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Abstract: The current work represents an analysis of Computational Wind 

Engineering of a dense complex urban environment and translation of the results to 

optimizing the path planning for Unmanned Aerial Vehicles (UAV). Investigations 

into the behavior of the k-ε and k-ω SST turbulence models on sufficiently 

representative geometries were conducted. The steady-state simulations are done on 

the Architectural Institute of Japan (AIJ) Case B and Case F geometries. The steady-

state data obtained will then need to be translated to transient data in order to better 

represent flow characteristics that an Unmanned Aerial Vehicles (UAV) will 

experience. The performance of the k-ω SST is deemed better than that of the k-ε 

model for path optimization. 
 

Keywords: Computational Wind Engineering, Unmanned Aerial Vehicles, 

Turbulence Modelling 

 

1     Introduction 
 
With the increasing popularity of Unmanned Aerial Vehicles (UAVs), their safe operation in dense 

urban environments remains a critical challenge. It is expected that UAVs will operate completely 

autonomously in urban scenarios. Hence, there is a need to understand the behaviour of flow within the 

urban environment to ensure safer operation [1]. Better understanding of how the external flow affects 

the UAV dynamics will enable optimal path planning with increased predictability of the UAV response 

and therefore increase safety, efficiency and performance of UAV applications in urban settings. In 

addition, insights gained from understanding urban flow in complex environments can contribute 

towards other applications like the pedestrian wind comfort assessment [2]. 

 

The usage of Computational Wind Engineering (CWE) to assess and analyse flow characteristics is an 

attractive alternative to conventional wind tunnel testing due to the inherit cost, time and efficiency 

savings. With the rapid availability of significant low-cost computing power and rapid model 

prototyping, Computational Fluid Dynamics (CFD) simulations provide a fast and efficient means to 

simulate concurrently a large number of models. However, while CWE as a whole has become a well-

established field today [3], [4] applications for CWE towards full scale and highly complex urban 

environments still need further work. This is evidenced by the lack of studies that address full scale 

complex environments likely due to the needed computational power which has only recently been 

made available. With regards to path planning, only one study, conducted by Murray and Anderson [1] 

has investigated the practical application of CWE data to path planning. 

 

The following review provides an overview of current progress on CWE studies with sufficiently 

complex urban environments. The study by Hooff et al [5] on cross-ventilated flows demonstrates the 

recent application of CFD for  CWE for simple geometries. While the study focuses predominantly on 

the comparison of turbulence models in prediction accuracy, the results from the simple geometry used 
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may not provide a good enough representation of flow behaviour for full urban environments. In another 

study by Hooff and Blocken [6], which investigates the indoor natural ventilation of a stadium, the 

surrounding geometries have been considered. The simulation results show that overheating can be an 

issue and that CO2 build-up in certain areas do not meet regulatory standards depending on the wind 

direction. Ventilation inside the stadium was found to be significantly affected by surrounding obstacles 

which emphasizes the need to consider the surrounding urban environment when investigating internal 

flow. 

 

In the case of external flow fields, there are several key considerations that have been the primary focus 

of research in CWE. The selection of turbulence modelling is a major consideration. A previous study 

by Mochida and Lun [7] investigated the prediction accuracy of the wind environment and thermal 

comfort in an urban environment using Large Eddy Simulation (LES). They concluded that LES has 

significantly better performance over standard and modified k-ε models at the time. Performance 

deficits in the revised k-ε model came in the form of over-prediction of the Turbulent Kinetic Energy 

(TKE). Additionally, Mochida and Lun [7] further stated that all k-ε models are unable to reproduce 

vortex shedding from buildings, over-predicted the reattachment length behind buildings and under-

predicted velocity values in their wakes. These performance deficits have likely implicated the usage 

of LES as the preferred model to be used in CWE. Tamura [8] further demonstrated the practical usage 

of LES in CWE and found it to be sufficiently accurate. Thus, LES will be considered as a viable 

turbulence model in CWE. 

 

However, a big drawback of LES is the computational cost as highlighted by Blocken [9] in the review 

of CFD for urban physics. The increasing availability of computational power can offset the 

computational demands of LES [8]. However, the study by Hooff et al [5] in 2017, demonstrated that 

the available computing power is still not viable for LES to compete with slightly less accurate models 

like Reynolds-Averaged Navier Stokes (RANS). The difference in computing power between LES and 

RANS as much as 102 orders of magnitude. Additionally, extensive best practice guidelines for LES 

have not been established unlike RANS where such guidelines have been developed extensively [9]. 

 

There are many variants of the RANS models besides the standard k-ε that have been demonstrated in 

CWE applications. These range from specially modified k-ε turbulence models [10] like Re-Normalised 

Group (RNG) k-ε and Chen-Kim k-ε [11] to the Wilcox k-ω model and its coupling with a modified 

definition of the eddy viscosity to form k-ω SST [12] as presented in detail in [3], [6]. The computational 

cheaper RANS models, and in particular the steady RANS variants of k-ε, are the most commonly used 

turbulence models despite their drawbacks [3].  

 

The AIJ working group has done extensive work in the field of CWE where they have conducted a 

combination of wind tunnel, field measurements and CFD simulations to give extensive data for uses 

ranging from verification to validation [4], [10]. Critically, within the studies conducted by AIJ, the 

availability of a sufficiently complex geometry, Case F (Shinjuku) is available along with experimental 

data. The AIJ projects [10] have also shown experimentally that k-ε underestimates the wind speed in 

the wake region of buildings since k-ε is unable to reproduce vortex shedding. Hence, this project will 

study the applicability of other turbulence models for complex urban environments as studied in the 

AIJ project. From the conclusions of the work by Hooff et al [5], the k-ω SST will be primarily evaluated 

in this paper. Table 1 shows an overview of CFD studies that use the k-ω SST model. Although the list 

is not exhaustive, there is a lack in literature to demonstrate the validity of k-ω SST models for highly 

complex and dense urban environments like the AIJ Shinjuku geometry. In terms of external flow fields, 

only the review by Blocken et al [13] evaluating the accuracy of wind tunnel and CFD techniques for 

studies on wind comfort is relevant. However, the review only provides a general consensus that less 

expensive techniques like RANS, which includes the k-ω SST, model may be sufficiently accurate. 
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Table 1: A non-exhaustive list of various CWE studies using the k-ω SST turbulence models. 
 

Author Year Case Study Agreeability of k-ω SST Ref. 

Blocken 

et al. 
2016 Includes various case studies  

Supports continued use of 

less expensive techniques 

(k-ω SST) 

[13] 

Hu et al. 2005 
Cross-ventilation between outdoor 

and indoor spaces 

Able to sufficiently 

predict flow features 
[14] 

Peren et 

al. 

2014, 

2015, 

2016 

Generic Isolated building with 

asymmetric openings for cross-

ventilation 

k-ω SST provides the best 

prediction and is used for 

all analysis types 

[15]–[18] 

Ramponi 

& 

Blocken 

2012 
Generic Isolated buildings for 

cross-ventilation 

k-ω SST provides the best 

prediction (computational 

parameters & validation 

study) 

[19], [20] 

 
This paper will focus on the comparison of k-ω SST with the more commonly used k-ε model for CWE 

studies of large, highly compact and dense urban environments. The accuracy of k-ω SST coupled with 

its less expensive computational demand make it a prime candidate for complex CWE simulations 

where more accurate models like LES are too computationally expensive. We will firstly evaluate the 

turbulence models in terms of accuracy for sufficiently complex urban environments. In addition to the 

investigation of the k-ω SST model, this work will also analyse the potential inaccuracies of k-ε by 

comparing the CFD results to the experimental data from the AIJ project [10]. 

 

The aspect of the paper addresses the computational cost to enable the practical application of CWE for 

path planning of UAVs. Following the approach in [1], steady state CFD data can be converted to a 

transient flow representation using the flow TKE values as an input for stochastic models of continuous 

wind turbulence. These transient results can be applied as gust loads to the UAV dynamics which allows 

better prediction in UAV path optimization without the need to run computationally expensive transient 

simulations, thus saving significant computational cost.  

 

In short, the objectives of this work can be defined as:  

1) Investigate the performance of the k-ε and k-ω SST turbulence models for flow over a 

sufficiently complex urban environment for future CWE studies. 

2) Translation of steady-state CFD data to transient flow representation for UAV path 

optimization. 

 

The remainder of the paper will firstly introduce the CFD methodology and its validation to accurately 

simulate the flow around complex urban environments followed by numerical studies in Section 3 that 

compare the performance of different turbulence models for such urban settings. The paper concludes 

with an overview on how the CFD data can be applied to UAV path planning.  
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2     Methodology 
 
This section will introduce the implementation of the CWE simulation environment using SimScale, a 

cloud-based simulation platform using OpenFOAM. SimScale provides a graphical user interface 

where important aspects such as meshing, simulation and post-processing can be done in a browser 

with no need for local software. The availability of large and accessible computing power is a key 

advantage especially in performing complex CWE simulations. OpenFOAM is an open source 

numerical solver that is the primary solver used by SimScale. The usage of SimScale as a simulation 

platform and the implementation of simulation parameters as well as boundary conditions will be 

validated in this section against the experimental data by AIJ [10].  

 

2.1     Geometry and computational grid 
 
In this work we aim to demonstrate the applicability of k-ω SST for a hierarchy of model complexities. 

Due to the availability of experimental, this paper demonstrates the implementation of the CWE 

environment for the following AIJ benchmark test cases with growing modelling complexity [10]:  

1. The AIJ benchmark test case B 4:4:1 shape building model 

2. The AIJ benchmark test case F building complexes with complicated building geometry 

representing the actual urban area (Shinjuku) 

For both benchmark test cases, the geometry is obtained directly from the AIJ [10] CFD guide website 

and can be seen in Figure 1. The selected test cases represent complex urban scenarios with availability 

of experimental data and original source files for the geometries to ensure accuracy. The AIJ Case B, 

while not a complex urban geometry, will be analysed to perform an initial verification of the platform 

as presented in Section 2.4. 

 

 
 

Figure 1: AIJ Case B isolated building geometry (left) and Case F (Shinjuku) geometry (right) [10]. 
 
For the computational domain size, we follow the recommendations in Refs. [9]-[21] to use the 

directional BR criteria for determination of domain size in addition to the Type 1 guidelines [9]. Type 

1 guideline is the requirement for a fixed minimum distance between the geometry and the boundary. 

The set of criteria used in this case is stricter that those used by COST [22] and AIJ [4]. Similar 

guidelines will be applied to the Case B geometry as well but as the geometry is simple, computational 

cost can be saved by simply adhering to a minimum distance from the inlet to the geometry. The length 

and height of the domain size for the complex geometry of AIJ Case F (Shinjuku) are given by  

 𝐵𝑅𝐿 =
𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

𝐿𝑑𝑜𝑚𝑎𝑖𝑛
≤ 17%   and    𝐵𝑅𝐻 =

𝐻𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

𝐻𝑑𝑜𝑚𝑎𝑖𝑛
≤ 17% (1) 

The resulting domain dimensions are shown in Table 2. 
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Table 2: Domain length calculations for AIJ Case F (Shinjuku). 

 

Geometry 
AIJ Case F 

(Shinjuku) 

X Length (m) 1070 

Y Length (m) 1010 

Z Length (m) 225 

Directional BR X (%) 16.98 

Directional BR Y (%) 16.95 

Directional BR Z (%) 16.79 

Domain X Length (m) 6300 

Domain Y Length (m) 5960 

Domain Z Length (m) 1340 

 

The computational grid is created using the Hex-Dominant Parametric mesher in SimScale which 

utilizes SnappyHexMesh, an iterative mesh builder, to create a hexahedral unstructured mesh. The mesh 

has been refined at the areas in front of the geometry of the inlet and where the geometry itself is located. 

The level of fineness is adjusted in order to achieve three different grids for the mesh convergence study 

with a factor of 1.5 times between meshes [9]. The mesh convergence results are presented in Section 

2.4. 

 

2.2     Boundary conditions 
 
The boundary conditions used in the simulations aim to replicate the experimental setup of the test cases 

from AIJ [10]. For the inlet, a fixed logarithmic inlet profile is used as provided by AIJ for both Cases 

B and F. The corresponding TKE is also provided but only for Case F. Data for the turbulence 

dissipation ε and specific turbulence dissipation rate ω are calculated separately from the available inlet 

data. 

 

The AIJ Case B isolated building geometry, as seen in Figure 1, is simulated with the selected 

turbulence model of k-ω SST and standard k-ε for comparison. The simulation type is incompressible 

and at a steady-state. The power-law velocity inlet is defined by AIJ [10] is replicated as the inlet of the 

simulation and is shown in Figure 2. The remaining boundary conditions and solver settings are 

identical to that of Case F as elaborated next. 

 



 6 

 
 

Figure 2: Inlet velocity profile for Case B. 

 
For Case F, the inlet reference velocity of 7.8 m/s at a height of 500 m is obtained from AIJ [10]. To 

deduce the inlet profile for the simulations, we follow the equations also provided by AIJ. The inlet 

velocity is given as,  

 
𝑈(𝑧) =

𝑢𝐴𝐵𝐿
∗

𝜅
𝑙𝑛 (

𝑧 + 𝑧0

𝑧0
)   (2) 

where 𝜅 is the model constant of 0.4 provided by AIJ [10]. The TKE is found as, 

 
𝑘(𝑧) =

𝑢𝐴𝐵𝐿
∗2

√𝐶𝜇

 (3) 

with the atmospheric boundary layer friction velocity given as 

From Blocken [5] we can calculate ω as 

 
𝜔(𝑧) =

𝜀(𝑧)

𝐶𝜇𝑘(𝑧)
 (5)  

with 

 

The simulation inputs for the inlet profile against height have been plotted in Figure 3 and Figure 4 for 

demonstration.  
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(𝑢𝐴𝐵𝐿
∗ )3

𝜅(𝑧 + 𝑧0)
 (6) 
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Figure 3: Velocity Profile (left) and TKE profile (right) at inlet for AIJ Case F (Shinjuku). 

 

 
 

Figure 4: Turbulence dissipation profile (left) and specific turbulence dissipation profile (right) at inlet for AIJ 

Case F (Shinjuku). 
 
For the sides and top of the domain, a symmetry boundary condition is used. The symmetry boundary 

condition applies a zero flux, a velocity normal component of zero and all normal components of all 

other variables as zero. For the outlet of the domain, a static gauge pressure outlet is defined and set to 

zero. The geometry boundary condition is set as a no-slip wall coupled with a wall function that allows 

a coarser mesh to be used near wall regions. For the floor, the velocity and pressure gradients are set to 

zero while the TKE, ε and ω are wall functions. Wall roughness is also activated where the roughness 

height Z0 is 0.00018 for Case B and 0.024 for Case F following documentation from AIJ [10]. The 

assignments of the boundary conditions can be seen in Figure 5. 
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Figure 5: Visual representation of the boundary conditions for AIJ Case F at the end of the simulation. 

 

2.3     Solver settings 
 
The solver is utilized in the investigations is the Semi-Implicit Method for Pressure-Linked Equations 

(SIMPLE) algorithm as flow is steady-state and incompressible. The fluid domain is air with a 

Newtonian viscosity model. The density is 1.225 kg/m3 with a kinematic viscosity of 1.478E-05 m2/s.  

 

For the numerical control schemes, the pressure-based scheme is Generalised Geometric-Algebraic 

Multi-Grid (GAMG) and for the velocity, TKE and specific turbulence dissipation rate ω, the 

Preconditioned Bi-Conjugate Gradient (PBiCG) scheme is applied. These are the default solver scheme 

settings and are used they have a good balance of stability and convergence speed in practice. The 

solution for pressure is also under-relaxed with the default value of 0.7 reduced to 0.3 in order achieve 

better convergence for the pressure residuals at the cost of increased time to converge. The iterative 

convergence criteria is set to 1E-5 as mentioned by Blocken [9] where at least four orders of magnitude 

is recommended. Due to the nature of the mesh, second order discretization schemes are not able to be 

used due to insufficient grid quality which brings about instability.  

 

The simulation settings for the incompressible flow are set for an end time of 6000 with a timestep of 

1. The potential flow is initialized in order to speed up convergence and increase stability of the 

simulation. The simulation is also done on 96 computing cores in the cloud on the SimScale platform 

and a scotch decomposition algorithm is used to split the processing tasks in order to simulate in parallel 

across all computing cores. Force plots on several surfaces of the geometry are tracked to ensure steady-

state is reached and a convergence graph is produced upon the start of the simulation.  

 

2.4     Mesh convergence study and Validation 
 
A mesh convergence study is performed to ensure that the mesh used is optimal in terms of cell count 

and accuracy. The comparison point used for the Case B geometry is the velocity profile at various 

points along the length of the domain as seen in Figure 6. The points are at 0m, 0.025m and 0.05m from 

the centre point of the geometry. For Case F, comparison points are between the normalized velocity 

ratios at the points of interest. The location of the points is depicted in Figure 7. 
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Figure 6 Points of interest for horizontal view of AIJ Case B [10]. 

 

 
 

Figure 7: Location of points of interest on AIJ Case F geometry [10]. 
 

 

For Case B, 3 meshes are created that are approximately 1.5 times finer than the previous mesh. The 

coarse mesh contains 366425 cells, fine mesh 582674 cells and finest mesh 821914 cells. Shown in 

Figure 8 is the velocity profiles across the points of interest. The deviation of the results for all meshes 

are less than 5%. However, the deviation between the fine and finest mesh is less than 1% despite a 

slightly higher cell count and thus will be primary mesh used. 
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Figure 8: Velocity profiles for Case B for coarse, fine and finest meshes. 

 
Since a non-typical simulation software is used for this investigation, validation of the solver is needed. 

This is done by comparing steady-state results from Case B with the experimental results provided by 

AIJ. The results are shown in Figure 9. From the results, the solver is deemed as verified and sufficiently 

accurate for continued usage. Both turbulence models also seem to agree well with the experimental 

results.  

 

 
 

Figure 9: Velocity plot at x/b = 0.05m, for Case B comparing experimental data [10] versus k-ω SST and k-ε 

results.  
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For Case F three meshes are also created that are approximately 1.5 times finer than the previous mesh. 

The coarse mesh contains 23.69 million cells, the fine mesh 38.46 million cells and the finest mesh 55.7 

million cells. The normalized velocities at the points of interest based on the available data, points 1 to 

15, are tabulated along with the various percentage differences in Table 3. It should be noted that points 

4 and 12 are the points for velocity normalization and are not included. In this case, the velocity is 

normalized with point 4 (point C) and point 12 (point D) as stated in AIJ’s documentation [10]. 

 
Table 3: Differences for the Normalized Velocity Ratio (For Course/ Fine and Finest Mesh). 

 

Points (Case F 

Velocity Ratio) 

Normalized C 

% Difference 

(Coarse/Fine) 

Normalized D 

% Difference 

(Coarse/Fine) 

Normalized C 

% Difference 

(Fine/Finest) 

Normalized D 

% Difference 

(Fine/Finest) 

1 10.18 9.87 31.26 22.18 

2 29.43 29.87 58.38 61.26 

3 22.94 22.68 34.81 25.48 

5 0.54 0.88 18.91 24.52 

6 43.36 43.17 167.83 149.30 

7 8.19 8.56 9.98 16.21 

8 7.05 7.42 9.72 2.13 

9 18.40 18.81 7.60 13.99 

10 29.85 30.30 46.71 50.40 

11 2.31 2.66 13.21 5.38 

13 3.17 2.84 2.40 4.69 

14 11.36 11.05 32.73 23.54 

15 7.72 8.09 16.69 22.46 

 

From the mesh convergence study, there is significant result deviation at several points. The deviation 

between the fine and finest mesh is much larger than that between the coarse and fine mesh. As such, 

the coarse and fine mesh will be mainly considered to be usable. While points 2, 3, 6, 9 and 10 have 

deviations of than 20%, the complexity of the geometry means that keeping these points within 

deviation is difficult. Thus, special attention needs to be paid to these points when the final results are 

considered. The mesh to be used will be the fine mesh as it provides a good compromise between result 

accuracy and computational cost. 

 

3     Results and Discussion 
 

3.1     Comparison of turbulence model for Case F 

 
To evaluate the accuracy of the k-ω SST and k-ε models for the complex urban Case F [10], we compare 

the velocities at the points of interest as defined in Figure 7.The velocities normalized by point C in 

order to form comparative data with the experimental results from AIJ. The points of interest including 

normalization points C and D are marked shown in Figure 7. It should be noted that while more points 

beyond 15 do exist in the AIJ experimental data, for the flow progressing from west to east, only points 

1 to 15 and ratios normalized by point C contain the standard deviation data for the velocity ratio. 

Hence, only those points with available data will be considered in this work. All points with exception 

of the normalization points C and D are 10m above the ground. 
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Figure 10: Comparison of the west inlet normalised by Point C for the different turbulence approximations 

against experimental results for AIJ Case F [10].  
 
The resulting normalized velocities for the first 15 points of interest are compared in Figure 10 against 

experimental results. Points that are below the field mean and outside the standard deviation range are 

deemed as underpredicted. Likewise, points above the field mean indicate overpredicted results. From 

the literature review, it has been identified that the k-ε underperforms in wake prediction. This is 

reinforced in the current study by examining the data at point 3, 6, 8, 9 and 15 where the k-ε model 

underpredicts the velocities as compared to the k-ω SST model. At points 3, 6 and 15, the 

underprediction has caused the velocity to be out of acceptable margin compared to the experimental 

data.  

 

Regarding overprediction, the k-ε model performs better in general where only point 1 is overpredicted 

(out of margin) while the k-ω SST model overpredicts (out of margin) the velocity at points 1 and 13. 

For both points, it has been examined that the over-prediction is likely due to poor mesh quality in the 

regions around points 1 and 13.  

 

Finally, to evaluate the accuracy of both turbulence models to capture the flow in this complex urban 

environment, we compare the number of points where the velocity predictions outside the margins of 

standard deviation. For the k-ε model, there are five points out of margin (1, 3, 6, 9, 15) with point 1 

overpredicting and the remaining points underpredicting. The k-ω SST model tends to overpredict the 

velocity profile with points 1, 13 and 14 overpredicting while points 9 and 10 underpredict the results.  

 

Performance of the two turbulence models can be deemed similar with regards to accuracy. However, 

in the use case of UAV path optimization, overprediction is more desirable as regions of strong wind 

flow can be identified and compensated for in a conservative manner. This is in contrast to 

underprediction where incorrectly captured adverse flow gradients can lead to critical and poor UAV 

performance. Despite several deficits in prediction for the AIJ Case F benchmark test, we consider the 

k-ω SST model the better approach for CWE of urban environments, especially in the context of safe 

path planning for UAVs in an urban setting. 
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3.2     Application to UAV path optimization 

 
In the final section we demonstrate how the CWE results for urban environments can be used for 

optimal path planning in UAV applications. By analysing the CFD simulation results at different heights 

throughout the entire domain, we can determine areas where strong velocity gradients or high 

turbulence occur in order to compensate for the continuous turbulence effects or avoid such areas 

entirely. Here, we consider the approach by Murray and Anderson [1] which models the response of a 

UAV to determine its safe operating limit as a function of the flow TKE values. Once a TKE limit has 

been determined for a specific UAV design, the CWE results can be used to determine optimal or safe 

paths for the UAV to operate. Figure 11 shows an example of such a manual path planning exercise 

through the AIJ Case F geometry by simply avoiding regions of high TKE. However, based on 

computed TKE values for different wind directions, the process can be automated using model-based 

optimisation methods for 3D path planning of UAVs [23].  

 

 
 

Figure 11: TKE contour at 10m for AIJ Case F geometry [10] with a sample UAV path. 
 

The steady-state results, as shown in Figure 11 are a good indicator of possible areas of high flow 

gradients, but the results are not able to sufficiently replicate transient disturbances over time. While a 

possible solution to this lack of data would be a transient simulation of the complex geometry, with 

current computational resources it is still too expensive due to the large number of cells involved in a 

typical urban flow study. Instead, Murray and Anderson [1] propose a method based on stochastic wind 

turbulence models to approximate the transient flow behaviour based on steady-state CFD results. 

 

Atmospheric turbulence is typically modelled as a stochastic process in classical flight simulation. The 

continuous von Kármán and Dryden turbulence models are the most established turbulence 

representation in flight simulation and aircraft certification to evaluate the effects of continuous gust 

disturbances on the aircraft flight behaviour [24]. Similar approaches have also been applied to gust 

modelling on large wind turbines [25] and, recently, also on the gust response of UAVs in urban 

airspaces [1]. 
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Following the example in [1] and the standard approach in Matlab [26], we consider the Dryden 

spectrum to model the transient wind behaviour and obtain a temporal representation of the flow around 

urban environments. Based on the Dryden turbulence model [26], the spectra for disturbance velocities 

in longitudinal, lateral and vertical directions are defined as 

 

 
Φ𝑢,𝑣(𝜔) = 𝜎2

2𝐿

𝜋𝑉

1

(1 + (
𝐿𝜔
𝑉

)
2

)

2 
(7) 

 

Φ𝑤(𝜔) = 𝜎2
𝐿

𝜋𝑉

1 + 3 (
𝐿𝜔
𝑉

)
2

(1 + (
𝐿𝜔
𝑉

)
2

)

2 (8) 

where 𝑢, 𝑣 and 𝑤 represent the longitudinal, lateral and vertical velocity contributions. In typical 

certification requirements [27], the turbulence intensities 𝜎𝑢,𝑣,𝑤 are defined as a function of the wind 

velocity at 20 feet. In this work, however, we can use the CFD results directly to compute the root-

mean-square of the velocity intensity 𝜎 = 𝜎𝑢 = 𝜎𝑣 = 𝜎𝑤  based on the TKE values 𝑘 at every point in 

the 3D domain from 

 

𝜎 = 𝜎𝑢 = 𝜎𝑣 = 𝜎𝑤 = 𝑢′ = √
1

3
(𝑢𝑥

′ 2
+ 𝑢𝑦

′ 2
+ 𝑢𝑧

′ 2) = √
2

3
𝑘 (9) 

The turbulence length scale 𝐿 in equations (7)-(8) is typically approximated as simply the height of the 

UAV for low altitude situations less than 300 m [26] The above relations are valid for single point 

analyses, however, if we are interested in analysing the 3D representation of the atmospheric turbulence 

field, we can extend the approach following [28] to include the spatial cross-correlations in the 

turbulence spectra.  

 

The Dryden spectrum is defined in equations (7)-(8) in terms of reduced frequencies 𝜔. To obtain the 

temporal representation, a continuous forming filter based on the Dryden spectrum is typically used 

[26] By driving the Dryden filter with a unit variance, white noise signal we can obtain a random time 

history that follows the Dryden spectrum. Alternatively, we can obtain the time history of the gust 

velocities, 𝐺𝑢,𝑣,𝑤, in 3D efficiently through an inverse Fourier transform of equations (7)-(8), as 

 
𝐺𝑢,𝑣,𝑤(𝑡) = ∑ √Φ𝑢,𝑣,𝑤(𝜔𝑚)Δ𝜔

∞

𝑚=1

cos (𝜔𝑚𝑡 + 𝜓𝑚) (10) 

where the phase angle −𝜋 ≤ 𝜓𝑚 < 𝜋 is generated as a random process to encapsulate the random 

nature in the disturbance signal. The longitudinal, lateral and vertical velocities, 𝐺𝑢, 𝐺𝑣 and 𝐺𝑤, can be 

inputted directly in a UAV dynamics model as an external flow disturbance. As proposed in [1], we can 

then determine critical levels of TKE based on the UAV simulation. The results can be used to either 

tune the UAV control system or completely avoid areas of high TKE for a safe UAV operation. The 

latter approach links directly to research in UAV path planning and obstacle avoidance where high TKE 

areas can be considered as obstacles.  

 

The simulations in [1] determined an operating limit for TKE values of 6 J/kg for the specific UAV 

used in the study. As seen from the TKE contours in Figure 11, the highest TKE value is 2 J/kg in the 

current AIJ study. For this urban scenario, the UAV is able to safely operate for this particular wind 

direction at a height 10m. However, different UAV designs react very differently to gust disturbances 

and will exhibit different TKE limits. The proposed CFD-based simulation approach for highly complex 

urban environments therefore provides a fast and stable method to generate the flow field. The approach 

can be used to test the effect of different wind directions or investigate the alleviating effects of changes 

in the building geometries.  
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4     Conclusions and Future Work 

 
Usage of full scale highly detailed complex urban geometries is now possible due to the increase in 

available and accessible computational power. The use of a cloud-based CFD solver to perform analysis 

for otherwise very computationally expensive cases is key factor in further development and 

understanding of CWE for practical uses. Several points can be concluded from the investigation:  

 

1. The performance between the k-ε and k-ω SST turbulence models for overall prediction 

accuracy is similar for a highly complex urban geometry. However, the k-ε model underpredicts 

at more points than the k-ω SST model. For applications to UAV pathing where underprediction 

is less desirable than overprediction, the k-ω SST model is deemed as better performing. 

2. Result accuracy can be better improved should additional attention be paid to creation of the 

mesh. Areas that contain complex flow interaction which includes features such as ground 

elevation and non-regular structures will need higher mesh qualities in order to deduce accurate 

data. Ensuring sufficient mesh quality at these areas would also ensure that flow effects can be 

captured that will affect the accuracy of prediction downstream. 

3. With the translation of a steady-state data to a representative transient one, further prediction 

accuracy can be gained especially towards applications for UAV path optimization. Usage of 

such a method can also be applied for other CWE analysis where usage steady-state data is not 

sufficient, yet fully transient simulations are not economical. 

Future studies should investigate other or all available wind directions if possible to further validate the 

conclusions drawn from this study. Additionally, other types of turbulence models can use the same 

approach from this study in order to assess their performance. Suggestions for other turbulence models 

include but are not limited to RNG k-ε, realizable k-ε or even hybrid LES. It should be noted that LES 

may still be too computationally expensive to be used with a mesh of this size. 

 

Inclusion of details like thermal effects and geometrical details such as trees or small obstacles may 

affect the results and prediction accuracy to varying degrees. As such in future studies consideration or 

inclusion of such effects should be assessed to determine the amount of influence they have. 
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