
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona, Spain, July 9-13, 2018

ICCFD10-219

Prismatic Mesh Generation Using Minimum Distance

Fields

Beatrice Roget1, Jay Sitaraman 2, Vinod Lakshminarayan1, Andrew Wissink 3

Corresponding Author : beatrice.f.roget.ctr@mail.mil

1 Science & Technology Corporation, NASA Ames Research Center, Mo�et Field, CA, USA
2 Parallel Geometric Algorithms LLC, Sunnyvale, CA, USA

3 U.S Army Aviation Development Directorate ADD (AMRDEC), Mo�et Field, CA, USA

Abstract: Anisotropic prismatic/strand meshes are often used to capture viscous boundary layer
e�ects in Reynolds Averaged Navier Stokes (RANS) simulations of high Reynolds number �ows.
This paper describes a new algorithm for generation of these prismatic meshes using the minimum
distance �eld of the surface tessellation. The algorithm is based on initial point placement using
both the closest point on this iso-surface, and the direction of best visibility. Initial point placement
is followed by a smoothing operation based on an elastic spring analogy, which is constrained using
the iso-surface of the distance �eld and the region of visibility for each node. Simulations are
performed using a dual-mesh infrastructure, where the prismatic meshes transition to a Cartesian
background mesh a short distance from the wall. This overset mesh system is then processed by a
domain connectivity method to establish connections between self-intersecting strand meshes and
strand/Cartesian mesh systems. Mesh and �ow simulation results are presented for test cases of
varying complexity.

Keywords: Computational Fluid Dynamics, Mesh Generation, Computational Geometry

1 Introduction

Unstructured meshes near wall boundaries typically utilize anisotropic prismatic meshes to capture the
viscous boundary layer. In standard mixed element unstructured meshes, these prismatic layers transition
into isotropic tetrahedra. In concave parts of the geometry, this transition occurs a very short distance from
the wall. A robust approach to generate strand/prismatic meshes for complex geometries is still the subject
of an active area of research. Previous works in this regard can be broadly categorized as advancing front
methods and direct point placement methods. Recent research e�orts in advancing front methods are by
Pirzadeh [1], Lohner [2], Kallinderis [3], Marcum [4], Wang [5] and Alauzet [6, 7, 8]. Most these works build
on the idea of following the boundary normal direction to march outward and create a prismatic mesh close
to the surface. When the �fronts� self-intersect or intersect with a front from another part of the body, �xing
and merging of fronts is performed, which may lead to generation of tetrahedra and pyramids in addition
to prisms. A certain distance from the wall, the mesh transitions to nearly isotropic tetrahedra, creating
a hybrid prismatic mesh. In general (with the exception of Lohner [2]), most of these works generate each
layer of the prismatic mesh sequentially, checking intersections, validity and quality of cells generated in each
layer and performing necessary algorithmic adjustments to preserve mesh validity. Owing to the sequential
nature, the mesh generation process is in general serial and expensive because of the necessity to perform
large numbers of intersection checks. Despite these limitations, advancing front methods remain the most
robust grid generation strategies available for generation of anisotropic unstructured meshes on complex
geometries. The progress in anisotropic mesh generation and adaptation in the last decade is documented
in detail in a review article by Alauzet [9].

Direct point placement techniques have been explored on a more limited basis. Recent research e�orts in
this regard are by Tomac et al. [10], Garanzha et al. [11], and Haimes [12]. Tomac et al. explored generation of

1

a prismatic envelope of the whole boundary layer, similar to Lohner [2], with a complex algorithm consisting
of feature extraction, classi�cation and selective smoothing. Once the envelope was �nalized, prismatic
elements were �lled in by simply subdividing the lines connecting the boundary surface and corresponding
points on the envelope. The use of the single straight lines make this method essentially equivalent to the
strand grid approach proposed by Meakin [13], where the surface tessellation, a single vector de�ned at
each surface node, and a distribution of layers along the normal vector, are used to compactly represent
the entire prismatic mesh. Garanzha et al. [11] treated the prismatic mesh generation as a hyper-elastic
spring back problem and used PDE based techniques to obtain solutions to the non-linear elastic problem.
Promising results were shown for a range of geometries and techniques for removing self-intersections were
also developed. Solution to the PDE systems were reported to incur large costs making the method 4 to 5
times slower than traditional advancing front methods. Haimes [12] developed a method for generation of
strand-type meshes using a constrained optimization technique. This approach attempts to minimize the
area of the prismatic envelope created by following the local normals for a �xed distance, with a �xed-length
constraint for the strands (lines connecting surface boundary to the prismatic envelope). The main idea is to
use the area minimization to facilitate untangling and unwrapping of strands, since intersections and warp
always lead to a larger area when using �xed length strands. In addition, Haimes [12] also included the ability
to have multiple vectors at each surface vertex (a concept introduced by Loseille [14]) that greatly improves
mesh quality near areas of low visibility, such as highly convex or concave-convex features in the geometry.
The use of the �xed-length constraint for strands is central to the area minimization, because variable strand
lengths can cause the envelope to collapse to the surface. However, the �xed-length constraint renders
the prismatic envelope more concave than the original surface itself, making it harder to create additional
prismatic layers.

The work presented here is motivated by the requirement to automatically generate volume meshes from
just a discrete surface tessellation for �ow computations. It is evident from the large body of previous
work available in literature that a fully prismatic mesh that covers the entire computational domain (surface
boundary to several body lengths away from the surface) cannot be generated for all but the simplest of
geometries. More complex cases require the use of either a hybrid meshing paradigm or an overset dual-mesh
paradigm where the prismatic layers transition to an adaptive Cartesian system. The latter approach is used
in the CREATEA/V TM Helios framework, which serves as the test bed for all the development, imple-
mentation and testing presented in this work. In particular, the strand/Cartesian dual-mesh methodology
is explored, where a near-body strand grid system is embedded within an adaptive Cartesian system that
covers the entire compute domain (Figure 1(a)).

The original strand data structure de�ned by Meakin [13] was used extensively by Haimes [12] to create
mesh generation methods and Katz [15, 16, 17] to construct �ow solver methods. Several departures from the
original strand de�nition are introduced in order to improve the versatility of the strand/Cartesian dual mesh
paradigm. First, the strands are represented as poly-line curves (lines with more than two control points)
on a selective basis, creating a continuum between pure strand grids and general prismatic grids. Grids
represented this way are termed multi-level strand grids. Second, the �xed-length constraint on strands is
removed, in order to facilitate incremental mesh generation on a level-by-level basis, such that the surface that
serves as the basis for each level is smoother than the one at the previous level. Third, multiple vectors per
surface node (following the work by Haimes [12]) are introduced. Finally, strand/prismatic grids are allowed
to self-intersect and create invalid cells, which are subsequently removed during the overset grid assembly
process. It is worth noting that the work presented here is inspired by the methodology of Haimes [12] and is
a continuation of our previous work on mesh generation and �ow solutions using the strand/Cartesian dual
mesh approach [18, 19, 20].

The objective of this paper is to develop an algorithm that can generate valid strand/prismatic grids
that extend as large a distance as possible from a given surface grid, such that strand collisions can occur
at a reasonable distance outside the area where viscous boundary layer e�ects are dominant. The primary
challenge in strand mesh generation lies is devising a strategy for point placement in each layer of the
prismatic mesh system. In this context, we use the iso-surface of minimum distance �eld as the guide for
initial point placement and subsequent mesh smoothing. Several examples ranging from simpli�ed test cases
to realistic geometries will be presented to demonstrate the e�cacy of the method.

2

2 De�nitions

2.1 Multi-level strand/prismatic grids

The strand/prismatic grid system is fully de�ned in a compressed row storage format using the following
data items.

1. Set of coordinate locations yi ∈ IR3, i ∈ [1,nmax]

2. Connectivity graph of the outer prismatic envelope, provided as facets, fi, i ∈ [1, nfacets], where each
fi is a triangle, with the vertex indices ∈ [1, nnodes], where nnodes is the total number of nodes on the
outer prismatic envelope.

3. Control point count, mi, i ∈ [1,nnodes], that specify the number of control points associated with each
node on the prismatic envelope. Also note that, nmax =

∑
mi.

4. A single strand layer distribution function vector, di, i ∈ [1, nlayers] that speci�es the distribution of the
actual nlayers prismatic layers. The same distribution function is used for all strands. The �nal nodal
locations can be obtained by sub-dividing the poly-line curves, de�ned by yi and mi, into nlayers− 1
segments, with each segment length proportional to ∆d = di+1 − di.

Off-body:

Cartesian AMR

Surface tesselation:

tri/quads

Near-body:

Strand

Multiple

strands on a

surface node

Facet, fi on the

envelope surface

yi Surface facet, si

di one strand

level

(b) Multi-level strand grid description (c) Multiple strands per node

one layer

(a) Strand / Cartesian grid system

Figure 1: Description of the strand mesh system.

Figure 1(b) illustrates the strand storage format. The use of facets on the outer prismatic envelope
supports multiple strands per node on the viscous wall surface: when there are multiple strands per node
present, the outer envelope has a larger number of facets than the original wall surface and a surface node
will connect to multiple outer nodes, as shown in Figure 1(c). The control point count, mi, determines the
number of levels in the strand mesh, with nlevelsi = mi − 1. At the maximum limit, if mi = nlayers, the
mesh is a generalized prismatic grid, and at the minimum limit, if mi = 2, the mesh is a pure strand grid as
described by Meakin [13]. The compressed storage approach uses the fact that large regions of the geometry
often have benign complexity and can be represented with just a single strand and distribution along that
strand. However, there will be regions near convex/concave edges and corners that will require multiple
levels. In a distributed computing system, compressed storage provides a considerable advantage for overset
domain connectivity since the strand mesh system can be made available in each process. Since the entire
dual mesh system (strand and adaptive Cartesian) is fully available in each process, all searching operations
required for connectivity can be performed without any communication, leading to large bene�ts in e�ciency
and scalability (See Ref [21]). As a practical example, a 50 million node strand grid that was generated for
the high-lift common research model (HL-CRM), used approximately 100MB or memory for storage with 5
control points per node. The same mesh, if stored in standard mixed element format, where the connectivity
graph of each prism is stored, would take more than 4.2GB of memory and would be impossible to maintain
in each process.

3

2.2 Inner and outer regions of the mesh

In general, for complex geometry where non-local intersections are possible, it is not viable to generate a
fully closed prismatic mesh for the total desired distance away from the body. Therefore, we separate the
prismatic mesh into two regions, inner and outer. The inner region is a fully closed mesh and may consist of a
few levels. The outer region can have self-intersections, and is built by directly extruding and smoothing the
envelope surface of the outermost inner level. It may also consists of a few levels, such that the total number
of levels for both inner and outer regions is a small number, typically 10 or less. Most of the methodology
presented in this paper is focused on producing a valid and closed inner region to the largest extent possible
and improving its quality. For simpler geometries, with moderate concavities, it is possible to have a fully
closed mesh at the desired distance and no outer region is necessary.

2.3 Required inputs

The strand/prismatic mesh generation technique uses the discrete tessellation of the body surface as input.
The surface tessellation is composed of a set of nodes, X = {xi ∈ IR3, i ∈ [1, nbnodes]} and their connectivity,
S = {si, i ∈ [1, nbfacets], si = [a1, a2, a3], ak ∈ [1, nbnodes]}. The tessellation S should contain no hanging
edge or node, and each si should have all triangles ordered such that the facet normal point the same way,
i.e. for each edge of S, the associated facets have the edge extremities ordered the opposite way in their
respective index list. In addition to the surface tessellation, other parametric inputs required are:

1. L, desired extent of the prismatic layers from the original surface to the prismatic envelope,

2. ∆1, spacing required at the wall,

3. ∆2, spacing at the outer envelope where the prismatic mesh interfaces with the Cartesian mesh,

4. nlayers, number of layers in the distribution function,

5. nmulti, maximum number of multi-strands from a node,

6. nlevels, maximum number of strand levels,

7. L1, thickness of the initial level, and

8. s, stretch ratio for the thickness of each level

Most of the parameter inputs can be defaulted to empirically known values. For example, ∆1 is auto-
computable knowing the Reynolds number Re and y+ requirement, ∆2 and L are auto-computable knowing
the wake capturing requirement and nlayers can be determined using an acceptable stretch ratio. In most of
the computational results presented later in the paper, the surface tessellation was the only input required
and the volume mesh was constructed using the defaults for the operating condition. The default values used
were nmulti = 5, nlevels = 5, and s = 2.0. Mesh generation proceeds on a level-by-level basis with the outer
envelope of each level being used as the base surface for the next level. The thickness of the initial level,
L1, can also be computed automatically using geometric features of the surface tessellation. However, in the
present work and this value was set manually. The thickness of remaining levels is computed automatically
using the total desired extent and the stretch ratio. It is important to reiterate that the number of strand
levels, nlevels is usually a small number (under 10), while the number of actual prismatic layers nlayers is in
the order of 50-100.

Mesh generation in each level is broadly categorized into three areas. They are (1) determination of
multi-strand nodes and connectivity (�rst level only), (2) initial strand placement and �nally (3) mesh
smoothing.

2.4 Algorithm overview

An overview of the entire algorithm is presented in Figure 2. After reading the mesh and user inputs, the
surface tessellation is pre-processed to create the required connectivity graphs (node-to-node, node-to-cell,
and node-to-edge), and the edge dihedral angles are computed. Positive angles denote convex edges, while

4

Initialization :

Read mesh S and inputs:

Stretch s, total distance L

• Level number k = 1

• Level thickness L1

• Base surface Sk = S

• Current distance D = 0

• L0 = minimum edge length

Surface pre-processing:

• Create connectivity graphs

• Concave and convex edges

Initial strand placement:

• Determine concave regions

• Visibility: regions and best direction

• Follow best visibility direction if in convex

region

• Closest point on IL
k otherwise, unless it

lies outside visibility region

Multi-strands:

• Determine number of multi-strands / edge

• Connectivity of additional cells

• Update graphs

Elastic smoothing:

• Edge stiffness: linear variation from value

required for equilibrium (D=0) to uniform

values (D=L)

• Spring analogy for edges of envelope surface

• Time stepping until mesh quality no longer

improves or maximum iterations reached

Repeat

current level:

Lk = Lk / 2

Initialize next level:

• D ← D + Lk

• k ← k+1

• Lk ← Lk-1 × s if k > 2

• Sk ← current envelope

Mesh

quality over

threshold ?

k = nlevels ?

yes

yes

no
k > 1 ?

yes

no

Outer region required

• extends from D to L

• nlevels – k levels

• self-intersections allowed

No outer region required

D < L ?

failure
success

yesno

Final prismatic mesh:

Create nlayers along

each strand, thickness

from Δ1 to Δ2

Lk > 2 Lk-1 s ?

no

yes

k = 0 ?
yes

k ← k - 1

no

no

Figure 2: Algorithm overview.

5

negative angles denote concave edges. Edges whose angle is larger or smaller than a threshold value are
tagged as convex or concave (+/- 45 deg was used in the present work). The additional multi-strand nodes
and associated connectivity are then created, as described in the next section. Next, the algorithm attempts
to build the prismatic inner region, level by level. Two operations are performed for this purpose: initial
strand placement, followed by smoothing of the envelope tessellation based on an elastic spring analogy.

At the end of the smoothing iterations, if a valid mesh is generated with overall quality above a certain
threshold, the next level is initialized, using the current envelope surface as the new base surface. Otherwise,
for the �rst two levels, the current level is attempted again, with half the extent. This process is repeated
until one of the following situations arises:

• a mesh of the full desired extent is created,

• the maximum number of levels is reached,

• no valid mesh can be created for a level above the �rst two,

• no valid mesh can be created for the second level, and the level thickness can not be reduced further
(based on the stretch ratio), or

• no valid mesh can be created for the �rst level, and the level thickness can not be reduced further
(based on the smallest edge of the surface tessellation).

In the �rst four cases, a �nal level needs to be created (outer region), which extends from the outermost
prismatic envelope to the desired total extent and is composed of the remaining number of levels to be
created. This is done by extruding the strands at each level and performing a Lagrangian vector smoothing
on the strands in convex areas. The resulting self-intersections will be removed and handled by the domain
connectivity during simulation. Finally, the last step is to subdivide each segmented strand into nlayers,
with a thickness distribution matching the user speci�ed (or default) wall and outer spacing. The next few
sections describe in more details each algorithm component.

a) multi-strand cell

along an edge

b) multi-strand

cell on a corner

c) point with no

visibility region

?

Figure 3: Example of multi-strand cells.

2.5 Multiple-strand determination

For the initial mesh level, in order to improve mesh quality, surface nodes which are located on convex
edges can have multiple strands originating from them. This results in the creation of multi-strand cells
with a triangular face on the envelope surface and either a segment or a point on the base surface. In
the �rst case, the cell is termed a �wedge�, illustrated in Figure 3(a), and in the second case, the cell is a
tetrahedron, illustrated in Figure 3(b). Multi-strands are optional if a region of visibility exists for a node, but
mandatory if there is no region of visibility, as in the case of Figure 3(c). Contrary to single strands, multiple
strands are not constructed directly by point placement on the envelope surface; instead, the original surface
mesh topology is �rst modi�ed to include the multi-strand cells. Initially, multiple strands are assumed to

6

be coincident with the strand they are a duplicate of, i.e. the multi-strand cells have zero volume. The
spring-analogy smoothing algorithm then ensures the multi-strand cells expand to �ll the space around the
the convex edges. The multi-strand topology is determined as follows: a number of multi-strands is �rst
assigned to all convex edges, computed using the desired maximum number of multi-strands, the thickness of
the initial level, and the local cell size. Convex edges are those with the angle between the two neighboring
facets that share the edge exceeding a certain value, set to 45o in the present work. Then, for each node,
the number of regions delimited by convex edges is identi�ed. Additional nodes are then created using one
of the appropriate methods described below depending on the number of regions:

Number of additional strands

per edge:

Convex edge

+4 +3+4 +4 +3

Number of additional strands

per node:

+0 +4 +4

Initial envelope

surface (1st level)

Smoothing iteration 2

Final Smoothing iteration

Multi-strand cells

Envelope surface at a

small distance from

original surface

Figure 4: Multi-strand determination along convex edges.

• Case 1: for a node with two regions, the number of additional multi-strands created is set to the
maximum value assigned to the two convex edges. Multi-Strand cells (�wedges�) are created along
convex edges by simply �stitching� the additional nodes created at each edge extremity, creating new
facets on the envelope surface as illustrated in Figure 4.

• Case 2: for a node with three or more regions, a 2-D Delaunay tessellation is computed that �lls
a boundary consisting of a regular polygon with a number of sides equal to the number of convex
edges around the node, as illustrated in Figure 5. The number of points on the boundary along each
edge of the polygon is set to the multi-strand value of the edge. The total number of multi-strands
created is then the number of nodes on the polygon boundary, plus the number of nodes created by
the Delaunay tessellation, minus one. The additional multi-strand cells created correspond to the cells
of the Delaunay tessellation (all tetrahedra).

• Case 3: for a node with a single region (single convex edge connected), no additional multi-strands
are created, unless the node is also part of a concave edge (convex-concave vertex). In that case, all
the connected edges that are not concave are treated as if they were convex, but assigned a single
additional multi-strand. The vertex ending the convex edge is then surrounded by a number of regions
equal to the number of non-concave edges around the node, and the multi-strand determination can
proceed as in the second case. This case is illustrated in Figure 6.

7

Smoothing iteration 2 Final Smoothing iteration

Convex edge
Number of additional strands:

2D Delaunay
triangulation:+5

+5

+3

+3

+3

+3

+3

+3

+5

Initial envelope surface (1st level)

Figure 5: Multi-Strand determination around convex corner vertices.

Initial envelope surface (1st level) Smoothing iteration 2 Final Smoothing iteration

Convex edge

Concave edgesNumber of additional strands: +5

+5

+1
+1 +1 +1

+1
+1

+1

+0

+0
+0

+0

+0

+0

+0

2D Delaunay triangulation:

+5

+1

+1

+1

+1

+1

+1

+1

Figure 6: Multi-Strand determination around convex/concave vertices.

2.6 Initial strand placement

Initial strand placement involves �nding the initial location of the end points of each strand. Two concepts
are used for this purpose, the best visibility direction and the iso-surface of the distance �eld.

8

2.6.1 Best visibility direction

In most prismatic mesh generation approaches (advancing front or direct placement), the local normal
direction is used for the extrusion of the nodes. The simplest way to compute a local normal direction
at each node is by averaging the normals of all the facets that are associated with this node. The simple
averaged normal, both unweighted and area weighted, often leads to issues because of the bias in averaging
caused by the di�erence in the number of geometric regions and topological regions that enclose the given
node. Aubry et al. [22] proposed a much more robust approach, using the concept of the most normal normal
(MNN), i.e. the direction that maximizes the minimum angle between the surrounding faces as the optimal
direction of choice. This concept was successfully applied by follow-on work by Aubry and Lohner [23] and
Loseille and Lohner [14] for boundary layer meshing. The present work makes use of Aubry's method to
compute this direction, termed as the best visibility direction.

For convex regions of the surface, an initial strand that follows the direction of best visibility for a distance
equal to the current level thickness is appropriate (referred to as the best visibility strand). However, concave
areas require a di�erent strategy to avoid immediate local collisions and entanglement. Concave areas of the
surface tessellation are identi�ed as the set of all nodes for which the extremity of the best visibility strand
is found to be at a smaller distance to the base surface when compared to its length. In general, techniques
reported in advancing front literature utilize normal vector smoothing in concave areas followed by merging
to form tetrahedra if smoothing fails. In the present work, concave areas use a di�erent point placement
technique based on the iso-surface of distance �eld.

2.6.2 Iso-surface of distance �eld

The iso-surface of minimum distance at IL, is de�ned as the locus of points that are at a given �xed distance L
from the discrete surface tessellation S. Examples of minimum distance iso-surfaces are shown in Figure 7(a).
The goal of the initial point placement algorithm is to compute point positions on IL corresponding to each
surface node on S, such that the number of invalid elements is minimized.

L

Isosurface IL

a) Examples of minimum distance isosurfaces. b) Strands pointing to closest

point on IL

Concave

region

Multi-

strands

Isosurface IL

Figure 7: Choosing a strand vector towards the closest point on isosurface of distance automatically results
in desirable strand distribution in concave regions.

As shown in Figure 7(b), the closest vertex to each surface node on IL is a good candidate for point
placement, because it automatically creates a desirable bending of strands in regions of concavity. This
point is abbreviated as CLOVIS, for Closest Vertex on the Isosurface, in the rest of the paper. The number
of strands near the concave ridges/corners that bend is directly correlated to the iso-surface distance L, i.e.
larger iso-surface distances would cause more strands in a larger region to bend away from the original best
visibility direction.

9

However, the point distribution on the outer envelope surface is not ideal for generating the next mesh
level, and a smoothing process needs to be applied to improve the quality of the envelope mesh.

Another problem associated with the CLOVIS solution is illustrated in Figure 8(a). For geometries that
feature large variations in e�ective body thickness, the CLOVIS direction could lead to undesirable conse-
quences such as penetration of the surface. Therefore, it is also important to ensure that the best visibility
direction is used if the CLOVIS direction is outside the region of visibility of each surface node, as de�ned in
the next section.

2.6.3 Limited region of Visibility

The region of visibility for a surface vertex is the region the strand vector can occupy such that all triangles
connected to the surface vertex have non-zero areas when viewed along that vector towards the surface.
A strand is in the (full) visibility region if all the dot products of itself with each of the neighbor face
normals are positive. Since it is desirable that the strands do not get too close to the visibility boundary, a
limited region of visibility constraint is enforced, using a maximum deviation input, typically set to dmax =
80%, corresponding to the maximum allowed deviation from the direction of best visibility to the visibility
boundary. A strand is in the limited visibility region if for all face neighbors, the dot product of the unit
vector along the strand with the neighbor face normal is greater than a threshold value dpmin, de�ned as:

dpmin = cos
(π

2
− (1− dmax)αvis

)
(1)

where αvis is the visibility angle, de�ned as the complementary angle to the maximum angle between the
best visibility direction and any neighbor face normal:

αvis =
π

2
− max
k=1...n

arccos
(
b̂ · n̂k

)
(2)

where b̂ is the direction of best visibility, and n̂k is the face normal unit vector. For example, a vertex with
90 deg visibility is on a perfectly �at region, while a vertex with 0 visibility may be on a convex/concave
corner with a visibility problem, requiring multi-strands to enable meshing of the initial level. The cone of
visibility is the more restrictive region composed of all strands such that the dot product of the strand unit
vector and the best visibility direction is more than the cosine of the visibility angle. Figure 9 illustrates
these di�erent concepts for an example mesh vertex located along a convex edge. During smoothing, the
motion of a vertex on the envelope surface is constrained to remain within the limited region of visibility,
which is the green area consisting of the intersection of all the local visibility cones for each neighboring face.

Flat surface:

Full visibility

Convex node Concave node

Partial visibility

closest point on IL

Surface point A

L

Isosurface IL

d1

d2 < d1

a) If the volume mesh features abrupt
thickness variation, the closest point on
the isosurface approach can fail.

b) Visibility regions that constrain the strand
vector for creation of a valid strand cell.

Figure 8: The CLOVIS solution can lie outside the visibility region.

10

2.6.4 Initial strand placement

The algorithm for initial strand placement is summarized in pseudo code listing 1 in the Appendix. All nodes
initially create the local best visibility strands. Next, the concave regions can be identi�ed, by computing
the distance to the base surface for all strand end points. For nodes in concave regions, the CLOVIS strand is
also computed. The limited region of visibility check is then performed. If it fails, those strands revert back
to the best visibility solution.

Application of these steps ensures that the initial point placement yields a mesh that is valid and of fair
quality at most regions other than complex concave/convex corners and thin body intersections (e.g. trailing
wing/fuselage interface). A constraint-driven smoothing algorithm (described in Section 2.7 is applied to
correct these problems and improve the quality of the mesh.

Vertex on convex edge:

Face 1

normal

Face 2

normal

Face 1

Face 2

Local visibility region

for face 2

Local visibility region

for face 1

Visibility

Region

Best visibility

direction

Visibility

angle

Full / Limited

visibility

Visibility

cone

Figure 9: Visibility angle, cone, and regions for a vertex on a convex edge.

2.6.5 Closest Vertex on the Iso-Surface (CLOVIS) algorithm

Given a tessellated surface, S, the isosurface of the distance �eld at L is de�ned as:

IL = {P ∈ R3 | MinDist(P,S) = L}, where MinDist(P,S) = min
A∈S
‖
−→
AP‖ (3)

For any surface vertex A, the closest point P on the isosurface at a distance L is any point that satis�es:{
MinDist(P,S) = L

‖
−→
AP‖ = min

MinDist(M,S)=L
‖
−−→
AM‖ (4)

The optimization process entails sliding the end point of the vector (P) on the iso-surface and locating
it such that the segment AP has the shortest length. The fact that the isosurface of distance �eld is
only known implicitly by its mathematical description makes the solution of Eq 4 challenging. A discrete
solution to the continuous optimization problem can be obtained by constructing an approximate tessellated
isosurface using a marching-cube method [24]. However, this approach was found to lack robustness and
computational e�ciency. Instead, an algorithm was designed to e�ciently compute, for each surface vertex,
the closest point on the actual analytical description of IL shown in Eq 3. This method is referred to as
the CLOVIS algorithm. The method makes intensive use of an e�cient routine to compute MinDist(P,S),
which returns the shortest distance and the location of shortest distance to the surface S from a point P .
Since surface S is known explicitly, this is an easier operation that can be e�ciently accomplished using an
Alternating Digital Tree (ADT) approach [25]. Note that this operation is identical to the computation of
minimum wall distance �elds for turbulence models, for which there are several well-established approaches
documented in References [26, 27, 28].

11

The success of an optimization problem depends strongly on an initial guess that satis�es the solution
constraint and is su�ciently close to the �nal solution. For surface nodes in concave regions, the end point
of the best visibility strand lies below the iso-surface and hence does not satisfy the solution constraint.
Extending the vector until it meets the iso-surface can fail if the initial vector direction is nearly tangent to
the iso-surface IL. Therefore, a geometrical construction algorithm listed in pseudo code listing 2 is used to
march iteratively until an intersection with the iso-surface is obtained. The same algorithm is also illustrated
in Figure 10(a).

surface pt

L

A

Bi → initial guess

C1

C3

IL
L

C2

B1 = A + L 𝒏

B2

B3

B4

C

Closest surface

point to B

A

surface pt

initial guess

B

P

𝒅

Isosurface IL

Surface S

𝑩𝑪 × 𝑩𝑨

a) Step 1: initial guess for closest point

on isosurface of distance.

b) Step 2: marching towards the closest

vertex on the isosurface of distance

Figure 10: CLOVIS algorithm : initial guess estimation and descent towards the optimum.

Once a initial guess B is obtained, the optimization is performed by walking on the iso-surface in a speci�c
search direction. As shown in Figure 10(b), the search direction vector is chosen such that it is tangent to
the isosurface and lies in a plane formed by the current value of B, the closest point C to B on S, and the
surface query point A, i.e. triangle ABC. The algorithm for CLOVIS is summarized in pseudo-code listing 3.
The convergence of the CLOVIS algorithm is shown in Figure 11. In general, only 20 steps are required to
achieve machine zero convergence of the optimization problem. It is also worth noting that the algorithm is
embarrassingly parallel, since no neighbor information is required and each surface node can �nd its strand
end point independent of each other. This feature makes this algorithm easily amenable to distributed and
multi-threaded computing.

2.7 Mesh smoothing, constrained to the iso-surface, using spring analogy

To improve the mesh quality, a smoothing algorithm is applied, which is loosely based on a linear spring
analogy with constraints enforced so that strand end points remain on the iso-surface of distance.

In this method, each edge on the envelope surface is treated similar to a linear spring, as illustrated in
Figure 12(a). The spring rest length is zero and a dual-value sti�ness is used, such that the springs are
in equilibrium when the strand length tends to zero. This is because the initial layer may need to be very
thin for complex bodies, in which case the envelope mesh formed by the strand extremities should be nearly
identical to the surface mesh.

2.7.1 Edge sti�ness determination

The sti�ness value to satisfy force equilibrium at the surface is computed directly using the fact that for
any 2D polygon, the sum of the vectors normal to each edge (pointing outwards) is zero when weighted by
the edge length. The cells around each vertex are �rst projected onto a plane tangential to the isosurface

12

Initial
guess

Closest
point

Highly parallel method amenable to multi-
threaded computing

Optimization converges to machine
tolerance in less than 20 steps.

Figure 11: Convergence pattern of the CLOVIS algorithm.

Isosurface of Distance at L

IL

visibility

region

Level k surface mesh

Cells around Vertex 1

Average edge

length circle

Circumcircles

of scaled

edges

dk

ek

=
1

𝑒𝑘

𝑛 𝑑𝑘
 1
𝑛 𝑑𝑖

stiffness
V1

V2

Level k+1

surface

mesh

(b) Dual value spring stiffness(a) Elastic spring analogy

Cells around Vertex 2

Figure 12: Envelope mesh smoothing using elastic spring analogy.

of distance. Note that the during the smoothing process, the direction of the total force is constrained to
remain in this tangential plane. At the limit of zero distance to the surface, this plane can be approximated
as the plane normal to the direction of best visibility, when that direction exists, or normal to the direction
of the closest vertex on the isosurface otherwise. Then, a polygon is formed around the vertex by joining the
centers of the circumcircles of each neighboring cell, whose edges are �rst scaled to the average edge length
around the node. This is illustrated in Figure 12(b). In this way, the outward normals of the polygon edges
are by design along the edges surrounding the nodes.

The force for a vertex surrounded by n edge vectors ~ek, k=1..n is computed as:

~F =
n∑
k=1

Sk ~ek (5)

where Sk is the sti�ness of the kth edge around the vertex. Force equilibrium is satis�ed if we choose the

13

sti�ness value:

Sk =
1
|| ~ek||

dk
1
n

∑n
i=1 di

(6)

where dk is the length between the centers of the two neighboring circumcircles. This method results in each
edge being assigned two di�erent sti�ness values, one for each edge extremity. If the cells are equilateral
triangles, the sti�ness is identical for all edges and equal to the inverse of the edge length.

2.7.2 Elastic force computation

The elastic force on each strand end node is applied di�erently depending on the node position characteristics,
which includes whether the node is in a convex region or concave region and located above or under the
isosurface of distance.

• Case 1: if the node is in a convex region, the force magnitude along each edge is computed using
equation 5, but it is applied in the edge direction projected on the isosurface (normal to the segment
joining the node to its closest point on the base surface). This is illustrated in Figure 13(a).

• Case 2: if the node is in a concave region, the elastic force will tend to make the node move above
the isosurface. Since this is desirable for reducing concavity for the next strand level, if the strand is
above the isosurface, the force for each connected edge is applied directly in the direction of the edge,
as illustrated in Figure 13(b). If the strand is at or below the isosurface, however, the force component
normal to the isosurface and toward the surface is �rst removed.

(a) Elastic Forces on a Convex Vertex:

Constrained to isosurface of distance

Elastic forces

along edges

Applied forces:

rotated to IL

Total Force

Closest vertex on

base surface

(b) Elastic Forces on a Concave Vertex:

No constraint

Total Force

Applied forces:

along edges

Figure 13: Method for applying elastic forces for convex or concave vertices.

2.7.3 Constrained point motion

After the elastic force vectors are computed, the position of the strand end nodes are updated using a simple
explicit time-marching scheme, with constraints applied to ensure all points remain on or above the isosurface
of distance and within their respective region of visibility.

Walk length constraint

First, the walk length is computed using the maximum ratio of force magnitude and average edge length,
rmax. The nominal walk (without constraints) between ~p i, the position vector at iteration i to ~p i+1, the

14

position vector at iteration i+ 1 is then set to:

~p i+1 = ~p i +
0.2
rmax

~F i (7)

so that no vertex walks more than 20% the average length of its surrounding edges. The walk length is also
further limited so that it is less than 20% in any surrounding edge direction.

Visibility constraint

At the initial iteration, all strands are by design within the visibility region, except strands emanating
from vertices with no visibility (requiring multiple strands), which follow the direction to the closest vertex
on the isosurface.

For single strands, the visibility constraint is imposed using the visibility region, which is the intersection
of the limited visibility cones for each neighbor face (section 2.6.3). For each face, if the walk exits the local
visibility cone, the walk vector is �rst modi�ed by projecting it to the plane tangent to that cone. If the walk
still exits the visibility region, the walk vector is shortened until the new point location is on the (limited)
visibility boundary.

For multi-strands, a visibility constraint is also applied, but following a di�erent approach. Multi-strands
are allowed to move outside the region of visibility of their original node. In fact, the smaller the visibility
angle is, the larger the allowed deviation is from the initial strand direction. Multi-strands are constrained to
remain within a cone centered on the initial strand direction, and with an angle equal to the complementary
angle of the visibility angle, if it exists (for vertices with no visibility, no visibility constraint is applied).

Isosurface of distance constraint

Finally, the constraint that all vertices on the envelope surface remain on or above the isosurface of
distance is enforced. If the corresponding base surface point is in a convex region, this is done by moving the
point along the local normal to the isosurface (vector joining the point to its closest point on the surface)
until it is located on the isosurface.

For base points in a concave region, this operation is performed only if the strand end point is located
below the isosurface and the distance to the surface is decreasing. Otherwise, the point is allowed to move
above the isosurface, but the strand length is limited so that the distance to the surface does not exceed a
limit Lmax set to:

Lmax = Lk

(
1 +

1
2

(1− f2)
)

(8)

where Lk is the thickness of the current strand level and f is the ratio of Lk by the initial strand length (less
than one for concave regions).

2.7.4 Smoothing termination based on mesh quality

The smoothing iterations are terminated if one of the following three situation arises:

• the maximum walk length for the entire mesh is below a threshold value,

• the maximum number of iterations is reached (set to 200 in this work), or

• the envelope quality could not be improved in the last 20 iterations, and the mesh is valid.

The mesh is considered valid if all prisms have a quality metric above a certain threshold, set to 0.2
in the present work. The prism quality is de�ned as the minimum dot product of any strand vector with
the bottom (base surface) or top (envelope surface) normal vector. The envelope quality is de�ned as the
maximum ratio of cell areas around any node on the envelope surface tessellation.

After termination, the valid mesh with the largest envelope quality is retained for use in the next strand
level. Figure 14 shows the evolution of strands and the prismatic envelope around a simple cube geometry.

15

Note that the multi-strands emanating from a node are initially co-incident. The strands spread and converge
to their �nal location with smoothing iterations.

(a) Iteration 0, Initial (b) Iteration 1 (c) Iteration 10

(d) Iteration 50 (e) Iteration 100 (f) Iteration 200, Final

Figure 14: Evolution of multi-strand mesh system with smoothing iterations.

3 Description of Flow Solvers Used

All of the strand/Cartesian simulations are performed with the Helios [29] framework with mStrand as the
near-body solver and SAMCart as the o�-body solver. Traditional unstructured grids are also generated for
comparison purposes. In this case, Helios uses either FUN3D [30] or NSU3D [31] as the near-body solver to
model the near-wall �ows.

3.1 Multi-strand near-body solver (mStrand)

The Reynolds-averaged Navier-Stokes (RANS) equations in a general moving coordinate system in three di-
mensions are solved in mStrand. Turbulence closure is accomplished with the negative Spalart-Allmaras (SA)
model [32, 33]. A fully parallel implementation of mStrand is obtained by partitioning the envelope surface
mesh (the surface that forms the outer-boundary of the strand mesh) into contiguous blocks on the basis of
surface elements using METIS [34]. The strand grid spatial discretization is based on a vertex-centered �nite
volume approach, where a dual-cell is constructed around each grid point. The strand solver accommodates
both quadrilateral and triangular prisms depending on the surface topology and can handle general prismatic
mesh in the normal (strand) direction. More details of mStrand can be found in Lakshminarayan et al. [35].

3.2 Cartesian O�-body Solver (SAMCart)

A structured adaptive solver SAMCart is used for the Cartesian o�-body grid. The parallel mesh adaptive
capability is provided by the SAMRAI [36] library and the solution in each block is obtained using a solver
called Cart. The Cart solver uses a high-order central di�erencing scheme - 6th order with 5th order
dissipation for the inviscid terms and 4th order for the viscous terms. Cart implements the Spalart-Allmaras
turbulence model and can also enable Detached Eddy Simulation (DES) capability. The solver includes an
implicit second order BDF2 time integration scheme with Lower-Upper Symmetric Gauss-Seidel (LU-SGS)

16

and diagonalized Alternating Direction Implicit (ADI) operators. Further description of SAMCart can be
found in Wissink et al. [29].

4 Results and Discussion

4.1 Geometries with moderate complexity

Two generic geometries, a business jet aircraft and a missile, are considered for evaluation of mesh and
solution quality and comparison with traditional unstructured mixed element mesh generation methods.
The business jet geometry is shown Figure 15. There are multiple concavities and concave/ convex corners
in this geometry. Meshes are generated using the present methodology (CLOVIS + smoothing), a mesh
generator from Mississippi State University�Advancing Front and Local Reconnection method (AFLR3 [37])
and the commercial software Pointwise, which uses its T-Rex algorithm to construct prism layers from
anisotropic tetrahedra [38]. The prismatic envelope of the mesh is shown for each case. Both CLOVIS and
AFLR3 produce a regular surface, while Pointwise, owing to its tetrahedral merging technology, produces
an irregular surface with di�ering number of prism layers around the geometry. Both AFLR3 and Pointwise
show some amount of prism layer collapse near the concave regions. The use of minimum distance iso-surface
does yield meshes with increased smoothness, that do not collapse in the concave corners. It is important to
note that we did not adjust any of the standard parameters in AFLR3 and Pointwise and it may be possible
to obtain improvements to the prismatic envelope using another set of parameters. Figure 16 shows the �ow
solution(s) obtained using each of these grid systems. Unstructured grid solutions are obtained using the
NASA FUN3D [30] code and strand/Cartesian solutions are obtained using the Helios framework. There is
good overall agreement among the computed solutions. Detailed evaluation shows that there are observable
di�erences in the concave corner areas at the rear of the pylon attachment. The pylon attachment has a
sharp trailing-edge and a small amount of camber and hence behaves very similar to a wing. Both the strand
and AFLR3 grids capture of the rear stagnation point, which is absent in the solution using Pointwise grids.
Solution residuals converged by 6 orders of magnitude for all of these grids. Therefore, it is more likely
that the di�erences observed here are because of the di�erences in grids rather than lack of convergence of
the �ow solution. Figure 17 show similar grids generated for the missile geometry. The missile has four
�ns with sharp, zero-thickness trailing-edges. There are concavities present at the base of the �ns, and also
concave/convex corners present at the intersection of the �n trailing-edge and the body. The �ns also have
a sharp rectangular tips, with only one triangle straddling the tip towards the trailing-edge. The prismatic
envelope shows signi�cant di�erences between CLOVIS, AFLR3 and Pointwise methodologies. First, the use
of multi-strands provides much improved coverage and preserves orthogonality of prism layers compared to
the single vector approach used by AFLR3 and Pointwise. Second, the prismatic envelope shows irregularities
in both AFLR3 and Pointwise methodologies, while CLOVIS because of its use of the minimum distance
iso-surface, shows a regular and smooth envelope. Finally, while prismatic envelope collapse can be noted
with AFLR3, it is not present with Pointwise or CLOVIS. Figure 18 shows pressure contours around the
missile geometry. As in the business jet case, good overall agreement can be noted between all three mesh
systems and associated calculations. Detailed evaluation again shows observable di�erences. The AFLR3
mesh system shows substantial pressure oscillations towards the trailing-edge of �n, which are absent in
the CLOVIS mesh system and present to a smaller extent in the Pointwise mesh system. Note that both
CLOVIS and Pointwise generate meshes that are smoother towards the �n tip when compared with AFLR3
and the pressure oscillations are attributable to the lack of smoothness in the AFLR3 mesh.

4.2 Full aeroelastic calculations for the UH-60A aircraft

This test cases encompasses all the complexities that are encountered in a realistic simulation of rotorcraft
forward �ight. All the strand volume meshes used in this calculation were auto-generated using the prismatic
mesh generation technique. The mesh system, shown in Figure 19 has boundary surfaces with strong
convex, concave and concave-convex features. Self-intersecting meshes are trimmed to create optimal overlap
through an e�cient domain connectivity procedure [18]. As shown in the grid details in Figure 19(b-d),
concave features are adequately resolved using prismatic meshes and the self-intersections at tight corners
are appropriately removed to create an optimal overlap suitable for overset gridding.

17

Business Jet Geometry

(a) CLOVIS + smoothing (b) Advancing Front Method, AFLR3 (c) Pointwise (T-rex)

Figure 15: Grid details for the business jet geometry.

(a) Strand/Cartesian (Helios)

(b) Unstructured (AFLR3 + fun3d)

(c) Unstructured (Pointwise + fun3d)

Strand

Cartesian

Figure 16: Flow solutions for the business jet geometry, comparing strand/Cartesian and unstructured mixed
element grids.

18

(a) CLOVIS +
smoothing

(b) Advancing
Front method
(AFLR3)

(c) Pointwise, T-Rex

Store
geometry

Figure 17: Grid details for missile geometry.

(a) Strand/Cartesian (Helios)

(b) Unstructured (AFLR3 + fun3d)

(c) Unstructured (Pointwise + fun3d)

Figure 18: Flow solutions for missile geometry, comparing strand/Cartesian and unstructured mixed element
grids.

19

The calculation is performed for the high speed forward �ight condition of the UH-60A aircraft. The rotor
blades dynamically deform based on the aeroelastic response of the underlying blade structural model. The
Rotor Comprehensive Analysis System (RCAS [39]) code framework performs the computational structural
dynamics (CSD) and rotorcraft trim calculations. Exchange of loads and displacements between the CFD
and CSD and mesh deformations according to these displacements are facilitated through the conservative
MELODI [40] interface. Figure 20 shows comparisons between computations using strand/Cartesian grid
systems and traditional unstructured/Cartesian grids system. Good agreement can be noted in both the
surface Cp and Mach number �eld contours. Figure 21 compares the predicted aerodynamic loading

(a) Overall multi-mesh system

(b) Horizontal tail detail (c) Rear view with section
along inlet

(d) Inlet detail (e) Inlet Corner grids

Figure 19: Strand and Cartesian meshes generated for UH-60A blackhawk helicopter forward �ight test case.

with corresponding measurements obtained from the UH-60A �ight test campaign [41]. Good agreement
can be noted in both the phase and magnitude of the sectional normal force, chord force and pitching
moment variations when compared with the �ight test measurements. Furthermore, the strand grid based
predictions are seen to be in excellent agreement with corresponding predictions that used fully unstructured
mixed element meshes for the near-body.

4.3 NASA High Lift Common Research Model (HL-CRM)

The NASA HL-CRM is a wing-body high lift system in nominal landing con�guration, with slat and �aps
deployed at 30o and 37o respectively, without nacelle, pylon, tail and support brackets. This con�guration
has various geometric complexities that include highly convex thin trailing-edges that intersect the body
to form concave-convex features, small gaps between di�erent bodies and socket type features on the main
body that house the undeployed �aps and slat. The auto-generated strand/Cartesian mesh system for this
geometry is shown in Figure 22, where the overall con�guration and insets of mesh system near features such
as the slat/body gap, �ap/body gap, and �ap/�ap gap are portrayed. Multi-strand meshes, as shown in the
blunt trailing-edge inset, are generated for all bodies and provide better mesh resolution and orthogonality

20

(a) Unstructured/Cartesian mesh based solution

(b) Strand/Cartesian mesh based solution

Figure 20: Flow solutions for the UH-60A high speed forward �ight (advance ratio, µ = 0.368 and blade
loading, Cw

σ = 0.0783) problem obtained by the Helios [29] framework using Unstructured/Cartesian and
Strand/Cartesian mesh systems.

that improves the accuracy of capturing the shear-layers that are transported from one body to the other in
the high lift �ow scenario. Figure 23 shows the velocity magnitude and pressure coe�cient contours on the
high lift wing. Contours show smooth transition between the various mesh system and can be observed to be
fairly continuous across the overset interfaces, indicating good accuracy of the intra-mesh (self-intersections)
and inter-mesh (between bodies and the o�-body mesh) overset connectivity operations. Figure 24 shows
the pressure coe�cient variation at 5 chosen span stations from the strand/Cartesian computations and
their comparison with peer computations using unstructured/Cartesian mesh system with both NSU3D and
FUN3D used as the near-body solvers on the unstructured volume mesh. Good agreement can be noted
with all sets of computations, underscoring the ability of auto-generated strand/Cartesian mesh system to
capture results with the same level of accuracy as an unstructured mesh system.

5 Concluding Observations

Anisotropic prismatic mesh generation is required for simulation of high Reynolds number viscous �ows.
Automation of prismatic mesh represents a large stride towards improved usability and productivity of
CFD simulations and the work presented here contributes directly to achieving this goal. Speci�cally, we
designed, developed, implemented and tested a new methodology that uses the minimum distance �eld
as a guide for generating a prismatic envelope of a given surface. A set of algorithms were designed for
topology changes to accommodate multiple vectors per node (multi-strand), point placement in concave
areas and constrained smoothing using an elastic analogy. The point placement and constrained smoothing
algorithms are iterative in nature and amenable to highly parallel execution. Results obtained using the
automatically generated prismatic meshes show that: (1) Prismatic envelopes generated are similar or better
in quality to those obtained using widely available advancing front/tetrahedral merging methods and (2)
Good quality aerodynamic predictions are obtained when using the auto-generated strand/Cartesian mesh
system. Predictions show good agreement with measured data and excellent agreement with comparable

21

0.23

0.40

0.55

0.68

0.78

0.86

0.92

0.96

0.99

0 90 180 270 360
ψ

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

N
o
rm

a
l
Fo

rc
e
,
C
n
M

2
 [

-]
0.23

0.40

0.55

0.68

0.78

0.86

0.92

0.96

0.99

0 90 180 270 360
ψ

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

P
it

ch
in

g
 M

o
m

e
n
t,

 C
m
M

2
 [

-]

Flt8534(Measurement)

Unstructured/Cartesian (Helios)

Strand/Cartesian (Helios)

0.23

0.40

0.55

0.68

0.78

0.86

0.92

0.96

0.99

0 90 180 270 360
ψ

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

C
h
o
rd

 F
o
rc

e
,
C
c
M

2
 [

-]

Figure 21: Comparison of computed sectional aerodynamic loading on the rotor blades with measured
experimental data. Red lines are strand/Cartesian results and blue Lines are unstructured/Cartesian results.
Aerodynamic loading at di�erent sections of the blade are shown in a spread plot format. Loading is non-
dimensional and in the deformed airfoil frame. Normal Force : normal to the local chord line and towards the
suction side of the airfoil. Chord Force: aligned with the chord line and towards the leading edge. Pitching
moment : around the local quarter chord and positive nose-up.

calculations using fully unstructured volume meshes. Several challenges and open problems still remain in
this area, they are : (1) improvement of local mesh quality by inclusion of mesh quality gradient into the
spring smoothing technique (2) merging of topology to avoid very small elements and further increase the
prismatic level thickness (before self-intersections become necessary) and �nally (3) improved heuristic for
automatic determination of the number of levels and level thickness to obtain the prismatic envelope at a
desired distance for a given geometry.

Acknowledgments

Material presented in this paper is a product of the CREATE-AV Element of the Computational Research and
Engineering for Acquisition Tools and Environments (CREATE) Program sponsored by the U.S. Department
of Defense HPC Modernization Program O�ce. Authors are also grateful to Dr. Robert Haimes, for his
guidance and extensive discussions on various aspects of the meshing algorithms.

22

Figure 22: Mesh system used to model the High-lift Common Research Model (HLCRM)

Figure 23: Flow solution obtained for the High-lift Common Research Model (α = 8o, M = 0.2, Re =
3.26× 106)

References

[1] Shahyar Pirzadeh. Unstructured viscous grid generation by the advancing-layers method. AIAA journal,
32(8):1735�1737, 1994.

23

eta=0.240 eta=0.329 eta=0.552

eta=0.819 eta=0.908

Figure 24: Sectional pressure distributions at several span stations from strand/Cartesian computations and
their comparison to unstructured/Cartesian computations (α = 8o, M = 0.2, Re = 3.26× 106).

[2] Rainald Löhner. Progress in grid generation via the advancing front technique. Engineering with computers,
12(3-4):186�210, 1996.

[3] Yannis Kallinderis, Aly Khawaja, and Harlan McMorris. Hybrid prismatic/tetrahedral grid generation for viscous
�ows around complex geometries. AIAA journal, 34(2):291�298, 1996.

[4] David Marcum and J Gaither. Mixed element type unstructured grid generation for viscous �ow applications,
1999.

[5] Zhi Wang, Jaime Quintanal, and Roque Corral. Accelerating advancing layer viscous mesh generation for 3D
complex con�gurations. Procedia Engineering, 203:128�140, 2017.

[6] Frédéric Alauzet, Xiangrong Li, E Seegyoung Seol, and Mark S Shephard. Parallel anisotropic 3D mesh adap-
tation by mesh modi�cation. Engineering with Computers, 21(3):247�258, 2006.

[7] Frederic Alauzet and Dave Marcum. Metric-aligned and metric-orthogonal strategies in AFLR. In 23rd AIAA
Computational Fluid Dynamics Conference, page 3108, 2017.

[8] Frédéric Alauzet and David Marcum. A closed advancing-layer method with changing topology mesh movement
for viscous mesh generation. In Proceedings of the 22nd International Meshing Roundtable, pages 241�261.
Springer, 2014.

[9] Frédéric Alauzet and Adrien Loseille. A decade of progress on anisotropic mesh adaptation for computational
�uid dynamics. Computer-Aided Design, 72:13�39, 2016.

[10] Maximilian Tomac and David Eller. Towards automated hybrid-prismatic mesh generation. Procedia Engineering,
(82):377�389, 2014.

[11] VA Garanzha and LN Kudryavtseva. Hyperelastic springback technique for construction of prismatic mesh
layers. Procedia Engineering, 203:401�413, 2017.

[12] Robert Haimes. MOSS: multiple orthogonal strand system. Engineering with Computers, 31(3):453�463, 2015.
[13] Robert Meakin, Andrew Wissink, William Chan, and Shishir Pandya. On strand grids for complex �ows. In

18th AIAA Computational Fluid Dynamics Conference, page 3834, 2007.
[14] Adrien Loseille and Rainald Löhner. Robust boundary layer mesh generation. In Proceedings of the 21st Inter-

national Meshing Roundtable, pages 493�511. Springer, 2013.
[15] Aaron Katz, Andrew M Wissink, Venkateswaran Sankaran, Robert L Meakin, and William M Chan. Application

of strand meshes to complex aerodynamic �ow �elds. Journal of Computational Physics, 230(17):6512�6530,
2011.

24

[16] Aaron Katz and Dalon Work. High-order �ux correction/�nite di�erence schemes for strand grids. Journal of
computational physics, 282:360�380, 2015.

[17] Oisin Tong, Aaron Katz, Yushi Yanagita, Alex Casey, and Robert Schaap. High-order methods for turbulent
�ows on three-dimensional strand grids. Journal of Scienti�c Computing, 67(1):84�102, 2016.

[18] Jayanarayanan Sitaraman, Vinod K Lakshminarayan, Beatrice Roget, and Andrew M Wissink. Progress in
strand mesh generation and domain connectivity for dual-mesh CFD simulations. In 55th AIAA Aerospace
Sciences Meeting, page 0288, 2017.

[19] Vinod Lakshminarayan, Jayanarayanan Sitaraman, and Andrew Wissink. Sensitivity of rotorcraft hover predic-
tions to mesh resolution in strand grid framework. AIAA Journal, pages 1�12, 2017.

[20] Vinod K Lakshminarayan, Jayanarayanan Sitaraman, Beatrice Roget, and Andrew M Wissink. Simulation of
complex geometries using automatically generated strand meshes. In 2018 AIAA Aerospace Sciences Meeting,
page 0028, 2018.

[21] Jay Sitaraman and Beatrice Roget. OSCAR - an overset grid assembler for overlapping strand/cartesian mesh
systems. In 11th Symposium on Overset Composite Grids and Solution Technology, Dayton, Ohio, October 15-18,
2012.

[22] Romain Aubry and Rainald Löhner. On the most normal normal. International Journal for Numerical Methods
in Biomedical Engineering, 24(12):1641�1652, 2008.

[23] Romain Aubry and Rainald Löhner. Generation of viscous grids at ridges and corners. International Journal
for Numerical Methods in Engineering, 77(9):1247�1289, 2009.

[24] M Wissink, J Sitaraman, A Katz, and B Roget. Application of 3D strand mesh technology to rotorcraft hover.
In 53rd AIAA Aerospace Sciences Meeting, pages 2015�0044, 2015.

[25] Javier Bonet and Jaime Peraire. An alternating digital tree (ADT) algorithm for 3D geometric searching and
intersection problems. International Journal for Numerical Methods in Engineering, 31(1):1�17, 1991.

[26] Beatrice Roget and Jayanarayanan Sitaraman. Wall distance search algorithm using voxelized marching spheres.
Journal of Computational Physics, 241:76�94, 2013.

[27] PG Tucker. Di�erential equation-based wall distance computation for DES and RANS. Journal of computational
physics, 190(1):229�248, 2003.

[28] Derek Jung and Kamal K Gupta. Octree-based hierarchical distance maps for collision detection. Journal of
Robotic Systems, 14(11):789�806, 1997.

[29] Andrew M Wissink, Jayanarayanan Sitaraman, Buvaneswari Jayaraman, Beatrice Roget, Vinod K Lakshmi-
narayan, Mark A Potsdam, Rohit Jain, Andrew Bauer, and Roger Strawn. Recent advancements in the Helios
rotorcraft simulation code. In 54th AIAA Aerospace Sciences Meeting, page 0563, 2016.

[30] Robert T Biedron, Jan-Renee Carlson, Joseph M Derlaga, Peter A Gno�o, Dana P Hammond, William T Jones,
William L Kleb, Elizabeth M Lee-Rausch, Eric J Nielsen, Michael A Park, et al. FUN3D manual: 13.2. 2017.

[31] Dimitri J Mavriplis and Karthik Mani. Unstructured mesh solution techniques using the NSU3D solver. In 52nd
Aerospace Sciences Meeting, page 0081, 2014.

[32] P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic �ows. In 30th aerospace sciences
meeting and exhibit, page 439, 1992.

[33] Steven R Allmaras and Forrester T Johnson. Modi�cations and clari�cations for the implementation of the
Spalart-Allmaras turbulence model. In Seventh international conference on computational �uid dynamics (IC-
CFD7), pages 1�11, 2012.

[34] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on scienti�c Computing, 20(1):359�392, 1998.

[35] Vinod K Lakshminarayan, Jayanarayanan Sitaraman, Beatrice Roget, and Andrew M Wissink. Development
and validation of a multi-strand solver for complex aerodynamic �ows. Computers & Fluids, 147:41�62, 2017.

[36] Andrew M Wissink, Richard D Hornung, Scott R Kohn, Steve S Smith, and Noah Elliott. Large scale parallel
structured AMR calculations using the SAMRAI framework. In Supercomputing, ACM/IEEE 2001 Conference,
pages 22�22. IEEE, 2001.

[37] David L Marcum. Advancing-front/local-reconnection (AFLR) unstructured grid generation. In Computational
Fluid Dynamics Review 1998: (In 2 Volumes), pages 140�157. World Scienti�c, 1998.

[38] John P Steinbrenner. Construction of prism and hex layers from anisotropic tetrahedra. In 22nd AIAA Com-
putational Fluid Dynamics Conference, page 2296, 2015.

[39] H Saberi, M Hasbun, JY Hong, H Yeo, and RA Ormiston. Overview of RCAS capabilities, validations, and
rotorcraft applications. In Proceedings of the American Helicopter Society 71st Annual Forum, pages 5�7, 2015.

[40] Beatrice Roget, Jay Sitaraman, and Andrew M Wissink. Maneuvering rotorcraft simulations using CREATE
A/V Helios. In 54th AIAA Aerospace Sciences Meeting, page 1057, 2016.

[41] R Kufeld, Dwight L Balough, Je�rey L Cross, and Karen F Studebaker. Flight testing the UH-60A airloads
aircraft. In ANNUAL FORUM PROCEEDINGS-AMERICAN HELICOPTER SOCIETY, volume 5, pages 557�
557. American Helicopter Society, 1994.

25

Appendix

Algorithm 1 Initial strand placement

1: X: set of surface grid node coordinates (xi)
2: S: set of tuples describing facets
3: L: desired distance from the surface to place points
4: Y : (output) set of strand end node coordinates (yi)
5: procedure InitStrands(X,S,L)
6: S ← (X,S) . discrete surface tessellation
7: for each si ∈ S do

8: ni ← facetNormal(si)
9: end for

10: for each xi ∈ X do

11: V ← {nj} . set of normals of all facets that have xi as a corner
12: ni ← MNN(xi, V) . best visibility direction (MNN algorithm [22])
13: m← xi + Lni

14: d← MinDist (m,S) . minimum distance to the surface (X,S)
15: if d < L then . xi is in a concave region w.r.t to IL

16: c← CLOVIS(xi, ni,S, L) . See section 2.6.5
17: if c outside visibility region then

18: yi ← m
19: else

20: yi ← c
21: end if

22: else

23: yi ← m
24: end if

25: end for

26: end procedure

Algorithm 2 Initial Guess for CLOVIS

1: A: surface node location
2: ~n: initial normal (best visibility direction if de�ned, average normal otherwise)
3: S: set of tuples describing facets
4: L: desired distance from the surface to place points
5: B: (output) end point of strand vector on minimum distance iso-surface, IL

6: procedure InitCLOVIS(A,~n,S,L) . Find a good initial guess that lies on the IL

7: i← 0
8: B ← A+ L~n
9: [d,C]← MinDist (B,S) . Distance and location of closest point on the surface S
10: while |d− L| > ε do
11: i← i+ 1
12: [d,C]← MinDist (C + L

d

−−→
CB,S)

13: end while

14: return B
15: end procedure

26

Algorithm 3 CLOVIS

1: A: surface node location
2: ~n: Initial normal, usually MNN

3: S: surface tessellation
4: L : Iso-surface distance desired
5: B : Closest point on the iso-surface (output)
6: procedure CLOVIS(A,~n,S,L) . Find the closest vertex on the minimum distance iso-surface
7: i← 1
8: B1 ← InitCLOVIS(A,~n,S, L)
9: [di, Ci]← MinDist (Bi,S)
10: α← 0.02×ACi . Initial guess for line search parameter
11: repeat

12: ~si ←
“−−−→
BiCi ×

−−→
BiA

”
×
−−−→
BiCi

13: repeat . �nd α that will ensure ‖ABi+1‖ < ‖ABi‖
14: α← 0.5× α
15: Bt ← Bi + α ~si

‖~si‖

16: Bt ← A+ ABt
‖ABt‖‖ABi‖ . Move Bt such that ‖ABt‖ = ‖ABi‖

17: [dt, ct]← MinDist (Bt,S)
18: until dt ≤ L and α > ε . dt ≤ L =⇒ ‖ABi+1‖ > ‖ABi‖
19: if α ≤ ε then . No α can reduce distance, minimum distance point is found
20: B ← Bi

21: return B
22: else

23: Bi+1 ← flushToIso(A,Bt, L) . Shorten ABt such that Bi+1 lies on L
24: α← 4.0× α . Increase line search parameter for the next iterate
25: i← i+ 1
26: [di, Ci]← MinDist (Bi,S)
27: end if

28: until ‖Bi+1 −Bi‖ > ε
29: B ← Bi

30: return B
31: end procedure

27

