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Abstract: We propose a novel method for interface tracking using multidimensional 

Heaviside function. The integrations of the multidimensional Heaviside function 

over the grid cell and the upwind region to determine the volume fluxes are carried 

out analytically and explicitly. The new method bears all the benefits of the PLIC 

type method but does not involve geometric reconstructions of the interface. The 

new method is simple and efficient, can preserve sharp interfaces as compared to the 

smoothed characteristic function methods. We verified the new method by simple 

advection tests and the dam-break problem. Numerical results provide evidence for 

the method’s improved solution quality. 
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1 Introduction 
 

The VOF (volume of fluid) type method for interface tracking may be classified into two types 

according to the approximation of the interface in each grid cell. The first one is the PLIC (piecewise 

linear interface calculation) type method [1], which assumes a linear interface (a line in two-dimensions 

and a plane in three-dimensions) in each grid cell. While the normal vector of the interface can easily 

be calculated from the gradient of the volume fraction data, determining the interface location knowing 

the volume fraction and the normal vector is a quite difficult problem as it involves geometric 

reconstructions of the interface and complex case division [2]. The second one models the interface by 

a slightly smoothed characteristic function which resembles the Heaviside function in each dimension 

[3, 4] or multi-dimensions [5]. For example, the THINC/WLIC method [3, 4] computes interface in two 

steps. In the first step, the characteristic function is approximated by the one-dimensional hyperbolic 

tangent function. In the second step, the interface in multi-dimensions is reconstructed by a weighting 

function. Recently, the method [5] of applying a multi-dimensional hyperbolic tangent function has 

been devised. The integration of the characteristic function over the grid cell or the upwind region to 

determine the volume fluxes can no longer be analytically carried out. A rather complicated approach 

of combining a one-dimensional analytical integration of the hyperbolic tangent function and numerical 

quadrature is employed. 

Inspired by the MTHINC [5] method, we were seeking for an analytically integrable smooth 

characteristic function in multi-dimension. We eventually found that the multidimensional Heaviside 

function itself is integrable in multi-dimensions, and even better than any smooth function. The new 

method is built up following these findings.  

Section 2 describes the new method. Section 3 presents numerical results. Conclusions are made in 

Section 4. 
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2     The New Method 
 

 
Figure 1: Grid cell. 

 

Since extension to three dimensions is straightforward, we only consider a two-dimensional 

interface evolution problem in a uniform staggered grid system (Figure 1) for simplicity. In a typical 

VOF-type method, the interface in the grid cell ji , ( jiji xxx ,2/1,2/1   , 2/1,2/1,   jiji yyy ) is 

modeled by a characteristic function ),,( dyx  which resembles the Heaviside function. Here d  

indicates the interface location. The characteristic function obeys the advection equation: 

   uu 
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                                                     (1) 

where ),( vuu  is the velocity vector.  

Equation (1) is integrated over time tnttn  )1(  and the grid cell ji , . Denoting the cell 

average of   by jiC , , we have: 
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where xxx ji  /)( ,  and yyy ji  /)( ,  are the normalized coordinates in the grid cell. 

jiC ,  is updated by the following dimensional splitting scheme.  
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The volume fluxes ( xF  and yF ) are calculated by the areas across the cell boundary during t . For 

the case that , 0i ju   and , 0i jv  , we have 
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There are three important steps to build an interface tracking method. (1) to select an analytically 

integrable characteristic function   in multi-dimensions, (2) to accurately and efficiently determine 

jid ,  from jiC , , and (c) to efficiently compute the volume fluxes of   from jid , . 

We choose the multidimensional Heaviside Function of Equation (7) as the characteristic function. 

1 0
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where  n),( yx nn  stands for the unit normal vector of the interface. n  is related to C  by Eq.(8), and 

is subsequently required to compute d  from jiC , .  
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The gradient of C  is calculated from the following central differences to obtain n . 
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Equation (7) is analytically integrable with respect to  . The successive analytical integrations are 

given as follows. 
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1( )H  , 2 ( )H  , and 3( )H   are for one, two and three dimensional problems, respectively.  We 

restrict our discussion to a two-dimensional problem. 

Let us first consider the case that 0x yn n   for simplicity. We have xd d n   for  const  , 

and yd d n   for const  . The integration in Eq.(2) is analytically carried out as: 
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We finally have  
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Equation (15) provides the connection between jiyx nnC ,),,(  and d . Given ),,,( yx nnC  the 

interface location d can be easily determined from Eq.(15) by the Newton’s iterative method with a 

few iterations (typically less than 20). Once d  has been determined, the volume fluxes can also be 

analytically computed from Eqs. (5) and (6). For the case that either xn  or yn  equals to zero, the 

integration in Eq.(14) reduces to one-dimensional. Fortunately, Eq.(15) is yet applicable to such a case 

by just substituting the zero component with a very small value (typically 
610xn  ). 

The proposed method is incorporated into a two-dimensional two-phase flow solver. The 

governing equations of the two phase flow are written as: 
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where p  is the pressure,   is the density and   is the viscosity. e  is the unite vector of upward 

vertical direction. The subscript a and l denote air and liquid respectively. All physical quantities except 

for those inside the Reynolds number (Rel) are dimensionless. 

The governing equations are discretized using staggered grids shown in Fig. 1. C , p ,   and   

are stored at the cell center.  The temporal integration is conducted as follows. 

( ) ( 1)n nC C   by the new method (21) 
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where the superscripts denote time levels.  

Equation (22) is solved by a dimensional splitting semi-lagrangian method, where the advection 

is advanced in each dimension by the upwind third order polynomial. The pressure equation (24) and 

the pressure gradient in Eq.(25) are approximated by the central differences shown in Eqs. (26)-(29).  
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3 Numerical results 

 
3.1     Simple Advection Tests 

We firstly present the Zalesak’s solid rotation test [6] on the 200 200 uniform cells. The diameter 

of the slotted circle spans 60 cells and the slot width spans 12 cells. The maximum CFL number at the 

interface is approximately 0. 25. Figure 2 shows the computed C contours (level: 0.05, 0.5, 0.95) with 

the initial ones denoted by red lines. The Heaviside function approach can restrict the width of the 

interface within one mesh cell. The initial shape of interface is adequately preserved after one rotation, 

and the distortion of the interface after four rotations remains quite small. 

           

(a) During first rotation (b) After four rotations  

Figure 2: Zalesak’s solid rotation test on 200 200 uniform cells, initial interface (red lines), 

numerical solution (black lines). 

We then present benchmark test with a periodically changing single vortex shearing velocity field 

[7] given by Eq. (30). Figure 3 shows evolution of interface on the 200 200 uniform cells. The 

maximum CFL number at the interface is approximately 0. 95. The C contours are again shown in three 

levels: 0.05, 0.5 and 0.95. 
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For the case of T=20, the initial shape (red cycle) of the interface is satisfactorily recovered at the 

half period instant regardless of the large deformation at the quarter period instant. For the case of T=30, 

mesh resolution becomes insufficient at the largest deformation instant that the recovered contours 

become partly distorted. Nevertheless, the volume error to initial volume ratio remains less than 10-6. 

            

(a) T=20 (b) T=30  
 

 

3.2     Two-dimensional Flow after a Dam Break 

Dam break flow [8] serves as an important benchmark test to the free surface flow solver as it 

involves significant interface deformation such as overturning, breaking up and air entrapment. A 

rectangular water column of 1 2  in dimensionless length is initially placed at the left-bottom corner 

in a 4 8  open-top container, and then starts breaking down under gravity. We present numerical 

results on the 80 160 uniform cells, where the initial water column is covered by 40 20  cells. The 

dimensionless density and viscosity of water and air are given as: 1, 0.0012l a    and 

1, 0.018l a   . The Reynolds number and the time step length were set to 174616Rel   and

0.05 xt   , respectively. Figure 4 shows the time series of the interfaces. The areas enclosed in the 

red dashed lines indicate the initial and the expected final ( t   ) water areas. The water falls and 

runs toward the right in (a) and (b), and then hits the right wall and rises to its maximum height in (d). 

Although not depicted here, the right-running water front with dimensionless time are compared well 

with the experimental data. The water front breaks into small droplets and the air is drawn into the water 

in this course. The water falls in (e), runs toward the left in (f) and rises to its maximum height on the 

left wall in (g). After then, periodic motion with decreasing amplitude lasts a very long time.  

    
(a) t=1.50 (b) t=2.00 (c) t=3.50 (d) t=4.50 (e) t=6.00 
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Figure 3: Evolution of interfaces in a periodic single vortex velocity field.  
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(f) t=7.75 (g) t=8.75 (h)  t=14.50 (i) t=64.25 (j) t=70.00 

 

Figure 4: Time series of interfaces of the dam break flow. 

 

4     Conclusions 

We have proposed a novel method for interface tracking using multidimensional Heaviside 

function. The integrations of the multidimensional Heaviside function over the grid cell and the upwind 

region to determine the volume fluxes are carried out analytically and explicitly. The new method bears 

all the benefits of the PLIC type method but does not involve geometric reconstructions of the interface. 

The new method is simple and efficient, can preserve sharp interfaces as compared to the smoothed 

characteristic function methods. Verifications conducted for simple advection tests and the dam-break 

problem obtained improved solution quality. Extension to three dimensions is straightforward. 

 

Acknowledgments 

This work was supported by JSPS KAKENHI Grant Number JP 17K18836. 

 

References 
 
[1]  W.J. Rider and D.B. Kothe. Reconstructing volume tracking, J. Comput. Phys., 141: 112-152, 

1998. 

[2]  R. Scardovelli and S. Zaleski. Analytical relations connecting linear interfaces and volume 

fractions in rectangular grids, J. Comput. Phys., 164: 228-237, 2000. 

[3]  F. Xiao, Y. Honma and T. Kono. A simple algebraic interface capturing scheme using hyperbolic 

tangent function, Int. J. Numer. Methods Fluid, 48: 1023–1040, 2005. 

[4]  K.Yokoi. Efficient implementation of THINC scheme: a simple and practical smoothed VOF 

algorithm, J. Comput. Phys., 226: 1985-2002, 2007. 

[5]  S.Ii, K.Sugiyama, S.Takeuchi, S.Takagi, Y.Matsumoto and F.Xiao. Aninterface capturing method 

with a continuous function: the THINC method with multi-dimensional reconstruction, J. Comput. 

Phys, 231: 2328–2358, 2012. 

[6]  S.T.Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. 

Phys. 31: 335–362, 1979. 

[7]  M. Rudman. Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods 

Fluids 24: 671–691, 1997. 

[8]  J. C.Martin, W. J. Moyce. An experimental study of the collapse of liquid columns on a rigid 

horizontal plane, Philos. Trans. Roy. Soc. London, Ser. A, 244: 312–324, 1952. 

0 2 4
0

2

4

6

8

0 2 4
0

2

4

6

8

0 2 4
0

2

4

6

8

0 2 4
0

2

4

6

8

0 2 4
0

2

4

6

8


