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Abstract: Unsteady flow over bluff bodies are numerically difficult to solve as the fluid flow equations
are stiff in both space and time domains. The flow features change rapidly during the simulation due
to the changes in system non-linearities. In this paper, a Runge Kutta based lowspeed algorithm is
developed for adaptively refined quadtree grids. Quadtree grids provide better grid adaption based
on the flow characteristics. The Runge Kutta based time integration schemes are found to be more
efficient. Results for candidate cases are compared with traditional time integration schemes such as
Crank-Nicholson, and are found to be more efficient and robust.
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1 Introduction
Grid generation on complex bodies need special attention to model the body accurately. In addition, the flow
over these bodies may involve rapidly changing flow fields, and flow adaption may be the most economical
way to capture the flow accurately. Quadtree and Octree grid generation techniques are fast and suitable
for complex bodies and flow adaption [1][2]. In this paper, a new algorithm based on Runge Kutta time
integration is developed for lowspeed flows which are governed by unsteady incompressible Navier Stokes
equations. These equations are stiff as there is no explicit conservation equation for the pressure and
pose many challenges to the numerical algorithm. Pressure based methods based on SIMPLE/SIMPLER
algorithms [3] are a popular approach that indirectly specifies the pressure field via the continuity equation.
The discretized momentum equations are substituted in the discretized continuity equation to obtain the
pressure correction and/or pressure equation. These equations are solved iteratively to obtain the correct
velocity and pressure field. In unsteady flows, these algorithms necessitate the use of relaxation and several
sub-iterations at each time step. Also, the approximate nature of pressure correction equation has caused
convergence issues for various problems. The idea of developing more efficient and faster algorithms has led
to the formulation of Runge Kutta (RK) based SIMPLER algorithms [4][5]. These RK based algorithms are
found to simulate both steady and unsteady problems accurately with the significant reduction in the required
computation time on both structured and unstructured grids [4]. In an effort to improve computation time
for complex bodies and flows that may require flow adaption, a Runge Kutta based lowspeed flow algorithm
is developed in this paper for an adaptively refined quadtree and octree grids.

2 Development of Flow Solver
The unsteady, laminar incompressible Navier stokes equation governs the fluid flow problems used in this
research. For a fluid passing through an infinitesimal fixed control volume in space, these equations can be
written in integral form as

∂

∂t

∫
C.V

ρd∀+

∫
C.S

(ρ~V · d ~A) = 0 (1)
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∂

∂t

∫
C.V

ρ~V d∀ +

∫
C.S

(~V ρ~V · d ~A) =

∫
C.V

ρ~fd∀ +

∫
C.S

(Π̃ · d ~A) +

∫
C.V

~Sd∀ (2)

where t is time, ρ is density, ~V represents the flow velocity, ~f represents the body force, Π̃ is the stress tensor,
and ~S is the source term including all other terms that are not accounted for in presented terms. Also, ~dA
is the elemental area of control surface C.S and d∀ is the volume of the infinitesimal control volume C.V .
For an incompressible flow, the density is a constant.

The governing equations can be separately discretized in space and time so that different order of accuracy
can be obtained in space and time.

2.1 Spatial Discretization of a General Transport Equation
The governing fluid flow equations inherit a conservation principle. A scalar transport equation which has
the same form is the representative of these flow equations. This scalar equation is discretized spatially in the
context of two dimensional co-ordinates for simplicity, and the extension to 3D follows the same principle.
Also, the discretized momentum equations can be inferred from the discretized scalar transport equation.

The integral formulation of a generalized transport equation for a scalar φ can be written as

∂

∂t

∫
C.V

(ρφ)d∀ +

∫
C.S

(ρ~V φ · d ~A) =

∫
C.S

(Γ∇φ · d ~A) +

∫
C.V

Sd∀ (3)

where Γ is the diffusion coefficient,and S represents the source term.
Discretizing above equation about each face ‘f’ of a generalized unstructured control volume, we get

∂(ρφ)

∂t
∆∀ +

∑
f

(ρ~V φ · ~A)f =
∑
f

(Γ∇φ · ~A)f + S∆∀ (4)

where,
Ff=(ρ~V · d ~A)f is the mass flow rate out of face ‘f’ of the control volume ∆∀,
Gf=(Γ∇φ · d ~A)f is the transport due to diffusion through the face ‘f’, and
φf is the value of φ at the face ‘f’ of control volume

2.1.1 Convection Term

The convection term in the discretized transport equation is the product of Ff , and φf . Second-Order
upwind scheme is utilized to find the value of φ at the face of a control volume. In this scheme, the value of

1
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~eη
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ds

~eξ

~drL

~drR

Figure 1: Stencil at a face of a control volume
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φf is determined with the values of φ and its gradient at the upwind cell as:

φf = φupwind +∇φrupwind
· d~r (5)

where φupwind is the value of φ at the upwind cell, φrupwind
is the reconstruction gradient at the upwind

cell, and d~r is the vector from the centroid of the upwind cell to the centroid of the face. The convection
term can then be written as:

Ffφf = max(Ff , 0)(φL +∇φrL · d ~rL) +min(Ff , 0)(φR +∇φrR · d ~rR)

= max(Ff , 0)φL +min(Ff , 0)φR +max(Ff , 0)∇φrL · d ~rL +min(Ff , 0)∇φrR · d ~rR
= max(Ff , 0)φL +min(Ff , 0)φR + Sconv (6)

During the solution, the values φL and φR are treated implicitly, while the convective source term Sconv is
treated explicitly.

2.1.2 Diffusion Term

The transport due to diffusion through the face ‘f’ of a control volume is defined as:

Gf = (µ∇φ · ~A)f (7)

For the consistent spatial discretization, the control volume for the evaluation of this diffusive flux is kept
the same. In terms of the co-ordinate system(ξ,η), this can be written as:

∇φ · ~A =
∂φ

∂φ
(Axξx +Ayξy) +

∂φ

∂η
(Axηx +Ayηy) (8)

where Ax and Ay are the cartesian components of the area vector ~A.
For the face 1-2 shown in figure 1,

∇φ · ~A =
φR − φL

ds

~A · ~A
~A · ~eξ

− φ2 − φ1

A

~A · ~A
~A · ~eξ

(~eξ · ~eη) (9)

In this equation, the first term is the primary component of diffusion, and the second term is the secondary
cross diffusion component. Avoiding the computation of face tangents and nodal values, this second term
can be written as the difference between the total diffusion, and the primary diffusion component.

Gf = µf
φR − φL

ds

~A · ~A
~A · ~eξ

+ µf

(
∇φ · ~A−∇φ · ~eξ

~A · ~A
~A · ~eξ

)
(10)

where ∇φ is the average of the gradient at the two adjacent cell centers. This can be written as:

Gf = Df (φR − φL) + Sdiff (11)

where,

Df = µf
1

ds

~A · ~A
~A · ~eξ

Sdiff = µf

(
∇φ · ~A−∇φ · ~eξ

~A · ~A
~A · ~eξ

)
During the solution, the values φL and φR are treated implicitly, while the diffusive source term Sdiff is
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treated explicitly.

2.1.3 Gradient Term

Green-Gauss theorem is used to compute the reconstruction gradient term used in the convective term.

∇φr =
α

∀
∑
f

φ̄f ~Af (12)

where, φ̄f = φL+φR

2 is the average of the values of φ at the neighboring cells across the face ‘f’. The term
‘α’ is a limiter used to prevent the reconstruction from introducing local extrema.

On the other hand, the cell derivatives of secondary diffusion terms are computed as:

∇φ =
1

∀
∑
f

φf ~Af (13)

where, φf =
φfL

+φfR

2
The value of φ at a face of a cell ‘c’ is computed as:

φfc = φc +∇φrc (14)

2.1.4 Limiter

Spatial discretization using second order upwind scheme requires the use of limiter to prevent the generation
of spurious solutions in the flow. Second order limiter by Venkatakrishnan [6] is used to prevent the formation
of local extrema in the flow field, by limiting the reconstruction gradient such that the value at a face of
a control face is bounded by it’s left and right cell. The details of the limiter and its use can be found in
literature [6].

2.2 Temporal Discretization
There are several temporal discretization schemes of different order of accuracy. These time stepping methods
dictate the accuracy, efficiency and the robustness of a flow solver especially to the unsteady flow problems.
In this section, various time stepping methods are presented.

2.2.1 α Scheme

The time integration of a general variable φ over a time period ∆t using α scheme is given as:∫ t+∆t

t

φdt =
[
αφ+ (1− α)φo

]
∆t (15)

where, φ is the value of the variable at the new time step t+ ∆t, and φo is the value at previous time step t.
The value of parameter ‘α’ is the weightage attributed to the value of variable at new and old time step. In
particular, ‘α = 0’ gives explicit scheme, ‘α = 0.5’ leads to Crank-Nicholson scheme and ‘α = 1’ gives fully
implicit scheme.

Substitution of convection, diffusion and gradient terms, and then integrating the resulting spatially
discretized equation over time ∆t , we get[

(ρφ)− (ρφ)o
]

∆t
∆∀ + α

∑
f

Ffφ+ (1− α)
∑
f

(Ffφ)o =

α
∑
f

Gf + (1− α)
∑
f

Gof + αS∆∀+ (1− α)So∆∀ (16)
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This can be written in the form of

aPφP =
∑
f

anbφnb + b (17)

where, φ’s are the cell center values of φ, the a’s are the coefficients of φ’s, ‘nb’ represents the neigboring
terms , and b is the source term containing external sources (if available), terms from previous time step ,
and the source terms from convection and diffusion terms.

The momentum equations can then be written as

au−PuP =
∑

au−nbunb + bu −
∑
f

pfAxf (18)

av−P vP =
∑

av−nbvnb + bv −
∑
f

pfAyf (19)

where bu and bv are the source terms of momentum equations, p is the pressure, and Axf and Ayf are the
x and y component of face area.

2.2.2 Runge Kutta Schemes

The spatially discretized scalar transport equation over a control volume of volume ∆∀ surrounding a point
P can be written as:

ρ∆∀∂φ
∂t

=
∑

anbφnb − aPφP + Sc∆∀ (20)

Similar formulation leads to the following momentum equations:

∂u

∂t
=

∑
au−nbunb − au−PuP + bu −

∑
f

pfAxf

ρ∆∀
=

Ru
ρ∆∀

= Fu(t, u) (21)

∂v

∂t
=

∑
av−nbvnb − av−P vP + bv −

∑
f

pfAyf

ρ∆∀
=

Rv
ρ∆∀

= Fv(t, v) (22)

where the coefficents (a’s) here are obtained using spatially discretized terms and are dependent on velocity.
These are the first-order ordinary differential equation (ODEs) which can be then integrated in time using
Runge Kutta methods to get the final discretized equations. The Runge Kutta methods involve a weighted
average of the function F evaluated at different stages. The general form of Runge Kutta based time
integration for u-momentum equation can be written as:

(uP )s = (uP )n + ∆t

s∑
l=1

αs,lFu
(
tn + γl∆t, ul

)
for 1 ≤ s ≤ S (23)

φn+1 = φn + ∆t

S∑
s=1

βsF
(
tn + γs∆t, φs

)
(24)

with the constraint

γs =

S∑
l=1

αs,l for 1 ≤ s ≤ S (25)

where ∆t = tn+1 − tn is the time step size, φs is defined as the value of φ at the sth stage, and l is a free
index used in the summation. The coefficients α, β, and γ determine the specific RK method and are often
defined in a Butcher tableau [7] as depicted in Table 1.

Runge Kutta methods can be categorized into explicit and implicit methods. Of the pool of available
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Table 1: Form of the Butcher tableau.

γ1 α11 α12 · · · α1l · · · α1S

γ2 α21 α22 · · · α2l · · · α2S

...
...

...
. . .

...
. . .

...
γs αs1 αs2 · · · αsl · · · αsS
...

...
...

. . .
...

. . .
...

γS αS1 αS2 · · · αSl · · · αSS
β1 β2 · · · βl · · · βS

Runge Kutta methods, RKSIMPLER algorithm [5] is based on four-stage Low Storage Explicit Runge Kutta
method, and three stiffly accurate Diagonally Implicit Runge Kutta (DIRK) methods (with one, two and
three stages) are explored in IRKSIMPLER algorithm namely IRKB1, IRKB2 and IRKB3 respectively [4].
Details about various Runge Kutta methods and used coefficients can be found in [4][7].

Using this Runge Kutta based time integration scheme, the stage equations for x momentum can be
written as:

(uP )s = (uP )n + ∆t

s∑
l=1

αs,lFu
(
tn + γl∆t, ul

)
for 1 ≤ s ≤ S (26)

Utilizing the definiton of Fu, the fully discretized x-momentum equation for each stage becomes

a′u−P (uP )s =
∑

(au−nb)s(unb)s + b′u −
∑

pfAxf (27)

where,

a′u−P = (au−P )s +
ρ∆∀
αs,s∆t

b′u = (bu)s +
ρ∆∀
αs,s∆t

(uP )n +
Rs(u)

αs,s

Rs(u) = ρ∆∀
s−1∑
l=1

αs,lFu
(
tn + γl∆t, ul

)
Similarly, the discretized form of the y-momentum equation is

a′v−P (vP )s =
∑

(av−nb)s(vnb)s + b′v −
∑

pfAyf (28)

where,

a′v−P = (av−P )s +
ρ∆∀
αs,s∆t

b′v = (bv)s +
ρ∆∀
αs,s∆t

(vP )n +
Rs(v)

αs,s

Rs(v) = ρ∆∀
s−1∑
l=1

αs,lFv
(
tn + γl∆t, vl

)
In the above equations, the pressure source term results from integrating ∂p

∂x and ∂p
∂y over the control

volume. The resulting discretization involves a sum over the faces ‘f’ of the control volume surrounding a
point ‘P’. Here, pf is the pressure at the centroid of the face. An interpolation procedure is required to find
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the pressure at the face, since pressure is available only at the cell centers. The pressure pf is calculated by
averaging the reconstructed face pressure from the two cells neighboring the face.

p′fc = pc +∇prc · ~dr (29)

where, p′fc is the value of p at the face ‘f’ of a cell ‘c’, and hence

pf =
(p′fL + p′fR)

2
(30)

2.3 Pressure Velocity Coupling
In this paper, all the primitive flow variables are stored at the center of the control volume. The difficulty
arises while defining the grid that is staggered with respect to the existing quadtree grid [8]. This collocated
approach of defining the flow variables necessitates the interpolation from the values defined at the cell
centers to calculate the mass flux at the faces. The linear interpolation for pressure gradient at a face results
in pressure velocity decoupling which is famously known as ‘Checkerboard’ problem [3], resulting in non-
physical solutions. The checkerboard pressure distribution problem associated with this collocated approach
is alleviated using Rhie and Chow interpolation [9]. This practice inherently contains a third order pressure
gradient term [9] that serves as the tool to couple pressure and velocity fields by expressing the face velocity
using the driving pressure difference across that face.

The fully discretized momentum equations for cell ‘P’ for each stage are

a′u−P (uP )s =
∑

(au−nb)s(unb)s + b′u −
(∂p
∂x

∆∀
)
s

(31)

a′v−P (vP )s =
∑

(av−nb)s(vnb)s + b′v −
(∂p
∂y

∆∀
)
s

(32)

These can be written as

(uP )s = (ûP )s − [d̃uP ]s

(∂p
∂x

)
s

(33)

(vP )s = (v̂P )s − [d̃vP ]s

(∂p
∂y

)
s

(34)

where,

(ûP )s =

∑
(au−nb)s(unb)s + b′u

a′u−P
[d̃uP ]s =

∆∀
a′u−P

(v̂P )s =

∑
(av−nb)s(vnb)s + b′v

a′v−P
[d̃vP ]s =

∆∀
a′v−P

In vector form,

(~VP )s = (
~̂
VP )s − [d̃P ]s(∇pP )s (35)

The formulation of pseudo velocity at the face ‘f’ gives

(
~̂
Vf )s = (~Vf )s + [d̃f ]s(∇pf )s (36)

Now, the pseudo velocity at the face ‘f’ can be approximated as the average of the cell center values.

(
~̂
Vf )s =

1

2

[
(
~̂
VL)s + (

~̂
VR)s

]
(37)

=
1

2

[
(~VL)s + (~VR)s + [d̃L]s(∇pL)s + [d̃R]s(∇pR)s

]
(38)
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The mass flow rate at the face ‘f’ is then given by

(ff )s =
(
ρ~Vf · ~A

)
s

(39)

=
1

2
ρ
(

(~VL)s + (~VR)s

)
· ~A+

1

2
ρ ~A ·

(
[d̃L]s(∇pL)s + [d̃R]s(∇pR)s

)
− ρ ~A · [d̃f ]s(∇pf )s (40)

Using Mathur’s Assumption [10],

[d̃f ]s = [d̃L]s = [d̃R]s = [d̃ ]s =
∆∀L + ∆∀R
āpL + āpR

(41)

where,

āpL =
1

2

(
a′(u−P )L + a′(v−P )L

)
(42)

āpR =
1

2

(
a′(u−P )R + a′(v−P )R

)
(43)

This results in the expression of mass flow rate as

(ff )s =
1

2
ρ
(

(~VL)s + (~VR)s

)
· ~A+

1

2
ρ[d̃ ]s ~A ·

(
(∇pL)s + (∇pR)s

)
− ρ ~A · [d̃ ]s∇pf (44)

The second term on RHS is now approximated using volume weighting of the left and right cell center
gradient as

1

2
ρ[d̃ ]s ~A ·

(
(∇pL)s + (∇pR)s

)
= ρ[d̃ ]s ~A ·

(
∇pL∆∀L +∇pR∆∀R

∆∀L + ∆∀R

)
s

(45)

= ρ[d̃ ]s ~A · ∇̄p (46)

The third term on the RHS is also approximated as

ρ ~A · [d̃ ]s∇pf = ρ[d̃ ]s

[
pR − pL
ds

~A · ~A
~A · ~eξ

+ ∇̄p · ~A− ∇̄p · ~eξ
~A · ~A
~A · ~eξ

]
s

(47)

Substituting and rearranging these terms, the mass flow rate can now be written as

(ff )s =
1

2
ρ
(

(~VL)s + (~VR)s

)
· ~A− (df)s(pR − pL)s + ρ

(
∆∀L + ∆∀R
āpL + āpR

)
s

∇̄p · ~eξ
~A · ~A
~A · ~eξ

(48)

where,

dfs =
ρ

ds

(
∆∀L + ∆∀R
āpL + āpR

)
~A · ~A
~A · ~eξ

(49)

The mass flow rate at a face ‘f’ can be be rewritten as

(ff )s = (f̂f )s − (df)s(pR − pL)s (50)

where,

(f̂f )s =
1

2
ρ
(

(~VL)s + (~VR)s

)
· ~A+ ρ

(
∆∀L + ∆∀R
āpL + āpR

)
s

∇̄p · ~eξ
~A · ~A
~A · ~eξ

(51)
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The integrated and the discretized continuity equation can also be written as∑
f

ff = 0 (52)

The above equation of mass flow rate when substituted in continuity equation gives

(ap−P )s(pP )s =
∑
nb

(ap−nb)s(pnb)s + (bp)s (53)

where,

(bp)s = −
∑
f

(f̂f )s (54)

The formulation procedure for pressure equation that are given in this section are similar for the α based
scheme. The only changes involved are that the momentum coefficients are given by the equations 18 and
19, and the subscript ‘s’ representing stage can be dropped.

2.4 Pressure Correction Equation
Explicitly based RKSIMPLER algorithm solves the pressure equation once at each time step [5], and uses that
solved pressure explicitly for the solution of momentum equations. Implicitly based IRKSIMPLER algorithm
formulates the pressure equation at each stage by utilizing the discretized momentum stage equations into
continuity equation.The Runge Kutta based schemes don’t require pressure correction equation at all [4][5].
On the other hand, in ‘α’ scheme based SIMPLER algorithm, the pressure correction equation is required
to correct an incorrect or guessed pressure field so that correct pressure field can be obtained which will
ultimately satisfy the mass and momentum conservation at each time step [3]. The basic underlying principle
for the formulation of this equation follows Patankar [3].

The mass flow rate at a face with the guessed velocity field can be written as

f∗f =
1

2
ρ
(

(~V ∗L ) + (~V ∗R)
)
· ~A− (df)(p∗R − p∗L) + ρ

(
∆∀L + ∆∀R
āpL + āpR

)
∇̄p · ~eξ

~A · ~A
~A · ~eξ

(55)

If f ′f is the mass flow rate correction defined as

f ′f = −(df)(p′R − p′L) (56)

The discretized continuity equation can be written as∑
f

(f∗f + f ′f ) = 0 (57)

Combining equations 55 and 57 give the following pressure correction equation

(ap′−P )p′P =
∑
nb

ap′−nbp
′
nb + bp′ (58)

where, bp′ = −
∑
f

f∗f is the total mass flow rate into the cell.

The cell centered velocities are then corrected as,
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uP = u∗P −

∑
f

p′fAxf

auP
(59)

vP = v∗P −

∑
f

p′fAyf

avP
(60)

3 Results

3.1 Lid Driven Cavity
Although the development of these Runge Kutta based schemes on quadtree grid are for simulating unsteady
incompressible flow efficiently, the two dimensional steady lid driven cavity problem is an excellent test case
for evaluating the newly developed schemes. This is done by simulating the flow inside the lid driven cavity
until the steady state has been reached. This lid-driven cavity, shown in figure 2, with the dimension L×L
has a constant speed of lid (Ulid) at the top, and three other boundaries represented by the no-slip viscous
walls. The developed Runge Kutta based schemes are compared against the Crank-Nicholson(CN) based
SIMPLER algorithm (with the number of subiterations fixed at 30) at a Reynolds number (defined by
Re = ρUlidL/µ) of 100 and 1000. Simulations are run with a constant time step, and the steady state results
are compared using the u-velocity profile along the vertical centerline, and v-velocity along the horizontal
centerline.

L

L

Ulid

Figure 2: Lid Driven Cavity

In figures (3)-(6), it can be seen that the flow solution results for both explicit and implicit Runge Kutta
based schemes are in perfect agreement with Crank Nicholson based SIMPLER algorithm for both cases of
Reynolds number, since the same spatial discretization is used for all these algorithms. These results verify
that the Runge Kutta based algorithms can accurately simulate the steady flows [4]. The implicit Runge
Kutta schemes (IRKSIMPLER) allow for larger time steps when compared to their explicit counterpart
(RKSIMPLER). RKSIMPLER algorithm has the time step restriction based on the stability requirement
according to CFL criterion for explicit method.

3.2 Flow over a Flat Plate Normal to the Flow
The thin flat plate placed normal to the flow direction is simulated for the laminar flow at high Reynolds
number of 17800 [5]. A schematic of the flat plate problem is shown in figure 7. At this Reynolds number,
the streamlines near the flat plate periodically breaks off alternately at the edges of the flat plate resulting
in an unsteady flow. These streamlines carry vorticity of large magnitude away from the plate, and this
periodic vortex shedding from the flat plate results in an oscillating lift and drag force on the flat plate.
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Figure 3: U-velocity profile along a vertical
centerline (Re=100)
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Figure 4: V-velocity profile along a horizontal
centerline (Re=100)
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Figure 5: U-velocity profile along a vertical
centerline (Re=1000)
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Figure 6: V-velocity profile along a horizontal
centerline (Re=1000)

Strouhal number(Sr = fL/U) is used as a measure of unsteady vortex shedding where f is the frequency of
shedding. Simulation is run for the non-dimensional time of 400 with an uniform flow at the inlet boundary
while the velocity is adjusted at the outflow boundary using the value of neighboring cell for the overall mass
conservation. The top and bottom boundaries are set to freestream conditions.

The time history of drag coefficient for all the algorithms is shown in figure 8. The drag coefficient begin
to oscillate after some time, and achieve a constant oscillatory pattern known as unsteady convergence.
Different algorithms (and with different time steps) reach the unsteady convergence at different simulation
times [4]. Table 2 shows the comparison of various schemes based on maximum allowable time step, mean
drag coefficient, Strouhal number, CPU time required, and speed up attained with maximum allowable time
step.

3.3 Flow over a Circular Cylinder
The flow over a 2D circular cylinder is used as a case to validate the developed formulations for quadtree grid
with body fitted cells near the cylinder. A schematic of the circular cylinder problem is shown in figure 9.
Figure 10a and 10b show the quadtree grid and the body fitted type cells near the cylinder respectively. The
generated body fitted quadtree grid consists of 6.1120e+03 nodes, 1.2213e+04 faces and 6.1010e+03 cells.
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Table 2: Comparison of Flat plate results for various algorithms

Algorithm Maximum
allowable
time step

Mean drag
coefficient

Cd

Strouhal
Number Sr

CPU time
required (in
minutes)

Speed up
(relative to

CN-
SIMPLER)

CN-SIMPLER 2.00× 10−5 2.5145 0.146 19.71 1.00
IRKB1 5.00× 10−6 2.4661 0.148 14.25 1.38
IRKB2 1.00× 10−5 2.5097 0.148 13.41 1.47
IRKB3 5.00× 10−6 2.5092 0.148 28.26 0.69

RKSIMPLER 1.05× 10−6 2.4676 0.150 20.26 0.97

To validate against the established literature [11][12][13], the flow over a circular cylinder of unit diameter is
simulated for a Reynolds number of 300 and for the non-dimensional time of 200 since accurate measurement
data are available at this Reynolds number. The boundary conditions are kept similar to the case of flat
plate. As in the case of flat plate, simulation is run with impulsive start in time, and with the march in
time the vortices begin to shed from the top and bottom of the cylinder, and ultimately reach the unsteady
convergence.

The streamlines for the flow over a cylinder is shown in figure 10c. The time history of drag coefficient
for all the formulated schemes with the maximum allowable time step is shown in figure 11. The presence of
dominant periodicity because of regular vortex shedding from the top and bottom of cylinder is expressed
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in the form of Strouhal number. Table 3 presents the comparison of various schemes based on maximum
allowable time step, mean drag coefficient, Strouhal number, CPU time required, and speed up attained for
the cylinder problem.

(a) Quadtree grid (b) Body fitted type cells
X

Y
0 2 4 6 8

-2

0

2

4

(c) Streamlines

Figure 10: Cartesian unstructured grid with body fitting (a) and (b), and Streamlines showing flowfield
around a circular cylinder

Table 3: Comparison of results of various algorithms for a circular cylinder problem

Algorithm Maximum
allowable
time step

Mean drag
coefficient

Cd

Strouhal
Number Sr

CPU time
required (in
minutes)

Speed up
(relative to

CN-
SIMPLER)

CN-SIMPLER 6.67× 10−2 1.198 0.180 9.23 1.00
IRKB1 2.00× 10−2 1.197 0.192 6.50 1.42
IRKB2 4.00× 10−2 1.208 0.192 6.11 1.51
IRKB3 2.00× 10−2 1.211 0.200 18.63 0.49

RKSIMPLER 1.67× 10−3 1.224 0.192 20.98 0.44

For a large range of Reynolds number, the experimental results show that the Strouhal number remains
close to 0.2. The experimental values from Williamson [13] for Strouhal number and mean drag coefficient
are 0.203 and 1.22 respectively. To study the behavior of these formulations, finer grid (1.0803e+04 nodes,
2.1527e+04 faces and 1.0724e+03 cells) is used. As the grid is refined, the maximum allowable time step for
all the schemes decreases. The average drag coefficient and Strouhal number on this refined grid for various
formulations are given in table 4.

The 2D computations from our formulation over predicts the value of mean drag coefficient slightly.
These have been attributed to the development of three dimensional features beyond Re ∼ 200 and the
higher level of Reynolds stresses behind the bluff body [14].
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Figure 11: Time history of drag coefficient for circular cylinder problem

Table 4: Mean drag coefficient and Strouhal number for various formulations

Algorithm Mean drag
coefficient

Cd

Strouhal
Number Sr

CN-SIMPLER 1.281 0.180
IRKB1 1.280 0.200
IRKB2 1.263 0.200
IRKB3 1.282 0.200

RKSIMPLER 1.288 0.200

3.4 Flow over a sphere
The three dimensional unsteady Navier Stokes equations are solved on an octree grid with the body fitted
cells around a sphere. Laminar flow simulation is carried out at a Reynolds number of 300 and for the non-
dimensional time of 150, with the flow adapted to vorticity. The uniform inflow and mass corrected velocity
outflow boundary conditions are used. All other boundary conditions are set to freestream conditions.

Starting from the same initial grid and fixed level of adaption refinement, the implicit IRKSIMPLER
algorithms are tested for the accurate capture of the flow with maximum possible time step. The explicit
solver RKSIMPLER required considerable small time step for convergence thereby increasing the runtime
which was estimated to be significantly high compared to the other solvers. Therefore, RKSIMPLER algo-
rithm is not tested for this case. The final grid information for these adaptive solvers for the setup case are
given in table 5.

Table 5: Final Grid Information for the adaptive solvers

Algorithm Final Grid
IRKB1 209774 nodes, 886311 faces, 341642 cells
IRKB2 257947 nodes, 1021728 faces, 385231 cells
IRKB3 223744 nodes, 925896 faces, 354445 cells
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Figure 12 shows the time history of the drag coefficient for the simulated cases. Although there are some
oscillations, these solvers are unable to capture the unsteady vortex shedding, and the drag coefficient looks
almost steady. The mean coefficient of drag is about 0.715 for all the solvers which are higher than the
previous established results of about 0.655 [15][16][17], and 0.671 [18].

With a view to capture the unsteady vortex shedding, maintaining runtime constraint, these IRKSIM-
PLER solvers along with CNSIMPLER solver are tested to adapt to finer grid than previous case. The
adapted final grid information for these solvers are given in table 6.

Table 6: Final Grid Information for the adaptive solvers for second case

Algorithm Final Grid
IRKB1 381329 nodes, 1960971 faces, 493339 cells
IRKB2 389764 nodes, 1384467 faces, 500850 cells
IRKB3 412588 nodes, 1443729 faces, 519141 cells

CN-SIMPLER 387151 nodes, 1400568 faces, 5101460 cells

Figure 13 shows the time history of drag coefficient for this case. The mean drag coefficient obtained for
all the IRKSIMPLER cases are near 0.70, and 0.671 for CN-SIMPLER case, which is still slightly higher
than the published results. For the finer grids, the drag coefficient approaches accurate results, but these
solvers still failed to capture the unsteady vortex shedding, and resulted in almost steady solution. Refining
the grid further might capture this vortex shedding, and result in accurate mean drag coefficient. However,
it seems to increase the runtime to a great extent.

4 Conclusions
A new Runge Kutta (RK) based SIMPLER algorithm on an adaptively refined quadtree grid is developed
for incompressible flow. These RK based schemes solve the governing conservation equations by effectively
coupling the pressure and velocity, and without the need of pressure correction equation. Also, the collocated
approach in these formulations don’t require the use of relaxation. These formulations are shown to simu-
late the steady and unsteady problems both accurately and efficiently, thereby making these formulations
robust. The nature of quadtree type of grids provides better grid adaption, and accurate capture of flow
characteristics.

Results for the laminar flow 2D and 3D simulations for a wide range of Reynolds numbers are presented.
The candidate cases of both internal and external type of flow are taken, and the developed formulations are
tested against each other with a view to compare their efficiency and robustness. The IRKSIMPLER solvers
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Figure 13: Time history of drag coefficient for a sphere on finer grid

are more stable than the explicit RKSIMPLER solver but the computational time per time step is higher.
The explicit nature of RKSIMPLER algorithm requires satisfaction of the CFL criterion, and hence require
small time step for a stable solution. Of all the developed schemes, IRKB2 solver seems more efficient and
robust in terms of its accuracy and requires less computation time.
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