brief overview of Sobol’s approach is now described. At first, any N -variate
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function f(ξ)(ξ = (ξ1, · · · , ξN )), representing the output of interest, is decomposed as follows:

f(ξ) = f0 +

N∑
s=1

N∑
i1<···<is

fi1···is(ξi1 , · · · , ξis), (5)

where fi1···is(ξi1 , · · · , ξis) is determined to satisfy the following equation:∫
Ω

fi1···is(ξi1 , · · · , ξis)dξk = 0 for k = i1, · · · , is. (6)

Taking the variance of Eq. (5) leads to

V [f ] =
∑
i

Vi +
∑
i

∑
i<j

Vij + · · ·+ V1···N , (7)

where V [f ] is the variance of f(ξ) and

Vi = V [E[f |ξi]],
Vij = V [E[f |ξi, ξj ]]− Vi − Vj ,

. . . .

Here, E[f |ξi], E[f |ξi, ξj ] are the conditional expectation. Vi are the variance due to the variation of only the
parameter ξi; Vij··· are the variance due to the interaction of the parameters ξi, ξj , · · · . Dividing Eq. (7) by
the total variance V [f ] leads to the so-called Sobol’ indices defined as follows:

Si1···is =
Vi1···is
V [f ]

, (8)∑
i

Si +
∑
i

∑
i<j

Sij + · · ·+ S1···N = 1. (9)

Sobol’ indices represent the relative contribution of each factor, and we can specify the input uncertain
parameter with high Sobol’ index as the dominant one for the output of interest.

3.2 Numerical Methods for Fluid Analysis
For the sample evaluation of the airfoil characteristics, two-dimensional flow simulations are employed because
the object flows of this study does not entail the large-scale separation of the boundary layer. The governing
equations are two-dimensional compressible Navier–Stokes equations. The convective terms are evaluated
by 3rd-order MUSCL [5] and SHUS [6]; the viscous terms are evaluated by 2nd-order central difference
scheme. For the time integration, 2nd-order ADI-SGS implicit scheme [7] is applied. In Case A, the flow
field is assumed to be fully laminar so that no turbulence model is employed. This laminar simulation was
shown by Lee et al. [8] to predict the airfoil characteristics with a satisfactory accuracy for the flow field
without large-scale separation. On the other hand, in case B, the flow field is assumed to be turbulent, and
Spalart-Allmaras turbulence model [9] is employed.

4 Results and Discussions

4.1 Deterministic Flow Fields
The typical flow fields for Case A and B are shown in Figs. 1 and 2 with the contours of streamwise velocity.
As expected, the laminar separation bubbles are observed on the upper airfoil surface that entail the negative
streamwise velocity region. The separation bubbles in Case A (Fig. 1) are so-called “short bubbles,” the length
of which decreases along with increasing angle of attack, whereas the bubbles in Case B (Fig. 2) are so-called
“long bubbles,” for which the augmentation of angle of attack increases the size of the separated region.
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As for the Reynolds number effect, the laminar separation bubbles become shortened by the increasing
Reynolds numbers. The Reynolds number effect is associated with the growth of the disturbance in the
separated shear layer. Although the two-dimensional simulations adopted in Case A cannot capture the
three-dimensional vortex structure, the increasing Reynolds number augments the two-dimensional vortices
that dominate the flow fields that entail the laminar separation.

In addition to the laminar separation bubbles, trailing edge separations and onset of leading edge stall
are observed in some flow fields. The trailing edge separations occur in the flow fields at low Reynolds
numbers and low angles of attack in Case A. The onset of leading edge stall occur on NACA0012 airfoil at
high freestream Mach numbers and high angle of attack in Case B. This onset of leading edge stall in Fig. 2
shows the effect of M∞ that augments the separation on NACA0012 airfoil in Case B unlike the negligible
M∞ effect in Case A. On the other hand, the flow around the Ishii airfoil is less affected by Re and M∞
than that around NACA0012 airfoil.

Thus, the patterns of flow variation due to the uncertain flow condition in Case A and B are different,
and it is interesting to compare the stochastic responses and sensitivities to the uncertainties.

(a) Ishii airfoil. (b) NACA0012 airfoil.

Figure 1: Time-averaged deterministic flow fields for Case A with variation of Reynolds number and angle
of attack (M∞ = 0.28). The contour shows the streamwise velocity fields.

(a) Ishii airfoil. (b) NACA0012 airfoil.

Figure 2: Time-averaged deterministic flow fields airfoil for Case B with variation of freestream Mach number
and angle of attack (Re = 7.0× 104). The contour shows the streamwise velocity fields.
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4.2 Aerodynamic Coefficients
The aerodynamic coefficients at nominal condition, statistical means, standard deviations, and Sobol’ indices
of the lift coefficient Cl, the drag coefficient Cd, and the lift-to-drag ratio L/D are shown for Case A and
B in Tables 1 and 2, respectively. Here, the Sobol’ indices ST1, ST2, and ST3 represent the contributions of
α, Re, and M∞, respectively. In addition, the coefficients of variation (COV, [%]), the ratio of the standard
deviation to the statistical mean, are also shown in those tables.

Comparing the statistical means and the results at the nominal condition in Tables 1 and 2, the mean
values of Cl and L/D are smaller than the values at the nominal condition; the mean value of Cd are larger
than the values at the nominal condition except for that of NACA0012 airfoil in Case A. This indicates that
the existence of the uncertainties in flow conditions frequently deteriorates the aerodynamic performances
of airfoils. One possible reason of the smaller mean of Cd of NACA0012 airfoil in Case A is that the viscous
drag is prominently reduced due to increasing Re compared with those in the other cases. This reason can
be inferred from the larger Sobol’ index of Re, ST2 = 0.841 for Cd of NACA0012 airfoil in Case A.

Focusing on the standard deviations and COVs in Tables 1 and 2, it is observed that the uncertainties
in flow conditions cause the aerodynamic coefficients variation of around 4 to 18 percents of the statistical
mean. It should be noted that the stochastic responses to the uncertainties are different according to the
nominal conditions and airfoils. From the point of view of the standard deviations, the uncerinties in flow
conditions have large impacts on Cl of Ishii airfoil and Cd of NACA0012 airfoil in both Cases A and B.
Comparing Cases A and B, the standard deviations of Cd of both two airfoils are larger than those in Case
B. This difference in Cd is considered due to the variation of viscous drag associated with skin friction, which
will be discussed later.

Let us move on to discussions on the Sobol’s sensitivity indices. The higher Sobol’ indices represent
the larger contributions to the statistical variance of output. As an overview, the Sobol’ indices of angle of
attack (ST1) and Reynolds number (ST2) are large in Case A, while those of angle of attack (ST1) and Mach
number (ST3) are large in Case B. In both Cases A and B, ST1 of Ishii airfoil are quite large (ST1 ≈ 0.8).
This large ST1 means that the effect of uncertain α is dominant for Cl, and may support the deduction in
the report by Anyoji et al. [2] that one possible reason for approximately 30% difference in the lift coefficient
between the flight test data and experimental data is the reduction of angle of attack due to the aeroelastic
deformation. As for Cd of Ishii airfoil, ST2 and ST3 are additionally dominant in Cases A and B, respectively.
On the other hand, Cl and Cd of NACA0012 airfoil are mainly affected by Re and M∞ in Case A and B,
respectively, rather than α. Therefore, the ways of uncertain flow condition effects are different according to
the airfoil shape, and it can be stated that Ishii airfoil shows a robust performance against the uncertainties
on Re and M∞.

Table 1: Statistical data of aerodynamic coefficients for Case A.

(a) Ishii airfoil.

Nominal Mean Standard Deviation COV[%] ST1 ST2 ST3

Cl 0.565 0.559 0.0370 6.63 0.811 0.090 0.184
Cd 2.99e−2 3.12e−2 0.391e−2 12.54 0.508 0.460 0.062
L/D 18.88 18.11 1.692 9.34 0.316 0.804 0.087

(b) NACA0012 airfoil.

Nominal Mean Standard Deviation COV[%] ST1 ST2 ST3

Cl 0.582 0.567 0.0246 4.34 0.277 0.724 0.118
Cd 5.06e−2 5.05e−2 0.627e−2 12.40 0.159 0.841 0.0713
L/D 11.49 11.35 0.964 8.49 0.149 0.863 0.0732
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Table 2: Statistical data of aerodynamic coefficients for Case B.

(a) Ishii airfoil.

Nominal Mean Standard Deviation COV[%] ST1 ST2 ST3

Cl 0.588 0.588 0.0402 6.83 0.849 0.0069 0.145
Cd 2.04e−2 2.11e−2 0.254e−2 12.03 0.518 0.0773 0.430
L/D 28.44 28.02 1.836 6.55 0.128 0.328 0.577

(b) NACA0012 airfoil.

Nominal Mean Standard Deviation COV[%] ST1 ST2 ST3

Cl 0.601 0.587 0.0234 3.98 0.339 0.295 0.613
Cd 2.91e−2 3.03e−2 0.534e−2 17.64 0.313 0.151 0.560
L/D 20.66 20.02 3.594 17.96 0.178 0.194 0.638

4.3 Surface Pressure Distribution and Skin Friction Coefficient
Figure 3 shows PDFs of surface pressure Cp at x/c = 0.6 in Case A. Cp PDF of Ishii airfoil in Fig. 3a exhibits
a double peak, whereas that of NACA0012 airfoil in Fig. 3b does not. The existence of such a bifurcation is
due to the flow transition from the trailing edge separation to the laminar separation bubble. The higher and
lower peak correspond to the flows with trailing edge separation and laminar separation bubble, respectively.
Accordingly, Cp distribution around Ishii airfoil abruptly change in this transition. On the other hand, in
Fig. 3b, only the peak corresponding to the flow with laminar separation bubble is dominant. From this
difference, the abrupt change of Cp distribution may cause the aforementioned large standard deviation of
Cl of Ishii airfoil. Additionally, it is interesting that such double peak in PDF of output quantity is observed
in a stochastic aerodynamic problem without any shock waves.

−6 −5 −4 −3 −2 −1
Cp ×10−1

P
D

F

Mean

Nominal

(a) Ishii airfoil.

−0.8 −0.6 −0.4 −0.2 0.0
Cp

P
D

F

Mean

Nominal

(b) NACA0012 airfoil.

Figure 3: Probability density function of surface pressure at x/c = 0.6 in Case A.

Figure 4 shows the 95% confidence intervals (95CI) and statistics of the skin friction coefficient Cf for
Case B. From Cf distribution, the separation and reattachment points can be estimated as the points at
which Cf changes from positive to negative and from negative to positive, respectively. Comparing the skin
friction coefficients of two airfoils, the 95CI errorbars of NACA0012 airfoil are laid across the line Cf = 0 in
the region of 0.6 ≤ x/c ≤ 1.0, while those of Ishii airfoil are not. This difference reflects the occurrence of
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the leading edge stall observed in the flow around NACA0012 airfoil at high α and at high M∞ in Case B,
as discussed in Sec. 4.1, and can be associated with the large Cd variance of NACA0012.
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(a) Ishii airfoil.
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(b) NACA0012 airfoil.

Figure 4: Statistics of skin friction coefficient in Case B.

5 Conclusions
In this study, the effects of the uncertainty in flow conditions on the airfoil characteristics at low Reynolds
numbers were quantified. Ishii and NACA0012 airfoils were analyzed and compared in the stochastic re-
sponse. The nominal flow condition set in this study is twofold: the steady gliding and the turbulent flow
conditions. The statistical mean and standard deviation were evaluated by coupling stochastic spectral pro-
jection method with the two-dimensional flow simulations, and the relative contributions of each factor to
the variance were computed by Sobol’s global sensitivity analysis.

As a result, Ishii airfoil is more sensitive to the uncertain flow conditions in lift coefficient than NACA0012
airfoil, whereas Ishii airfoil is less sensitive in drag coefficient than NACA0012 airfoil. This high sensitivity in
lift of Ishii airfoil is because of the flow structure transition from a trailing edge separation to reattachment,
i.e., laminar separation bubbles, on the airfoil surface. However, the sensitivity indices show that the effect
on lift coefficient of Ishii airfoil is mainly due to the variation of angle of attack, rather than Reynolds number
and freestream Mach number. It can be stated, therefore, Ishii airfoil achieves the robust aerodynamic design
against uncertain atmospheric conditions if we are careful to the uncertainty associated with angle of attack.
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