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Abstract: This paper discusses numerical stability of the split-form FR scheme for 

a practical flow simulation involving wall boundary condition and high-order curved 

mesh, i.e., laminar flow simulation of the NACA0012 airfoil. Numerical stability of 

FR schemes in divergence form and FR schemes in split form is compared by 

investigating the allowable maximum time step width. The results show that the 

computation using the split-form FR schemes is stable whereas the computation 

using the divergence-form FR schemes blow up in the most conditions. This study 

also shows that the FR scheme in divergence form with the eighth-order solution 

approximation on a GP4 mesh works well for a practical flow simulation. 
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1     Introduction 

 
There are engineering demands for quick and accurate simulation of turbulent flows around 

complex geometries such as an airplane or a rocket. For that purpose, high-order unstructured schemes 

have been extensively studied.  

However, high-order schemes have a problem of numerical instability caused by accumulation of 

the aliasing errors that originates from the discretization of the nonlinear convective term. As a remedy 

for the problem, it is known that split forms (also known as (pseudo) skew-symmetric forms) of the 

convection terms can reduce the aliasing errors and preserve the kinetic energy. Gassner [1] has 

developed split-form discontinuous Galerkin (DG) schemes in the context of kinetic energy 

preservation (KEP), which has been later extended to the flux reconstruction (FR) schemes (split-form 

FR schemes, hereinafter) by deriving more rigorous conditions [2]. So far, applications of split-form 

FR schemes have been limited to simple flow simulations such as periodic turbulent flows on Cartesian 

mesh. Thus, the robustness of the split-form FR schemes has not yet been adequately investigated for 

more practical flow computations involving wall boundary conditions and high-order curved meshes. 

In this study, split-form FR schemes in [3] are focused because of their relatively lower 

computational cost among the high-order unstructured schemes. We start with a simulation of laminar 

flows over the NACA0012 airfoil as a first step of simulation of practical flows by split-form FR 

schemes. Stability of the scheme are verified in the simulations with a curved wall at eighth-order (P7) 

approximation of solution. Numerical stability of the split-form FR is compared with the divergence-

form (i.e. conservation-form) FR schemes.  
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2     Approach 

 
Numerical stability of a split-form FR scheme is compared with that in the divergence form. 

Simulations of laminar flow over the NACA0012 airfoil are conducted in six flow conditions with high 

angles of attack. The flow conditions are presented in Table 1. Here, Mach number and angle of attack 

are changed while Reynold number based on the airfoil chord length is fixed to 5,000. 

 

Table 1: Conditions for laminar flow over the NACA0012 Airfoil. 

Condition Mach number Angle of attack Reynolds number 

M05A08 0.5 8 5,000 

M05A09 0.5 9 5,000 

M05A10 0.5 10 5,000 

M05A11 0.5 11 5,000 

M04A10 0.4 10 5,000 

M06A10 0.6 10 5,000 

 

In this study, the third-order Total-variation-diminishing Runge-Kutta scheme for time-marching 

method, SLAU flux [4] for common flux, Bassi and Rebay (BR2) [5] flux for viscous flux are used. 

The Gauss-Lobatto points are adopted as the solution points because the sufficient condition for the 

primary conservation of the split-form FR schemes is to adopt the Gauss-Lobatto solution points. For 

metric evaluation, non-conservative form is used. The sufficient conditions for the kinetic energy 

preservation are to adopt a kinetic energy preserving flux and the 𝑔2 correction function. While there 

are some ways to express split forms, the form [6] shown as eq (1) is used. 
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C-type topology grids are generated where the number of cells is 864 for P7 and 3,600 for P3, 

respectively. For accurate representation of the curved wall, high-order meshes are used. For coordinate 

transformation, quadratic shape functions are used. 

In general, the numerical stability of schemes can be investigated by von Neumann stability analysis 

when the equation under consideration is linear. However, it is difficult to investigate split-form FR 

schemes using von Neumann stability analysis because they are nonlinear. In order to investigate 

numerical stability of the split-form FR schemes, the following approach is adopted. 

 

(1) Search for the maximum time-step width which allows stable computation up to non-

dimensional time of 50 using FR scheme in split-form. 

(2) Check if computation is stable up to non-dimensional time of 50 using FR scheme in divergence 

form with the maximum time-step width found in step (1). 

(3) If computation blow up in (2), check if computation is stable up to non-dimensional time of 50 

using FR scheme in divergence form with half of the maximum time-step width found in step (1). 

 

3     Result 
 

3.1     Robustness of Split-Form FR Schemes 

 
Results of stability analysis are presented in Tables 2 and 3. Table 2 and 3 shows the maximum 

time-step width which allows stable computation up to non-dimensional time of 50 using FR scheme 

in the split form. The symbol “✓” represents that the computation using FR scheme in divergence form 

is stable up to non-dimensional time of 50. These tables show that the split-form FR schemes are stable 

for the practical flow simulation, i.e., laminar flow simulation of the NACA0012 airfoil. As for the FR 

scheme in divergence form, the computation is unstable in most of the conditions even when the time 
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step size becomes half.  

 

 
 

 
 

The convergence history of the condition M05A10 (Mach number of 0.5 and angle of attack of 10 

degrees) is shown in Figure 1. Computations are conducted under the same time-step width, i.e., the 

allowable maximum time-step width for the split-form FR scheme. The computation using split-form 

FR scheme is stable whereas the divergence form diverges early. Stable characteristic of the split-form 

FR schemes is probably due to the reduction in aliasing error. The present computation also shows that 

computation with eighth-order (P7) solution approximation is possible for practical aerodynamic 

simulation with a curved wall. 

 

Table 2: Maximum time-step width (angle of attack is changed). 

 

condition 
Correction 

Function 

Polynomial 

of order 

Maximum 

time step of 

split form 

Divergence form 

Same time 

step 

Half time 

step 

M05A08 𝑔𝐺𝑎 7 0.99 × 10−4 Blow up Blow up 

M05A08 𝑔𝐺𝑎 3 1.80 × 10−4 ✓ ✓ 

M05A08 𝑔2 7 1.01 × 10−4 Blow up Blow up 

M05A08 𝑔2 3 1.95 × 10−4 ✓ ✓ 

      

M05A09 𝑔𝐺𝑎 7 0.92 × 10−4 Blow up Blow up 

M05A09 𝑔𝐺𝑎 3 1.62 × 10−4 Blow up Blow up 

M05A09 𝑔2 7 0.94 × 10−4 Blow up Blow up 

M05A09 𝑔2 3 1.85 × 10−4 Blow up Blow up 

      

M05A10 𝑔𝐺𝑎 7 0.84 × 10−4 Blow up Blow up 

M05A10 𝑔𝐺𝑎 3 1.63 × 10−4 Blow up Blow up 

M05A10 𝑔2 7 0.88 × 10−4 Blow up Blow up 

M05A10 𝑔2 3 1.75 × 10−4 Blow up Blow up 

      

M05A11 𝑔𝐺𝑎 3 1.54 × 10−4 Blow up Blow up 

M05A11 𝑔2 3 1.66 × 10−4 Blow up Blow up 

 

Table 3: Maximum time-step width (Mach number is changed). 

 

Condition 
Correction 

Function 

Polynomial 

of order 

Maximum 

time step of 

split form 

Divergence form 

Same time 

step 

Half time 

step 

M04A10 𝑔𝐺𝑎 7 1.26 × 10−4 Blow up Blow up 

M04A10 𝑔𝐺𝑎 3 2.36 × 10−4 Blow up Blow up 

M04A10 𝑔2 7 1.29 × 10−4 Blow up Blow up 

M04A10 𝑔2 3 2.57 × 10−4 Blow up Blow up 

      

M05A10 𝑔𝐺𝑎 7 0.84 × 10−4 Blow up Blow up 

M05A10 𝑔𝐺𝑎 3 1.63 × 10−4 Blow up Blow up 

M05A10 𝑔2 7 0.88 × 10−4 Blow up Blow up 

M05A10 𝑔2 3 1.75 × 10−4 Blow up Blow up 

      

M06A10 𝑔𝐺𝑎 3 1.03 × 10−4 Blow up Blow up 

M06A10 𝑔2 3 1.11 × 10−4 Blow up Blow up 
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Table 2 shows that the maximum time-step width of the 𝑔2 correction function is also larger than 

that of 𝑔𝐺𝑎 correction function for the split-form FR schemes. The difference between the 𝑔2 correction 

function and the 𝑔𝐺𝑎 correction function in the maximum time step width probably comes from the 

difference in the slope of the function. It is known that steeper correction function results in a scheme 

with a smaller CFL limit and that the 𝑔2  correction function is less steep than the 𝑔𝐺𝑎  correction 

function. 

 

3.2     Computation on High-Order Mesh 

 
Now we investigate effect of high-order mech. High-order mesh enables accurate curved wall 

representation. We use two types of high-order meshes: GP2 mesh (quadratic shape functions are used) 

and GP4 mesh (quartic shape functions are used). The number of cells is 864 and the airfoil is composed 

of 32 faces. Using these meshes, laminar flow over the NACA0012 airfoil is computed with the eighth-

order solution approximation. The flow condition is Mach number of 0.8, angle of attack of 10 degrees, 

and Reynolds number of 500. The TC-PGS scheme [7] for time-marching method and SLAU flux for 

common flux are used. The Gauss points are adopted for solution points. Here the FR scheme in 

divergence form is used for convection term. 

Figure 2 shows surface pressure coefficient distributions obtained by computation with GP4 mesh 

and GP2 mesh. The result is compared with surface pressure coefficient distribution in [8]. This result 

shows that the surface pressure coefficient distribution of GP4 mesh are accurate but the surace pressure 

coefficient distribution obtained on the GP2 mesh is different from the reference data especially on the 

upper surface and in the trailing edge. 

 

 

     
(a)  eighth-order computation (P7)                         (b) fourth-order computation (P3) 

 

Figure 1: Comparison of convergence histories for condition M05A10. 

     
(a)  Cp distribution on GP2 mech                        (b) Cp distribution on GP4 mesh 

 

Figure 2: Comparison of surface pressure coefficient distributions. 
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4     Concluding Remarks 

 
This paper discussed numerical stability of the split-form FR scheme for a practical flow simulation 

involving wall boundary condition and high-order curved mesh, i.e., laminar flow simulation of the 

NACA0012 airfoil. Numerical stability of FR schemes in divergence form and FR schemes in split 

form was compared by investigating the allowable maximum time step width. The results showed that 

the computation using the split-form FR schemes is stable whereas the computation using the 

divergence-form FR schemes blow up in the most conditions. This study also showed that the FR 

scheme in divergence form with the eighth-order solution approximation on a GP4 mesh works well 

for a practical flow simulation. 
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