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Abstract: Turbulent transition critically impacts on aerodynamic performance of 
aircraft, e.g., aerodynamic drag and fuel efficiency. Therefore, it is required for 
engineers to be able to predict turbulent transition. Large-eddy simulation (LES) 
coupled with the stability theory is proposed in this study. For cost-effective 
computations, the stability analysis is performed in the pre-transition region, and 
LES is used to describe the turbulent boundary layer with high accuracy. To 
demonstrate the feasibility of LES coupled with the stability theory, a canonical 
case of the flat-plate boundary layer is simulated. Two dominant instabilities, 2D 
Tollmien-Schlichting and 3D oblique waves, are determined and fed into the LES 
inlet. Staggered lambda structures, one of characteristics of natural transition, are 
well reproduced in the transition region. In addition, hairpin vortices inside 
turbulent boundary layer are clearly captured. Current simulation results are 
compared to experiment and direct-numerical simulation data including the skin 
friction and details of major instability modes.  
Keywords:    Boundary Layer, Large-Eddy Simulation, Turbulence Transition, Stability 
Analysis. 

 
1     Introduction 
 

Laminar-to-turbulent transition is a critical phenomenon, impacting aerodynamic performances of 
aircraft. Significant region of laminar flow on aircraft surface could reduce the aerodynamic drag, 
which helps to achieve in high fuel efficiency. In consequence, it is required for engineers to be able 
to predict the turbulent transition in a wall-boundary layer. 

Natural transition is of interest to the current numerical study because this transition process is 
related to moving vehicles in air and water at nominal cruising conditions. In the first stage of the 
natural transition, disturbance waves come into the boundary layer and then slowly grow in the linear-
growth region. When nonlinear interactions of multiple disturbances of large enough amplitudes 
occur, vortical structures including so-called 𝛬-sturucture emerge in the turbulent transition region. A 
specific type of the natural transitions can be determined through vortical structures. Staggered 𝛬-
stuructures are observed in H-type transition, whereas aligned 𝛬-stuructures are observed in K-type 
transition. The H-type transition is numerically studied in this study. 

The linear stability theory (LST) has been used for the transition prediction over decades. LST, 
however, is limited to the linear-growth region, ignoring non-linear interactions of disturbances. 
Herbert [1] suggested the parabolized stability equation (PSE) which overcomes the LST limitation. 
PSE is successfully validated in the overall transition region including the final stage of the transition 
[2,3]. Since the computational cost of PSE computations grow exponentially as high-order nonlinear 
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interactions initiate, it is not efficient to continuously use PSE in the turbulent region where the 
nonlinear interaction occurs in a broad range of the turbulence spectrum. 

Direct-numerical simulation (DNS) can be used for the all range of the turbulent transition in a 
boundary layer, resolving all the relevant scales and their nonlinear interactions, and subsequent 
turbulent boundary layer [4,5,6]. It is, however, not efficient to use DNS in a practical situation 
because of the high computational cost. 

In this study, we pursue an LES framework where PSE is incorporated for disturbances in the pre-
transitional region. According to the study of Jee et al. [7], LES combined with LST is able to reduce 
the computational cost, and accurately resolve nonlinear interactions. In contrast to the previous study 
[7], PSE is coupled with LES here. 

To demonstrate the feasibility of LES coupled with PSE, a canonical case is chosen: transition in a 
zero-pressure gradient on a flat plate. Kachanov and Levchenko conducted experiments with a 
vibrating ribbon, assigning two-dimensional (2D) Tollmien-Schlichting (TS) wave and sub-harmonic 
three-dimensional (3D) oblique waves [8]. Following the experimental conditions, 2D TS and 3D 
oblique waves are computed using PSE. 
 
2     Methodology 
 

The current framework of LES coupled with PSE is shown in Figure 1. Laminar flow is computed 
first on a 2D domain including the upstream and the main LES region. Disturbance modes, obtained 
from PSE, are superimposed to the laminar solution at 𝑅𝑒$ = 400 which is the inlet of the LES 
computation. Each plane figure in Figure 1 indicates each velocity component, which consists of the 
superimposed disturbances and the laminar solution. Nonlinear interactions between disturbances and 
the subsequent turbulent transition are the expected to be captured in the current LES computation. 

 

 
Figure 1: Schematic diagram of the current LES framework. 

 
2.1     The Stability Analysis 
 

A disturbance 𝑢′ can be expressed as the following Equation (1). 
 

𝑢*+ 𝑥*, 𝑡 = 𝐴	𝑢* 𝑦 exp	[𝑖(𝛼𝑥 + 𝛽𝑧 − 𝜔𝑡)]    (1) 
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Where 𝐴  is the disturbance maximum amplitude, 𝑢* 𝑦  is the complex eigenfunction, 𝛼  is the 
streamwise wave number, 𝛽 is the spanwise wavenumber, and 𝜔 is the angular frequency. The quasi-
parallel assumption is used in Equation (1). The oblique angle is determined with the two wave 
numbers 𝜃 = arctan	(𝛽/𝛼). The streamwise wave length is 𝜆$ = 2𝜋/𝛼, whereas the spanwise wave 
length 𝜆J = 2𝜋/𝛽. 

A 2D TS and 3D oblique waves are obtained from the stability analysis using PSE. Disturbance 
mode shapes at inlet 𝑅𝑒$ = 400 are shown in Figure 2. Current mode shapes are agreed well with 
the linear stability analysis of Jee et al. [7]. The maximum amplitude of both the TS and oblique 
waves appears in the streamwise disturbance 𝑢′. 

The oblique wave on the inlet y-z plane are shown is Figure 3 at four selected phases. The oblique 
angles are 𝜃 = ±63.6°, following the experiment. Two oblique waves propagate in the opposite 
direction in the span, which results in the peak-valley contour. 

The maximum amplitude of the 2D wave is set to be 0.46% of the freestream velocity, and 
maximum amplitude of the oblique wave is 0.01%, following the PSE condition of Esfahanian et al. 
[3]. 

 

 
Figure 2: Amplitudes of the TS wave and the oblique wave. Black lines: current PSE analysis; red 

lines: linear stability analysis of Jee et al. [7]. 
 

 
Figure 3: Oblique waves normalized by sub-harmonic’s 𝑢PQ$+ . 

 
2.2     Large-Eddy Simulation 
 

The filtered, incompressible Navier-Stokes equations (Equations 2 and 3) [9] are numerically 
solved with the wall-adapting local eddy-viscosity (WALE) model. 
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Where the overbar indicates the filtering operation. The implicit filtering with the given grid is used 

in this study. The stress tensor 𝜏*`a  is modeled as follow, 
 

𝜏*`a = −2𝜈V𝑆*`.     (4) 
 
To obtain the eddy-viscosity 𝜈V, the WALE model (Equation 4) [10] is used, following the 

reference [7]. 
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Since the WALE model provides essentially zero eddy viscosity for 2D flow, it is expected to be 

dormant in the upstream laminar region. 
The 2nd-order Crank-Nicolson is used for the time integration, and the 2nd-order central difference 

is used for the spatial integration. The pressure-implicit with splitting of operators (PISO) algorithm is 
used to solve the Navier-Stokes equations. The incompressible solver OpenFOAM v4.1 is used. 

The modified unsteady boundary condition is implemented the flow solver. It is required to 
superimpose disturbance modes to the laminar boundary solution at the inlet in the current LES. To 
achieve the unsteady inlet condition, the solver is modified such that the unsteady disturbances are 
properly fed into the LES inlet. The periodic boundary condition is applied to the spanwise direction. 
The pressure outlet boundary condition is used to the outlet condition and the upper boundary. 

Two grid resolutions are numerically tested in this study, as listed in Table 1. The wall unit is 
calculated, based on the maximum value of the skin friction in the simulation. It is required to resolve 
disturbance modes in the laminar boundary layer. Thus, it is anticipated that the requirement of 
𝜆no.$/𝛥$ ≳ 32	, and 	𝜆J/𝛥J ≳ 32 provide sufficiently small grids for disturbance modes, their 
nonlinear interactions, and subsequent turbulent boundary layer. The current time step size is 𝛥V =
𝑇no/256 where 𝑇no is the period of the 2D TS wave. 
 

Table 1: Grid resolutions of current LES. 
Grid Grid points 𝛥𝑥r 𝛥𝑦r 𝛥𝑧r 

Fine grid 3088×256×64 14 (𝜆no.$/64) 1.3 15 (𝜆J/64) 

Medium grid 1544×128×32 28(𝜆no.$/32) 1.3 30 (𝜆J/32) 

 
 
3     Results 
 

Turbulent transition in the boundary layer over the flat plate is reproduced in the current simulation. 
Instantaneous vortical structures are shown in Figure 4, using the Q criteria colored by the streamwise 
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velocity. For clear visualization, the domain is replicated in the spanwise direction. At the initial 
stage, the 2D TS wave is dominant so spanwise vortical structures are mainly visualized until the 
downstream location of 𝑅𝑒$ = 650. Undulations in the spanwise direction appear after 𝑅𝑒$ =
650 through enough growth of oblique waves. As 3D vortical structures become clear, staggered 𝛬-
structures are predicted in transition regions 𝑅𝑒$ = 650~720. Staggered 𝛬-structures are associated 
with the H-type natural transition. After 𝛬-structures breakdown near	 𝑅𝑒$ = 750, small eddies 
emerge. Hairpin vortical structures are also well captured in the turbulent boundary layer. 

 

 
Figure 4: Instantaneous vortical structures visualized by iso volume of positive Q-criterion colored 

with normalized streamwise velocity. 𝑄 > 0 for (a) and (b); 𝑄 > 350 for (c). 
 

 
Figure 5: The skin friction along the flat plate 
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The skin friction is compared with the DNS study of Sayadi et al. [6] in Figure 5 along with the 
Blasius solution and the empirical turbulent skin friction. The deviation of the skin friction from the 
laminar solution is well reproduced in the current LES. The turbulent skin friction is also well 
reproduced in this study with the fine grid. The medium grid provides the accurate deviation from the 
laminar skin friction with a minor difference in the transition length, compared to the fine-grid LES. 
The turbulent skin friction is slightly under-estimated in the medium-grid LES. 

Amplitude growths are compared with PSE results which were validated with Kachanov and 
Levchenko experiment in reference [2]. Figure 6 shows the maximum amplitude growth of selected 
instabilities modes. The 2D TS wave is denoted by 𝐹f,z, and the sub harmonic oblique wave 𝐹\,\, the 
second harmonic mode 𝐹{,z, and third harmonic oblique mode 𝐹|,\. Current results are well matched 
with the PSE analysis. After 𝑅𝑒$ = 500, oblique waves, 𝐹\,\  and 𝐹|,\ , exponentially elevate 
whereas 2D waves,	𝐹f,z and 𝐹{,z , still gradually grow. 𝐹\,\ is larger than 𝐹f,z at 𝑅𝑒$ = 650 where 
vortical structures become clearly visible in the spanwise direction (see Figure 4). All modes 
exponentially grow from 𝑅𝑒$ = 650, and then the flow becomes turbulent. 

 
Figure 6: Maximum amplitude growth of selected instabilities modes in current computations. 

 
The number of grid points are compared with the previous DNS [6] in Figure 7. The current LES 

approach coupled with PSE is able to reduce the computational cost, compared to the previous DNS. 
Note that a higher order numerical scheme is used in the DNS whereas the second order scheme is 
used in the current LES. If the proposed LES approach is used with a higher-order scheme, then the 
reduction in the grid count can be achieved more. In addition, it is anticipated that the computational 
cost can be reduced further more by moving the inlet location close to the final stage of the transition. 

 
Figure 7: Comparison of grid counts in the current computations and the DNS of [6]. 
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4     Conclusion and Future Work 
 

Turbulent transition in the wall-bounded flow was numerically studied. In this study, LES coupled 
with PSE was used for efficient and accurate computations. Boundary layer disturbances were 
determined by PSE. The Blasius solution and disturbances were applied as the forcing condition at the 
LES inlet. Staggered 𝛬-shaped vortical structures and hairpin vortices are well reproduced in the 
current simulation. Current LES reproduced the transition region observed in the DNS [6]. The 
growth of the instabilities is also well captured, compared with PSE. Gird counts were compared with 
the DNS [6], and the computational cost is reduced successfully as expected. 

Two main aspects are planned for future works. First, the PSE-coupled LES method can be 
expanded to supersonic flow. Second, the domain reduction will be studied by moving the inlet 
location to downstream near the final stage of the transition. It is expected that the more efficient 
computation will be possible with a smaller LES domain. 
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