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Abstract: The present work focuses on the study of noise generation and radiation of unsteady
laminar flow over an open three dimensional cavity at low Mach number, that is of interest to
understand noise generation mechanisms in wall-bounded separated flows. The length to depth
ratio of the cavity is L/D=4. While this configuration has been extensively studied, most of the
works assume the flow to be two-dimensional. However, as it will be shown, previous studies
confirm that for Reynolds numbers above ≈ 1200, the flow shows a three dimensional behaviour.
This results in significantly different sound sources. This paper presents results of sound calculation
radiated by a three-dimensional infinite open cavity at Reynolds number based on the cavity
depth of Re = 1500 and Mach number of M = 0.15. To do so, two approaches have been
used: Curle integral, evaluated as a post-process of an incompressible solution and compressible
direct simulation. The results are also compared with the resulting Curle post-process of a two-
dimensional incompressible simulation assumed to be constant along the spanwise direction.
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1 Introduction
Aeroacoustics is a topic of research with increasing relevance due to its technological and societal implications.
It is of particular interest to the automotive industry the study of flow past vehicles and the noise induced
by it [1–3]. To mention a few works, [1] studied the noise generated by the air flow around the A-pillar
and the side mirror of a generic vehicle model while [2,3] investigated the half cylinder and the hemisphere,
respectively, as a simplification of side mirrors. Uncovered cavities, the object of the present work, are also
usual parts of vehicle designs and their acoustic performance is a key issue of comfort for passengers or
outside listeners.

As it is well known and extensively documented in [4], computational aeroacoustics cases can be addressed
from two general approaches: Direct Simulation (DS) and hybrid approaches. Direct simulation is based on
the resolution of the compressible Navier-Stokes equations without using any modelling of the sound. This
method is the most direct way to compute sound generation since the governing equations completely describe
the physics of the problem. However, solving the full set of equations implies extreme computational costs,
out of the scope for the majority of industrial applications. Some of the reasons that make of compressible
simulations a difficult approach to be used are: i) the disparity in length and time scales between fluid
dynamics and acoustics, ii) in order to correctly capture the wave propagation, at least a few nodes per
wavelength are needed, so the mesh cannot be coarsened much resulting in meshes with high number of
elements and iii) boundary conditions are critical due to the reflection of acoustic waves into the domain.

On the other hand, for industrial problems, hybrid approaches seem to be more promising to predict
aeroacoustic noise. These consist on two different numerical solvers: a purely CFD tool as the source
generator and an acoustic solver as the transport method. Acoustic propagation methods can be divided
into: Partial Differential Equations (PDE) methods and integral methods. PDE methods, such as Linear
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Euler Equations (LEE), [5,6], or APE, [7], solve a system of PDEs describing the acoustic wave propagation
in the entire field. The Computational Fluid Dynamics (CFD) solution is used as the exciting source for the
system of PDEs solved in the aeroacoustic simulation. Owing to the change in discretization and resolution,
proper coupling between the Navier Stokes solver and the wave solver is a nontrivial task. Integral approaches
are mainly based on the work of James Lighthill, [8]. These methods integrate the relevant aerodynamic
variables for acoustics propagation over a certain region to obtain the sound pressure at a certain observer in
a certain time. Often integral approaches are referred as ’analogies’ since they intend to find a wave equation
propagating in a medium at rest excited by sources generated from the region where the fluid is in motion.
From the computational point of view, integral methods are simpler and allow to have an explicit solution
for the acoustic pressure which has to be numerically evaluated from the source terms obtained in the Navier
Stokes solver. Two of the most widely used integral methods are the extension of Lighthill’s theory for the
interaction of the fluid with a surface, known as Curle’s solution [9], and for the interaction of the fluid with
a surface in motion, Ffwocs-Williams and Hawkings (FW-H) solution [10]. J.E. Ffwocs Williams and D.L.
Hawkings generalised the Lighthill’s solution for equivalent sources arising from moving surfaces immersed
in the flow, while Curle rewrote the solution for the Lighthill’s system when the boundary of the domain
includes a solid surface at rest.

A broad body of literature on cavity noise computation has been developed over the last decade. The
first computations of acoustic radiation from a cavity have been carried out by J.Hardin and D.Pope in [11].
The authors investigated the sound generated by an open cavity with aspect ratio L/D = 4 at Reynolds
number based on the cavity length ReL = 5000 and Mach number M = 0.1 using a two-part calculation
where the viscous flow was first handled by calculating the time-dependent incompressible flow, and then the
acoustic radiation was obtained from inviscid equations describing the differences from the incompressible
flow. Later, Colonius et al. [12] used DS for aspect ratios ranging from 1 to 5 at a Reynolds number based
on cavity depth ReD = 5000 to directly compute the acoustic pressure. Gloerfelt et al. [13] studied the
acoustic field of an open cavity with aspect ratio L/D = 2 at high Reynolds number, ReD = 4.1 · 104, and
high subsonic speed, M = 0.7, using three different formulations: DS, Fwocs-Williams Hawkings and Wave
Extrapolation Methods (WEM). More recently, L.Davidson et al. investigated in [14–16] the open cavity
with aspect ratio L/D = 4 for Reynolds number ReD = 1500 and Mach number M = 0.15 using first a
modified version of Curle’s integral for later comparison with DS.

Nevertheless, the aforementioned works have only considered the two-dimensional behaviour of flow past
cavities assuming homogeneity in the spanwise direction. However, for ReD = 1500, cavities of aspect
ratio L/D = 4 have passed the transitional point and are reported to generate three dimensional vortical
structures [17], resulting in very different flow fields. Likewise, experimental results are in agreement with
these characterisation [18]. On the other hand, some researchers have investigated numerically the noise
generated by a an open three dimensional cavity with fixed width. Using the FW-H formulation, the acoustic
field of a cavity with parameters L/D = 5 and W/D = 1 has been addressed by H.Lai and K.Luo [19] at
Reynolds number Re = 1.36 · 106 and Mach number M = 0.85.

The aim of this paper is to understand the acoustic behaviour of a three-dimensional open cavity and
highlight the differences in results when a two-dimensional flow is considered as source term for the Curle
integral. The case under study is an open cavity with aspect ratio L/D = 4, unconfined in the spanwise
direction for ReD = 1500 and M = 0.15. A modified version of the integral formulation derived by Curle
in [9] will be used to calculate the acoustic field. The results will be compared with the acoustics generated
by the same configuration considering a two-dimensional source flow. In order to gain a better insight of
Curle’s formulation, the acoustic field is also compared with the one obtained without any modelling of the
sound, DS.

This paper is organised as follows. Section 2 gives a description of the hybrid method developed by
Curle for predicting the acoustic response due to flow past a solid body. In section 3 the case under study is
presented followed by the description of the numerical methods used to address the case in section 4. Section
5 shows the results obtained for the flow and acoustic fields comparing both between the two-dimensional
(2D) with the three-dimensional (3D) approach and the Curle analogy with the compressible DS.
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Figure 1: Geometry of the cavity.

2 Computational Aeroacoustics Method
In [8] Lighthill considered the compressible continuity and momentum equations under no external forces:

∂ρ

∂t
+

∂

∂xi
ρui = 0 (1)

∂

∂t
ρui +

∂

∂xj
(ρuiuj + pij − τij) = 0 (2)

where xi are the spatial coordinates (or x, y and z), ui are the velocity components (or u, v and w), p is the
pressure, ρ is the density and τij is the viscous stress tensor:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
(3)

A simple mathematical manipulation of the previous equations lead to the inhomogeneous wave equation

∂2ρ

∂t2
− a2

0∇2ρ =
∂2

∂xi∂xj
(ρuiuj + pij − a2

0ρδij − τij) (4)

where Tij = ρuiuj + pij − a2
0ρδij − τij is known as the Lighthill’s stress tensor. Lighthill showed that for

isentropic flows at low Mach numbers where viscous effects could be neglected, it is sufficient to assume
Tij = ρuiuj + pij − a2

0ρδij − τij ≈ ρ0uiuj .
The Curle’s solution for the Lighthill’s formulation is given by Eq.5:

ρ(x, t)− ρ0 =
1

4πa2
0

∂2

∂xixj

∫
V

[Tij ]

r
dV +

1

4πa2
0

∂

∂xi

∫
S

nj
r

[pij − τij ]dS (5)

where the expression in brackets stands for the evaluation of the expression at the retarded time τ = t−r/a0,
n is the surface normal vector pointing to the surface and r is the distance between the observer position
and the source point.

Curle’s integral accounts for two type of sources: a quadrupole source arising from the volume integral
(first term) and a dipole source arising from the surface integral (second term). Quadrupoles sources are
less efficient producing acoustic waves than monopoles or dipoles sources, specially for low Mach numbers.
In [9], it was shown that for low Mach number flows the relation between the acoustic power generated by
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quadrupoles and dipoles is related by the Mach number:

Pquad
Pdip

≈M2 (6)

This justifies that the authors of [16, 20], working at M = 0.15 and M = 0.2 respectively, considered
volumetric sources negligible. In [21], it was numerically confirmed that the contribution of the source terms
inside the volume integral for the cavity case at M = 0.15 were several orders of magnitude smaller than the
source terms inside the surface integral.

In order to implement Eq.5 the derivatives need to be taken inside the integral and spatial derivatives
need to be transformed into time derivatives. This procedure was first done by Myers and Farassat in [22] to
modify the solution of Kirchhoff’s formula, primarily used in the theory of diffraction of light and in other
electromagnetic problems, [23].

p(x, t)− p0 =
1

4π

∫
V

(
lilj
a2

0r
[T̈ij ] +

3lilj − δij
a0r2

[Ṫij ] +
3lilj − δij

r3
[Tij ]

)
dV+

1

4π

∫
S

−linj
(

1

ra0
[ṗij ] +

1

r2
[pij ]

)
dS

(7)

where the viscous term have been omitted and assuming isentropy, ρ has been transformed to p. The vector
l is the unitary vector pointing from the source point to the observational point:

li =
xi − yi
r

(8)

A very important advantage of using Curle’s formulation when it is reduced to a surface integral is that
it provides direct information about the contribution of each point of the surface to the total acoustic power.
This is of very much use in the industry since it highlights the most optimizable parts of the surface. In
the recent years, techniques based on beamforming analysis combined with an acoustic technique are used
for the localisation of sound sources [24]. However, the most important benefit of Curle’s formulation is the
allowance of an incompressible simulation as a source for the transient flow variables over the solid body
when the Mach number is low and when the source region is considered compact. Moreover, the low Mach
number allows to neglect the volume integral which would be computationally expensive and only take into
account pressure effects over the surface.

Special attention needs to be taken into the compactness of the body when using Curle’s integral, which,
as previously stated, for low Mach numbers considers the solid boundaries as a distribution of dipole sources.
This replacement is not possible for any configuration and it is recommended to ensure that the source
region is acoustically compact before proceeding to the Curle post-processing. Mathematically, the acoustic
compactness is defined in terms of the Helmholtz number [25]:

He =
2πfD

a0
< 1 (9)

The case of study presented in the following section accomplishes that the relative position between
the source and the observers is constant, v = 0, and that the Mach number is considered low, so the use
of the Curle approach using an incompressible simulation as source terms is justified for those frequencies
assuring compactness. Its validity will be contrasted with the results for the acoustic pressure obtained with
a compressible simulation.

3 Problem Statement
The Curle analogy is applied to study the aeroacoustic radiation of an open cavity in presence of an upstream
laminar flow, using three different models: two-dimensional incompressible, three-dimensional incompressible
and three-dimensional compressible. The Reynolds number based on the cavity depth is defined as ReD =
ρ∞U∞D

µ , where U∞ is the freestream velocity, ρ∞ is the freestream density and µ the dynamic viscosity of the
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fluid. In the present case, U∞ = 1.0, ρ = 1.0, D = 1 and ReD = 1500. The Mach number isM = U∞
a0

= 0.15,
where a0 is the sound speed in the fluid.

The geometrical parameters of the cavity are L/D = 4, where L and D are the length and depth of the
cavity respectively (see Fig.1). These parameters are indefinitely extended along the z direction (henceforth
unconfined configuration). The origin of the domain is located at the leading edge of the cavity. The
inlet domain is bounded at x = −5D and the outlet at x = 25D for both approaches, compressible and
incompressible. However, previous test cases have shown that numerical calculation performs better when
the upper part of the domain is located at y = 10D for the compressible simulation and at y = 12D for the
incompressible.

Previous works on open cavity flows show that the thickness of the boundary layer arriving at the leading
edge of the cavity can substantially change the behaviour of the flow around the cavity [12, 26]. M.Gharib
and A.Roshko experimentally proved that the modes of oscillation of the cavity could changed between
non-oscillatory, shear layer mode and wake mode depending on the value of θ/L, where θ is the momentum
thickness at the leading edge of the cavity. In order to make the results from different approaches comparable,
it has been imposed that the boundary layer arriving at the leading edge of the cavity has the profile of the
Blasius solution for a flat plate developed during 10 length units, i.e, having a δ0.99 ≈ 0.4D. For this reason
the imposed inlet boundary condition is the velocity field corresponding to the Blasius solution developed
during 5 length units. The tabulated Blasius solution has been fitted to the following expression:

u

U∞
(y/D) = 1.0− e−22.837905(y/D)1.4288577 (10)

Figure 2 shows the Blasius profile compared with expression 10.

Figure 2: Tabulated Blasius solution and adjusted profile.

Considering that the cavity is infinite in the spanwise direction, periodic boundary conditions have been
imposed at the front and back boundary walls.The extension of the cavity in the z direction has to be long
enough to ensure the correct definition of the vortex structures. Figures 3 and 4 display the correlation
coefficient when the width of the domain is 4 for two different (x, y) positions defined as:

Rii =
< u′i(xi, t)u

′
i(xi + δ, t) >

< u′iu
′
i >

(11)

where < ∗ > denotes the time average and u′i = ui − ūi the velocity fluctuation. As seen in Figures 3 and
4, the coefficient tends to zero as it approaches the half-size of the domain for the three components of the
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velocity, a characteristic behaviour of turbulent flows. These results confirm that a width of 4 is enough to
have statistically uncorrelated flow variables in the spanwise direction.

No slip boundary conditions are used in solid boundaries. Flow variables at the outflow boundary are
specified by zero normal derivatives. However, in order to avoid reflections of pressure waves into the domain
when solving the set of compressible Navier-Stokes equations, a buffer zone is imposed for the last 6 length
units of the domain. The same procedure is used for the last 10 mesh elements of the domain (2 length
units approximately at plane y = 0) when working with the two-dimensional incompressible simulation to
completely damp the vortical structures. These vortices do not vanish with distance due to the non-existence
of vortex stretching in two-dimensional.

Figure 3: Correlation of velocity fluctuations along
the z axis at (x, y) = (3,−0.25).

Figure 4: Correlation of velocity fluctuations along
the z axis at (x, y) = (6.5, 0.25).

4 Computational Methods
Two different CFD codes have been used to simulate the flow over the 3D cavity. To solve the governing
equations based on the incompressible Navier Stokes equations it has been used Alya, a CFD code developed
by Barcelona Supercomputing Center, [27]. For the compressible Navier Stokes equations it has been used
NOISEtte, a CFD code developed by the Keldysh Institute of the Russian Association of Mathematics. Both
set of equations have been solved without any turbulence model.

4.1 Numerical Discretization
4.1.1 Incompressible Simulation

In the case of the first approach, a low dissipation methodology strategy [28] based on the recently proposed
conservative EMAC scheme [29] is used with a Galerkin approximation for space discretization together with
a non-incremental fractional step method to stabilise pressure. Temporal discretization will be performed
through a conservative explicit third-order Runge-Kutta scheme [30].

4.1.2 Compressible Simulation

The NOISEtte code [31] has been used for the compressible simulation. It is based on the finite-volume EBR
(Edge-Based Reconstruction) schemes [32] for unstructured hybrid meshes. This schemes provide a higher
accuracy than most Godunov-type 2nd-order schemes at a low computing cost. On translationally-invariant
(structured) mesh zones the EBR schemes coincide with high-order (up to 6th) finite-difference schemes. An
implicit 2-nd order scheme with Newton linearization is used for the time integration.
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4.2 Computational Grid
Computational grid design is a non trivial task and the characteristics of each CFD code needs to be taken
into account before starting the process. For this reason, two type of meshes have been constructed for each
type of simulation. The following subsections describe the specific features of each design. Nevertheless, the
boundary conditions treatment have been similar for both cases.

4.2.1 Incompressible Simulation

A non-structured grid is used for the x− y planes. The nodes are clustered near the walls, within the cavity
and in the wake region (see Fig.5). After a mesh convergence study for which the pressure changed less than
0.5%, the resolution inside the whole cavity was decided to be 0.014 for the two-dimensional case (see.Fig.6).
The mesh for the 3D case has been created extruding the two-dimensional mesh. The number of parallel
planes in the z direction is 100 with ∆z = 0.04 (see Fig.7).

Figure 5: Grid in the x− y plane for the incompressible case.

Figure 6: Grid in the x−y plane at the cavity for the
incompressible case.

Figure 7: Grid in the streamwise direction at the cav-
ity for the incompressible case.
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4.2.2 Compressible Simulation

A structured and nonuniform grid is used for the x − y planes. Similarly to the incompressible case, the
nodes are clustered near the walls, within the cavity and in the wake region (see Fig.9). The resolution in
the walls of the cavity is 0.004 and the total amount of elements is 8.7 · 104 (see Fig.8). The mesh for the
3D case has been also created extruding a two-dimensional mesh. The number of parallel planes in the z
direction is 150 with ∆z = 0.027.

Figure 8: Grid in the x-y plane at the cavity for the compressible case.

Figure 9: Grid in the x-y plane for the compressible case.

4.3 Curle post-processing
The Curle approach in the form of Equation 12 has been implemented in a parallel code written in C
language.

p(x, t)− p0 =
1

4π

∫
S

−linj
(

1

ra0
[ṗij ] +

1

r2
[pij ]

)
dS (12)

The pressure over the solid wall has to be stored for every time step, a process which occupies a high
amount of disk space but is necessary for the calculation of Equation 12. In the case of the two-dimensional
simulation, the pressure distribution has been assumed constant in z direction. Similarly, for the three-
dimensional simulation the pressure has been stored for each plane of the computational domain and it
has been assumed the same for all its shifted planes. The surface integral is extended along the spanwise
direction until the contribution of a new plane is negligible. This convergence is assured due to the inverse
dependence of expression 12 with distance.
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Figure 10: Acoustic domain.

Regarding the evaluation of each term of the integral in the retarded time τ = t−r/a0, a linear temporal
interpolation has been used. The calculation of the integral is made every ∆t for a total time range T .
The specified sampling rate limits the maximum calculated frequency to fmax = 1

∆t . On the other hand, to
ensure that the lower frequency is properly sampled at least 10 complete periods should lie inside T , then
the minimum frequency that can be captured is fmin = 10

T .
Finally, a set of 2535 acoustic observers are distributed in a mesh around the cavity (see. Fig 10) located

at plane z = 0. The acoustic pressure obtained from the Curle postprocess will be calculated for the location
of these observers. An observer is located every (∆x,∆y) = (0.2, 0.2).

5 Results

5.1 Flow Field Results
This section describes the results of computation of laminar flow past the two-dimensional and three-
dimensional open cavity, the latter considering the flow first incompressible and then compressible. This
work aims to first understand the effects of considering either two-dimensional or three-dimensional flow
field results as acoustic sources and then to compare the compressibility effects in order to validate Curle’s
formulation. For this reason, both comparisons are made in separate sections. May the reader notice that
to have statistically representative average variables for the three-dimensional simulations, these have been
averaged not only in time but also in the spanwise direction.

5.1.1 Two-dimensional vs. Three-dimensional Incompressible Simulation

The streamlines of the instantaneous two-dimensional flow are illustrated in Fig.11. The flow is characterised
by the creation of a vortex at the bottom left corner of the cavity. From there, it grows until the recirculation
reaches the top left edge of the cavity and starts to pull down freestream fluid, creating a larger structure
which in turn grows and moves downstream until the cavity trailing edge, where it is forced out by the vortex
generated at the next period. Then, the vortical structures formed in the cavity edge travel almost unaltered
downstream and attached to the wall of the domain.

The three dimensional flow behaves in a completely different manner, as can be seen in Figure 12 where
the three-dimensional vortical structures identified by means of Q-isocontours are represented. Q [33] is the
second invariant of the velocity gradient tensor defined as:

Q = −1

2

∂ui
∂xj

∂uj
∂xi

(13)
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Instabilities triggered by the interaction with the edge of the cavity start to develop and grow up, until at
a certain distance from the cavity the flow transitions to turbulent, and a turbulent boundary layer develops
downstream the cavity. The vortex stretching [34] is responsible for the enhancement of vorticity and the
transport of energy towards the smaller scales. Thus, the three-dimensional deformation of the vortices
formed close the edge of the cavity eventually leads to the break up into smaller vortices and vortical
structures become more complicated downstream the cavity.

Figure 11: Streamlines for instantaneous velocity in the 2D case coloured by velocity magnitude.

Figure 12: Q-isocontours in the three-dimensional case coloured by velocity magnitude.

The vortices appearing in the two-dimensional simulation do not vanish with time and as a consequence
the pressure value over the wall changes completely. Figure 13 presents the time average < p > distribution
along the wall, where s is the distance from the leading edge and the vertical lines define the corners of
the cavity. The mean pressure is low on the upstream cavity wall and in the beginning of the cavity. For
the two-dimensional case, then it rises steeply towards the end of the cavity and reaches a maximum in the
bottom downstream corner followed by a minimum value at the trailing edge. On the contrary, the maximum
value in the three-dimensional case occurs at the trailing edge of the cavity, due to the periodic impingement
of the vortex detached from the shear layer. Overall, as will be seen in section 5.2, the higher absolute mean
pressure over the whole wall for the two-dimensional case will result in a much higher acoustic pressure.
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Figure 13: < p > profile along the wall. Figure 14: CD time evolution for the 2D and 3D
cases.

Further comparisons shows that cavity drag is also in high disagreement. The cavity drag is computed
as

CD =
FD

1
2ρ∞U

2
∞D

(14)

where FD is the force contribution from the three cavity walls. Figure 14 shows the time evolution of CD
during two periods of the 2D case, for which the mean value is < CD >= 0.407, whereas for the three-
dimensional case is < CD >= 0.058. The spectra of the oscillation is also substantially different. The
fundamental frequencies, associated with the dimensionless frequency with the highest peak in the power
spectrum, are f2D = 0.058 and f3D = 0.220.

J.E. Rossiter obtained an empirical equation predicting the oscillation frequencies of the cavity [35]:

f =
U

L

m− γ(
1
K +M

) (15)

where m = 1, 2, 3, .... The experimental values for γ and K derived for L/D = 4 were γ = 0.25 and K = 0.57.
Using Eq.15, the predicted frequency stages for M = 0.15 using Rossiter’s formula are displayed in table 1:

m 1 2 3
f 0.099 0.230 0.361

Table 1: Rossiter’s frequencies for L/D = 4.

For such low Mach numbers, no empirical evidence of the stage m = 1 exists while the fundamental
frequency f3D is in good agreement with the second stage of oscillation predicted by Rossiter’s formula.
This result further emphasises the need of the use of a 3D simulation for acoustic field predictions even for
low Reynolds numbers.

5.1.2 3D Incompressible vs. Compressible Simulation

It is the purpose of the present study to understand and explore the limits of use for the Curle’s formulation.
For this reason and taking advantage of the low Reynolds number, a comparison with the direct value for
the acoustic pressure obtained from a compressible simulation without any sound modelling is performed. In
order to evaluate the differences between the compressible and incompressible simulations, the flow variables
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will be compared before considering acoustic pressures. Profiles of the mean velocity components, < u >
and < v >, along the y axis at the same streamwise positions are displayed in Figure 15 and 16.

Except for the difference at x = 4D (trailing edge cavity), the results are in satisfactory agreement.
Moreover, the cavity drag is also consistent with the results previously stated for the three-dimensional
incompressible simulation. Table 2 shows the mean drag values and the fundamental frequencies obtained
for all the cases studied.

Case 2D Incompressible 3D Incompressible 3D Compressible
< CD > 0.407 0.058 0.055

f 0.058 0.220 0.221

Table 2: Mean value of CD and fundamental frequency.

The time average of the cavity drag is < CD >= 0.055 and the fundamental frequency is f = 0.221.
However, the most critical point for later agreement in the acoustic field is the concordance of the mean
pressure over the wall. The different compressibility treatment between both approaches generate a reference
pressure offset, pref = 31.7552, between the calculated pressures. In order to make results comparable, such
reference pressure has been subtracted from the compressible mean pressure. Figure 17 shows that the most
discrepant part is the downstream wall of the cavity where the peaks of pressure are not correctly captured
by the incompressible simulation. It is believed that this difference could be a consequence of the different
grid resolution in this part of the cavity. Compressibility effects can also be a source of discrepancies between
results even though the Mach number is considered low. However, the forthcoming acoustic results will show
that these differences do not create significant differences in the frequency spectra.

Figure 15: < u > profile comparison between the compressible and incompressible cases.
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Figure 16: < v > profile comparison between the compressible and incompressible cases.

Figure 17: < p > profile along the walls.

5.2 Acoustic Results
5.2.1 Two-Dimensional vs. Three-Dimensional Incompressible Simulation

The average levels of < p > shown in Figure 13 decay to zero rapidly after the cavity trailing edge. This
together with the inverse dependence with distance given by Eq.12 assures the convergence of the surface
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integral for the observers located in Fig.10. For both cases, the surface of integration has been limited
in the streamwise direction from x = −4D to x = 23D (avoiding the buffer zone) and in the spanwise
direction from z = −24D to z = 24D. The acoustic pressure signal has been calculated during 100 time
units using a sampling rate of ∆t = 0.1 D

U∞
. This means that the lowest frequency that can be captured is

fmin = 0.1 (to ensure that at least 10 cycles lie inside our sampling time range). Regarding the maximum
frequency, two restrictions are accounted for: i) a numerical one, the sample rate, and ii) a physical one, the
compactness of the cavity. The first limits the maximum frequency to fmax = 10, whereas the second to
fmax <

a0
2πD = U∞

2MπD = 1.06. Therefore, the Curle formulation for the presented case is limited to the range
of frequencies between 0.1 ≤ f ≤ 1. As aforementioned, many studies have been devoted to this configuration
assuming two-dimensional flow [14–16] and the present results are in fair agreement with them. However, as
the pressure fluctuations in the wall do not vanish due the absence of vortex stretching, the acoustic results
are very sentitive to the integration region used for the Curle integral, that should ideally reach infinite.

Figures 18 and 19 present the frequency spectra for the calculated acoustic signal for the observers located
at (x, y) = (0, 7.3) and (x, y) = (2, 7.3). The Power Spectral Density (PSD) has been calculated using the
Lomb-Scargle algorithm [36, 37]. As for the three-dimensional case there is one predominant frequency at
f = 0.220, related with the shear layer vortex impingement, for the two-dimensional simulation most of
the energy is contained in three frequencies, each a consecutive multiple of the vortex shedding frequency:
f1 = 0.061, f2 = 0.122 and f3 = 0.184.

Figure 18: PSD at observer (x, y) = (0, 7.3). Figure 19: PSD at observer (x, y) = (2, 7.3).

The pressure coefficient is defined as:
Cp =

p− p∞
1
2ρ∞U

2
∞

(16)

The value of Cp associated with the mean value of the acoustic pressure p′rms is plotted in Figures 20 and
21. These maps show not only that the distribution of the acoustic pressure is much different but also that
the overall value of p′ over the whole map is approximately one order of magnitude higher for the two-
dimensional case. Moreover, Figure 22 shows the directivity pattern for those observers located at distance
6 from the centre of the cavity located at (x, y) = (2D, 0D). Although in both patterns the region with
higher acoustic intensity is located between α1 = 120◦ and α2 = 180◦ (where α is the counterclockwise
angle taken from the downstream wall), the two-dimensional calculation also predicts a high noise for those
observers located behind the cavity. There is also a remarkable difference for the observers located between
α1 = 30◦ and α2 = 90◦, a region to where the two-dimensional case hardly propagates sound whereas for
the three-dimensional case there is not a significant minimum.

14



Figure 20: Cp′rms
map for the 2D case. Figure 21: Cp′rms

map for the 3D case.

Figure 22: Cp′rms
directivity pattern.

5.2.2 Three-dimensional Incompressible vs. Compressible Simulation

Figures 23 and 24 display the frequency spectra for the calculated acoustic signal with Curle and with DS
for the observers located at (x, y) = (0, 7.3) and (x, y) = (2, 7.3). Despite the overall energy of the signal
calculated with Curle is lower, the frequencies are correctly correlated. Table 3 shows the two frequencies
with higher PSD value for both cases:

Order fCurle fDS
1 0.220 0.437
2 0.219 0.438

Table 3: Two main frequencies and correspondent PSD values.

Given that the findings are based on a limited number of observers for the DS, the results from such
analyses should be taken with care. Further analysis related with noise distribution and directivity will be
made. Special attention should also be taken over the amplitude levels in further works.
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Figure 23: PSD at observer (x, y) = (0, 7.3). Figure 24: PSD at observer (x, y) = (2, 7.3).

6 Conclusions
Numerical simulations of the sound radiated by a three-dimensional infinite open cavity at Reynolds number
based on the cavity depth of Re = 1500 and Mach number of M = 0.15 have been performed, without
any turbulence model. To do so, two approaches have been used: Curle integral, evaluated as a post-
process of an incompressible solution and compressible direct simulation. For the incompressible approach,
two-dimensional and three-dimensional simulations have been performed.

The results obtained after mesh convergence study show that two-dimensional and three-dimensional
incompressible flow results are signficantly different, as expected for a Reynolds number above the known
transition value, at Re ≈ 1200. The vortex stretching mechanism, responsible for the enhancement of
vorticity and the transport of energy towards the smaller scales, is not present in the two-dimensional
results and therefore the vortices do not vanish. As a consequence, the pressure value over the wall changes
completely, as well as the drag and other flow parameters. The drag fundamental frequency in the three-
dimensional results is in good agreement with published experimental data.

On the other hand, the three-dimensional compressible and incompressible flow results agree quite well,
as expected for such a low Mach number. However, there are minor differences at the downstream wall of
the cavity, both in velocity and pressure distributions, that could be due to mesh resolution.

Respect to the acoustic results, the two-dimensional incompressible simulations are in fair agreement with
previous studies. However, the three-dimensional results are about an order of magnitude different. The
Cprms

map, including acoustic directivity, is also in disagreement. Thus, a two-dimensional simulation would
predict a high radiation to the downstream direction and a singular zone with hardly any noise propagation
between α1 = 60 and α2 = 90. Such characterisation differs from the one obtained in the three-dimensional
simulation, where the cavity radiates mainly towards upstream positions.

Respect to the comparison of the Curle formulation with a direct acoustic simulation, the present study
has been limited to two observers far from the cavity. In these conditions, and in the range limited by
compactness criteria and sampling time, the frequency spectra is in good agreement as expected.

Future work will be focused in: (i) The comparison of complete acoustic maps in order to precisely
determine the regions where the Curle methodology yields accurate values. (ii) The use of pressure distri-
butions obtained from compressible simulations to evaluate the Curle integral and clarify the role of the
compressibility for this configuration at low Mach numbers.
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