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1 Introduction
Vortex methods discretize the flow quantities on particles which move according to the flow dynamics.
They are therefore ideal to handle vortex-dominated flow simulations, like flows past bluff-bodies, airfoils,
propellers, turbine profiles as well as complex internal configurations or jet flows.

In the present work, we use a remeshed vortex method with penalization in order to simulate three-
dimensional incompressible bluff body flows. This approach, based on a vorticity (ω)-velocity (u) formulation
of the Navier-Stokes equations, combines the robustness of vortex methods and the flexibility of penalization
methods to impose boundary conditions on the obstacle through the introduction of an underlying Cartesian
grid. This numerical method has been successfully used in the context of Direct Numerical Simulations of
flow past bluff bodies.

Due to the immersed boundary approach, one of the main limitation of such method arises when increasing
the Reynolds number. In order to be able to consider higher Reynolds numbers without dealing with
prohibitive mesh sizes, we adopt in this work a bi-level approach. The latter consists in transporting the
vorticity field ω on a fine grid with a filtered velocity field u resolved on a coarse mesh. For this purpose we
propose an artificial viscosity model for vortex methods.

2 Direct Numerical Simulations with a remeshed Vortex Method

2.1 Governing equations and discretization method
The modeling of incompressible 3D flows around obstacles is realized in this work using a remeshed Vortex
Method (VM) coupled with an immersed boundary approach called the Brinkman penalization method. The
governing Brinkman-Navier-Stokes equations are expressed in their velocity(u)-vorticity(ω) fomulation [1]:

∂ω

∂t
+ (u · ∇)ω − div(ω : u) = ∇×

(
λ χb(ub − u)

)
+

1

Re
∆ω in D, (1)

∆u = −∇× ω in D, (2)

where Re denotes the Reynolds number, χb represents the characteristic function that yields 0 in the fluid
and 1 in the solid body, ub indicates the rigid body velocity and λ is the non-dimensional penalization
parameter. One can distinguish in Eq. (1) the advection term (u · ∇)ω, the stretching term div(ω : u)
expressed in its conservative form, the vorticity penalization term ∇× (λ χb(ub−u)) and the diffusion term
∆ω/Re. The Poisson equation (2) allows to recover the velocity field u from the vorticity field ω. This
system of equations has to be complemented by appropriate boundary conditions at artificial boundaries.

To discretize the penalized vorticity equations (1)-(2) we use in this work a remeshed vortex method.
The flow is discretized onto particles that carry the vorticity and the resolution of the governing equations
is based on a fractional step algorithm, which consists at each time step to successively solve the different
equations (Table 1). The advection equation in solved in a Lagrangian way and after each advection step,
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the particles are remeshed on a Cartesian grid. Eulerian grid-based methods are then employed to solve the
stretching, diffusion, penalization and Poisson equations.

Fractional steps Time discretization Space discretization
1) Poisson equation ∆u = −∇× ω - spectral method (grid)
2) Penalization ∂tω = ∇×

(
λ χb(ub − u)

)
implicit Euler scheme 4th order centered FD (grid)

3) Stretching ∂tω = div(ω : u) RK3 scheme 4th order centered FD (grid)

4) Diffusion ∂tω =
1

Re
∆ω implicit Euler scheme spectral method (grid)

5) Advection ∂tω + (u · ∇)ω = 0 RK2 scheme Λ4,2 remeshed VM (particles)

6) Adaptive time step ∆tadapt =
LCFL
‖∇u‖∞

(LCFL < 1) - 4th order centered FD (grid)

Table 1: Fractional step algorithm used to solve the penalized vorticity equations (1)-(2) at each time step.

2.2 Validation
Flow past a sphere is a common benchmark to validate the accuracy of a numerical method and to prove
its capability to correctly model 3D bluff body flows. The validation simulaton is performed at Re = 1000
setting the grid step to h = 0.01. The adaptive time step, calculated with LCFL = 1/8, returns a value
roughly equal to ∆t = 0.005, which corresponds to a CFL number equal to 0.6.

A plot of the time average streamwise velocity ux along the centerline is given in Figure 1a. The results
obtained with the present method are compared to those of [2] along with the experimental data of [3]
at Re = 960. It can be seen that the length of the recirculation zone, characterized by negative ux values,
obtained in the present case (1.5 diameters) is similar to the one obtained in [2] (approximately 1.7 diameters).
Furthermore, the ux values obtained in the far field (i.e. for x/d > 2) are in a very good agreement with
other numerical [2] and experimental studies [3].
Concerning the time evolution of force coefficients, Figure 1b shows that the early time evolution of the
drag coefficient CD and the vertical lift coefficient CL coincide with the one found by [4]. Moreover, the
mean value of the drag coefficient CD obtained in the present study is 0.485, which coincides well with the
numerical values reported by [5] and [6], respectively equal to 0.46 and 0.478.
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Figure 1: Flow past a sphere at Re = 1000: (a) Average streamwise velocity ux along the x-axis: comparison
of the present results (red curve) with numerical results [2] (green curve) and experimental data [3] at
Re = 960 (black circles). (b) CD (solid lines) and CL (dashed lines) time evolution: comparison of the
present results (red curves) with [4] (black curves).
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2.3 DNS results for flow past a hemisphere
Hemispherical bodies correspond to configurations that may be used in several engineering applications.
Moreover, due to the presence of a flat back wall with sharp edges, the flow past a hemisphere is a steep
problem. The present simulation of flow past a hemisphere is performed at Re = 1000.

The time history of the force coefficients is reported in Figure 2a. It shows that from T ' 55 the wake
becomes chaotic and is characterized by important and non-periodic variations of the side lift coefficient CS .

Three-dimensional representations of the turbulent wake is given in Figure 2b(top) at T = 100. Figure
2b(bottom) also reports the time average of the vorticity magnitude calculated between T = 70 and T = 110,
showing the chaotic feature of the wake. In particular, we remark that a large recirculation area with low
vorticity values exists behind the hemisphere, followed by an important zone characterized by high vorticity
values.
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Figure 2: DNS results for flow past a 3D hemisphere at Re = 1000.

Further results concerning the validation of the present method and its application to other simulations
of 3D flows around bluff bodies may be found in [7].

3 Eddy viscosity model for a bi-level approach
When dealing with large Reynolds number flows, the computational cost induced by the present DNS ap-
proach becomes prohibitive, even unaffordable. To overcome this limit we propose a bi-level method, which
may be seen as a LES approach, consisting in transporting the vorticity field on a fine grid with a filtered
velocity, resolved on a coarse mesh.

The eddy viscosity model used in this section to perform bi-level simulations was introduced by [8] and
is based on the vortex methods framework.

3.1 An eddy viscosity model for Vortex methods
Let us consider the 3D velocity-vorticity formulation of the Euler equations :

∂ω

∂t
+ div(u : ω)− div(ω : u) = 0 in D, (3)

div(u) = 0 in D, (4)
u −→ u∞ at infinity (5)

To solve these equations, pure Lagrangian Vortex Methods consist in representing the vorticity field by a
distribution of particle which carry the local values of the circulation Γ. Generally, a continuous vorticity
field is recovered with vortex blob method, using the mollyfying function ζε of radius ε instead of the Dirac
distribution :
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ωε =
∑
p

Γpζε(x− xp),

The regularized velocity field uε is calculated from the Biot-Savart law, with the Poisson kernel K :

uε = u∞ + Kε ? ωε

Kε = K ? ζε (6)

Finally, it turns out that vortex blob method satisfies the regularized Euler equations :

∂ω

∂t
+ div(u : ω)− div(ω : u) = 0 (7)

where the notations ωε and uε have respectively been replaced by ω and u to denote the regularized fields.
Equation (7) is equivalent to :

∂ω

∂t
+ div(u : ω)− div(ω : u) = E, (8)

where E represents the truncation error.

E intrinsically involves the tensor u ω − u ω, which is reminiscent to the subfilter scale stress tensor τij in
LES methods.

In the vortex method framework, no closure model is needed to express this tensor. Based on the error
E expression, an evaluation of the enstrophy production allows to directly derive an eddy viscosity model.
According to [8], the evaluation of enstrophy production in 2D is derived from the expression of the 2D
truncation error E and is expressed as :

d

dt

∫
ω2 dx = −

∫∫
[ω(x)− ω(y)]2 [u(x)− u(y)] · ∇ζε(x− y) dxdy, (9)

This expression means that when
[u(x)− u(y)] · ∇ζε(x− y) < 0, (10)

one has a positive enstrophy budget, which can be interpreted as the indication of backscatter. Therefore,
[8] proposes the following 2D anisotropic viscosity model for vortex methods, based on the cancellation of
the enstrophy production only in the directions where condition (10) is satisfied :

dωp

dt
=
∑
q

vq {[u(xp)− u(xq)] · ∇ζε(xp − xq)}+ (ωp − ωq), (11)

where a+ = max(0, a).

This 2D model has been extended to 3D in [9]. Based on this work, we replace the step 3) of our remeshed
vortex method fractional step algorithm presented in the first sections of this paper (Table 1) by :

dωp

dt
= div(ωpup) + C∆−4

∑
q

vq

∣∣∣[u(xp)− u(xq)] · [xp − xq]g(|xp − xq|)
∣∣∣ (ωp − ωq), (12)

where ∆ will be the filter size used to filter the velocity field and where ∇ζε
(
xp − xq

∆

)
is defined in this

case by :

∇ζε
(
xp − xq

∆

)
= C

[xp − xq]

∆
g(|xp − xq|),

with g a function decaying at infinity and C a constant to adjust in the model.
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3.2 Numerical results
Model (12) has been applied to the Taylor-Green vortex benchmark, which constitutes a relevant three-
dimensional test case to investigate the generation of small-scale vorticity. The simulations are performed
in a periodic cubic box of side length L = 2π and initialized with the following smooth condition:

ux(x, t = 0) = sin(x) cos(y) cos(z)

uy(x, t = 0) = − cos(x) sin(y) cos(z) (13)
uz(x, t = 0) = 0

The Reynolds number of the flow is set to Re = 1600. The bi-level simulations presented here were obtained
by using the eddy viscosity model (12), with a vorticity field ω fully resolved on a fine mesh of step h while
the small scales of the velocity field u are filtered with the following spectral cutoff filter :

fk∆
(|k|) =

{
1 if |k| ≤ k∆ =

π

∆
0 otherwise,

where ∆ = nh is the filter size, with n ∈ N∗.
Figure 3 compares the evolution of enstrophy obtained by van Rees et. al in [10] with DNS using a 5123

resolution (red curve) and the one obtained with the proposed artificial viscosity model taking a 5123− 1283

resolution, and setting C = 0.04 (black) curve. The figure also shows the norm of vorticity field obtained
with the bi-level approach at the initial time and at the time T = 8.9 when the viscous dissipation of kinetic
energy reaches a peak. It emerges from the curves that the artificial viscosity model (12) manages to capture
the correct behavior of the flow, especially between T = 8 and T = 10 when the energy dissipation due to
molecular viscosity reaches its maximum. Figure 4 shows the contours of the vorticity norm obtained at
T = 8 in the YZ plane at x = 0 (center of the box) according to model (12) with C = 0.04, using a 2563−643

(left) and a 5123−1283 (center) resolution. They are compared to the contours obtained with DNS [10] with
a 5123 resolution (right). These figures show that the contours obtained with the proposed artificial viscosity
model taking a 5123 − 1283 resolution are very close in a qualitative point of view to the one given by the
Direct Numerical Simulations of [10], which confirms the capability of the proposed model to correctly take
into account the physics of the problem. The good agreement observed between the present results and the
one obtained from Direct Numerical Simulations confirms the capability of the proposed artificial viscosity
model to capture the large scales of the flow and thus to account for the global behavior of the flow.

Figure 3: Bi-level results: enstrophy of a Taylor-Green vortex at Re = 1600 with a 5123 − 1283 resolution
compared to the DNS result obtained by [10] with a 5123 resolution.
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Figure 4: Contours of vorticity norm at T = 8 in the YZ plane at x = 0 in a 2π-long cubic domain obtained
with the present eddy viscosity model with a 2563−643 resolution (left) and a 5123−1283 resolution (center).
They are compared to the DNS results obtained by [10] with a 5123 resolution (right).
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