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Abstract: This paper proposes a method to generate high-order curvilinear mesh 

using compact radial basis function (RBF) interpolation with optimized support 

radius. We start with an initial high-order linear mesh, and relocate the boundary 

nodes to their true positons on the true curved geometry. Then the rest mesh nodes 

are moved using RBF interpolation based on boundary nodes displacement. 

However, if one assigns identical support radius to all control points, the 

interpolation might result in poor-quality or even invalid mesh elements. In this 

article, we present an optimization process to determine a proper set of support 

radius. Additionally, a novel and fast curved mesh quality estimation based on 

geometrical similarity between linear and curvilinear mesh element is used to speed 

up the optimization process. A number of examples including highly stretched 

boundary layer meshes of complex geometries are tested, the results illustrate that 

our method is able to produce high quality curved meshes with low computational 

cost. 
 

Keywords:    Curved Mesh Generation, Mesh Quality Control, Geometrical Similarity, 

Radial Basis Function. 

 

1     Introduction 
 
High-order CFD methods such as Discontinuous Galerkin (DG) methods [1], Spectral Difference 

(SD) methods [2, 3] and Flux Reconstruction/Correction Procedure via Reconstruction (FR/CPR) 

methods [4] have been developed for many years. Both academia and industry have paid considerable 

attention to these methods for their favorable numerical features and inherent parallelism. For high-

order methods, linear mesh elements become not adequate, more than one paper [5, 6] showed clearly 

that straight-sided mesh can severely reduce the accuracy of these methods. Therefore, high-order 

space discretization is essential for high-order methods. In 2012, Wang et al. [7] pointed out that one 

of the required pacing items in high-order community was curvilinear mesh generation. However, 

there is still no commercial mesh generator is able to produce high-order unstructured mesh.  

Research in this field has mainly focus on posteriori approach which means a linear-to-curvilinear 

transformation. The process is as follow: coarse straight-sided mesh is generated first, then boundary 

nodes are relocated according to the true curvature of boundary, and the final step is to regularize all 

interior nodes according to boundary displacements. The present paper also follows this idea. 

Challenge around posteriori approaches is to find a robust and efficient method through which the 

displacements of boundary mesh nodes can propagate to the interior nodes properly. Multiple research 

groups have developed different methods to accomplish this task. Their works can be broadly divided 

into two groups. The first group treats the mesh as a solid body and their theme is to find a best solid 
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mechanics model which can lead to optimal mesh quality. Until now, the physical models proposed 

by different researchers include linear elasticity [8, 9], non-linear elasticity [10, 11], a thermo-elastic 

analogy [12] and Winslow equation [13]. The basic thought of second group is to take use of an 

optimization process, where the objective function is set to be a functional related to mesh quality. 

The functional include Jacobian [14], shape distortion metric [15, 16], and spring analogies for 

surface deformation [17]. Other than above two groups, very few studies tried interpolation technique 

to perform mesh untangling [18, 19].  

Actually, most of above methods have already been applied to mesh deformation problem [20] in 

computational aeroelasticity and aerodynamic shape optimization communities for years. Actually, 

the regularization of curvilinear mesh can also be treated as a mesh deformation problem: the upgrade 

of high order curved boundary surface mesh from linear surface mesh can be viewed as the movement 

of mesh boundary and then the untangling process of mesh elements can be regarded as a regular 

mesh deformation procedure. The initial thought of present study comes from this idea, our goal is to 

use sophisticated algorithms in mesh deformation community for reference to accomplish high-

quality curvilinear mesh generation.  

Nowadays, one of the most popular algorithms in mesh deformation community is radial basis 

function (RBF) interpolation [21]. In 2007, Boer .et al [22] first introduced it into mesh deformation 

field. During the last decade, researchers developed many works [23-25] to make it more efficient and 

robust. Recent years, very few studies introduced it into curvilinear mesh generation. Sasrty [26] first 

adopted RBF interpolation with global support using thin-plate-spline to perform interior mesh nodes 

regularization in 2015. Zala [27] improved Sasrty’s method by replacing the kernel and introducing a 

smoothing algorithm in 2018. They both adopted a global support as interpolation function. However, 

in mesh deformation community, people prefer compact support since it has been proven a good 

balance between the quality of resultant mesh and computational efficiency [23]. In 2016, Kashi [28] 

tried a RBF interpolation with compact support to produce curvilinear mesh. His results showed that 

RBF interpolation is much better than solid-mechanics based methods in both mesh quality and 

computing cost. 

When we use RBF interpolation with compact support, a parameter “support radius” should be 

assigned first. Usually, people choose to adopt identical support radius for all control points. 

However, it might become unsuitable when encountering highly distorted [29] mesh elements (Figure 

1), which could be a common situation in CFD simulation with high order methods.  

 

  
(a) Slightly distorted isotropic element                             (b) Slightly distorted anisotropic element 

    
(c) Highly distorted isotropic element                               (d) Highly distorted anisotropic element 

 
For these elements, the quality of regularized curvilinear elements are highly related to the support 

radius of control points. If one set support radius without careful consideration, the interpolation 
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Figure 1: Examples of curvilinear elements with different distortion. RBF interpolation has a good 

performance with slightly distorted element as shown in case (a) and (b). However, it might 

generate poor-quality or even invalid element when the distortion is large as shown in (c) and (d).   
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algorithm may produce invalid elements. To overcome the problem, we will introduce an 

optimization process to find a proper set of support radius for all control points. We also propose a 

novel mesh quality indicator based on geometrical similarity between linear mesh element and curved 

element as the objective function. It’s computational more efficient than some previous optimization-

based works’ objective function. Moreover, this indicator is also capable to reflect the similarity 

between linear and curvilinear mesh. 

This paper is organized as follow. In section 2, a brief introduction of RBF interpolation with compact 

support is described. The novel mesh quality indicator will be presented in section 3. Section 4 states 

the detailed optimization procedure of support radius. Then, we illustrate the performance of our 

method through three examples including meshes with highly stretched anisotropic boundary layer 

elements and coarse isotropic elements for complex geometry in section 5. Conclusions are placed in 

section 6. 

 

2     RBF Interpolation with compact support 
 
Radial basis functions are set of radially-symmetric functions. They are used as a basis for the 

displacement field in the interior mesh nodes regularization. The form of an RBF interpolation is 

    
1

N

i i

i




 s x x x   (1) 

where s is the function vector to be evaluated at mesh node x and will define its displacements in  

different coordinates, the subscript i indicates the i -th control point, while ix  identifies its location. 

Here the control points are the mesh nodes located on curved boundaries of CAD models. The 

coefficient vector i  can be found by exact recovery of the original function at all the control points. 

  is the kernel of interpolation, and can be divided into three different categories: global, local and 

compact [23] . Compact functions have been proven a good balance between quality of the mesh 

motion and the conditioning of the linear system for finding the set of i . The form of compact 

functions are expressed as follow  
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where   /i ir  x x  and ir  is the support radius of i -th control point.  

There are multiple choices of compact functions, in our study, Wendland’s C2 kernel is selected as 

basis function:  

      
4

1 4 1        (3) 

Then  i  can be solved using  
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where iS  is a displacement vector of i -th control point. This leads to a linear system of N equations 

in N unknowns at each coordinate direction.  

RBF interpolation is able to propagate the displacements of boundary nodes to interior of the mesh. 

Moreover, the motions of interior mesh nodes will follow the same motion pattern of boundary nodes. 

This property will be used to construct the new mesh quality indicator in section 3.  

As we mentioned in section 1, for mesh with highly distorted elements, using RBF interpolation with 

same support radius for all the control points might lead to poor-quality or even invalid elements. 

Hence, in the following sections, the detail of optimization procedure for determining a suitable set of 

support radius distribution will be proposed.  
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3     Quality indicator based on geometrical similarity 
 

Before defining the quality indicators, there is an essential principle must be declared first. For 

previous literatures adopting optimization-based methods [14], the mesh quality is obtained by 

evaluating all the curvilinear elements. However, as we stated in section 2, since RBF interpolation 

has a nature property of propagating the displacements of boundary nodes to interior mesh nodes, an 

assumption to simplify the mesh quality estimation can be introduced: the quality of curvilinear mesh 

will be estimated only at the elements attached to the curved boundaries. Once these elements are 

untangled, according to the propagating property, we believe all the interior elements can be 

untangled. This assumption can reduce a considerable computing cost of optimization process 

especially for fine meshes.  

Then, in order to find an acceptable set of support radius, a proper method for quantifying the mesh 

quality is required. As the mesh quality is to be set as the objective function of optimization, it might 

be computed for a huge amount of elements and iterations. Hence, the computational efficiency of the 

evaluation algorithm is a crucial point. Previous works mainly adopted a Jacobian-related functional 

[15] as the mesh quality indicator. There is no doubt that they are one of the most accurate quality 

indicators, however, their computational cost could be relatively expensive.  

In this section, the most popular curvilinear mesh quality indicator scaled Jacobian [30] will be 

introduced first. We discuss the corresponding evaluation strategy, and show that it’s costly as an 

objective function. Therefore, based on the mathematical property of RBF interpolation, we propose a 

novel mesh quality indicator, which is computational inexpensive, to be our objective function.  

 

3.1     Scaled Jacobian 
 
Since most high order methods involve quadrature rule, a transformation between the computational 

and the physical space is needed (Figure 2). The determinant of the Jacobian matrix of this mapping 

 x = X  can be used to evaluate the quality of a curvilinear element. The scaled Jacobian I is 

defined as follow 

 
 
 

min

max

i

i

i

J
I

J













   (5) 

   
            (a)  mapping of a quadrilateral element                                           (b) mapping of a triangular element 

 
The subscript i  indicates i -th mesh element. In practice, the Jacobian is evaluated at all quadrature 

nodes. iI is always a real number less or equal to 1, which makes it a practical quality indicator for all 

kinds of curvilinear mesh. A negative or very small value of iI  indicates that the i -th element is 

invalid or close to degenerate.  

However, the calculation of scaled Jacobian could be costly. For a nodal high order element 

determined by n  nodes, we consider the basis  
1,...,i i n

N


 of nodal shape function with Lagrange 

interpolation. Then, the mapping can be expressed as:  

Figure 2: Notation for mapping between reference elements and curvilinear elements in 2D domain.   
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and the Jacobian of mapping (6) is: 
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Clearly, the evaluation of scaled Jacobian involves multiple interpolation processes and as the CPU 

time costed given in Table 3.1 suggest, adopting scale Jacobian as an objective function will be less 

efficient than our new quality indicator which will be introduced in the coming section.  

 

3.2     Geometrical similarity of a curvilinear element 
 

To improve the efficiency, a fast estimation of mesh quality is needed to replace scaled Jacobian. 

Moreover, as we mentioned before, most methods adopt posteriori approaches to produce curvilinear 

mesh, which means a linear mesh is already generated in the first place. Here we assume the quality 

of linear mesh is good and all the elements are well-shaped and distributed reasonably. Hence, the 

geometrical patterns and distribution of curvilinear elements produced by posteriori approaches are 

best to be similar to these properties in linear mesh. For example, in a boundary layer mesh, the 

boundary mesh intervals and orthogonality near wall should not be highly changed after a posteriori 

approach.  

Although scaled Jacobian is able to indicate the mesh validity clearly, it cannot reflect the similarity 

between linear and curvilinear mesh. Also, its calculation is costly. To indicate the similarity of 

meshes and improve the efficiency, a fast estimation of similarity is needed to replace scaled Jacobian 

as an objective function. Giving the propagating property of RBF interpolation, we found that if it 

works properly, the resultant curvilinear mesh element will share the same geometrical pattern with 

its corresponding linear element. Here we define it as the geometrical similarity between linear and 

curvilinear element. And a similarity ratio s of a certain element attached to curved boundary is 

defined as the ratio of the arc length between the segment attached to curved boundary and its 

corresponding linear segment (Figure 3(a)).  

 = /c ls B B   (8) 

 

                       
                   (a) Arc lengths of segment attached to boundary                         (b) Arc lengths of linear and 

                                in linear and curvilinear element                                             curvilinear segment 

 
Based on this parameter, we define a quality indicator Q  of a certain curvilinear element attached to 

curved boundary as: 

Figure 3: Illustration of geometrical similarity and mesh quality indicatorQ . 

 



 6 

 1

2

/

1 1

N

n n

n

c l

Q A
s



 
 
    
 
 
 


  (9) 

nc  and nl means the arc lengths of n -th curvilinear segment and its corresponding linear segment 

respectively (Figure 3(b) ). Since the ratio between products of arc lengths are very close to one, an 

amplification' factor A  is introduced to make the indictor more intuitive. We have used 
5=10A  in 

present work. Q is always a real number large or equal to 1, and smaller Q indicates that curvilinear 

element is geometrically more similar to its corresponding linear element. 

 

3.3     Simple examples 
 

In order to illustrate the efficient of different estimations, we consider the simple cases of both 

quadrilateral and triangular elements around a unit circle.   

 

   

 
The algorithm described in section 3.1 and 3.2 is used to calculate the scaled Jacobian I and 

geometrical similarity Q  from 2nd
 order to 4

th
 order element. Table 3.1 summarizes the CPU time 

for all estimations and Table 3.2 summarizes the estimated values. In this work, all CPU time were 

counted with sequential computations on a desktop PC equipped with Intel Xeon E5-1620 v3 at 

3.5GHz.  

 

Table 3.1 CPU time ( 610 s ) of two different quality indicators from 2nd
 order to 4

th
 order element. 

Quality 

Indicator 

Quadrilateral element Triangular element 

Order 2 Order 3 Order 4 Order 2 Order 3 Order 4 

I  71.00 130.00 185.00 37.50 92.10 102.00 

Q  9.00 14.00 20.00 5.60 9.80 11.60 

 

Table 3.2 Estimated values of two different quality indicators from 2nd
 order to 4

th
 order element. 

Quality 

Indicator 

Quadrilateral element Triangular element 

Order 2 Order 3 Order 4 Order 2 Order 3 Order 4 

I  0.84 0.95 0.95 0.79 0.92 0.92 

Q  1.00 1.00 1.00 2.88 2.94 2.92 

 

Giving the much better computational efficiency and acceptable accuracy, it’s clearly that our mesh 

quality indicator Q  is more adequate as an objective function for support radius optimization which 

will be discussed in section 4.  

 

4     Support radius optimization 
 

4.1     Optimization procedure 
 

In this part, we are going to discuss an important part of present work: how to use optimization 
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Figure 4: Quadrilateral (left) and triangular (right) first layer mesh element of a unit circle.   
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technique to determine a proper set of support radius. To reduce the cost of this process, the control 

points are firstly divided into several groups in which the control points share identical support radius. 

Then, a genetic algorithm (GA) is used to perform an unconstrained optimization on the sorted 

support radius.  

 

4.1.1     Grouping on elemental boundary displacement ratio 

The computational cost of optimization highly depends on the number of variables for most 

optimization methods. Since every control point has its own support radius, theoretically, the number 

of variables will be equivalent to the number of boundary mesh nodes in our optimization problem. 

However, even for a simple 2D airfoil, this number can easily goes up to 100, which could lead to a 

very inefficient optimization. Hence, a variable-reduction process must be proposed. In this study, we 

decided to sort the control points into few groups and each group share identical support radius.  

A simple grouping strategy based on elemental boundary displacement ratio D is employed to sort the 

control points. And this parameter is defined as the ratio between the areas (2D space) of deformed 

region dA and linear element lA  (Figure 5).  

       

 
Elements with similar D will be divided into same group, and in each group, control points with non-

zero displacements will share same support radius. As for a certain zero-displacement control point, 

its support radius is set as the average value of all the adjacent control points’ support radius. In 

Figure 6, a simple example is used to illustrate our strategy.  

 

 
4.1.2     Optimization using genetic algorithm  

Assume there are n mesh elements attached to the curved boundary, and r is the sorted support radius 

vector. Our objective function here is the geometrical similarity of the worst element. Then, the 

optimization problem can be defined as:  

 
 

   

            min

max    1,...,i

f

f Q i n 

r

r
  (10) 

A genetic algorithm (GA) is adopted to solve this problem. Genetic algorithm is a global 

optimization method belongs to the larger class of evolutionary algorithms (EA), and it 

comes from the process of natural selection.  

Figure 5: Illustration of elemental boundary displacement ratio which is defined as /d lD A A  .   

  

Figure 6: Illustration of support radius grouping and determination.  3 Elements are divided into 2 

groups: element a, c and element b according their boundary displacement ratios.   
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In our study, the genetic representation is done by Binary Gary Code, and  f r  is used as the 

fitness function. To breed a new generation, a tournament selection is applied. As for the 

genetic operators, we choose two-point crossover and binary mutation. The whole 

optimization algorithm is very conventional, however, there is one trick we use to accelerate 

the convergence. We did few unconstrained optimization to determine the support radius. In 

all test cases, a common situation is observed: the support radius of group with larger 

elemental boundary displacement ratio is larger. Hence, after a new population generated, we 

reset the support radius to an ascending array and make sure that larger support radius is 

assigned to group with larger boundary displacement ratio. Nevertheless, most optimization 

algorithm, such as gradient based method, is not suitable for this accelerating technique and 

that is one of the important reason we select GA as our optimization method.  

 
4.1.3     Stopping criterion 

We now present a stopping criterion for the optimization algorithm. To determine a good 

stopping point for the procedure, we define two requirements:  

(1). All the first layer mesh elements are valid. 

(2). The optimization process converges. 

In practice, we will simply check the scaled Jacobian of all first layer elements and the gradient of 

objective function for latest 4 iterations. When both of them are satisfied, the procedure halts.  

 

4.2     Method Validation 
 

Before applying our method to complex geometry in practical aerodynamic analysis, a simple mesh of 

a 16% relative thickness ellipse (Figure 7) is tested as a validation case to examine the validity of our 

method.  

We first apply RBF interpolation with identical support radius ( r = 1 ) for every control point (Figure 

8). It’s easy to find that the quality of resultant curvilinear mesh is very poor and clearly, the 

geometrical pattern of mesh elements is very different from initial linear mesh. Obviously, this mesh 

does not satisfy the principle of posteriori approach mentioned in section 3.2.  

Next, we are going to try our improved method. There are totally 14 elements attached to the ellipse 

and we will divide them into 3 groups according to their elemental boundary displacement ratios 

(Figure 9). Then, genetic algorithm start to optimize the sorted support radius. Since genetic algorithm 

is an algorithm with randomness, we repeat this test case for 10 times. In this validation case, the 

average cost of determining a proper set of support radius and performing interpolation to interior 

mesh nodes is 0.843 second. Note that we will also use same strategy to count computational cost in 

all examples at section 5. 

Then, we use a worst set of support radius to generate curvilinear mesh, and the resultant mesh 

(Figure 10) is still much better than identical support radius. To show the difference between meshes 

more clearly, we decide to perform a comparison of the curvilinear element with worst geometrical 

similarity (Figure 11). It’s easy to find that after RBF interpolation with identical support radius 

( r = 1 ), the element become more distorted and that’s the reason scaled Jacobian and geometrical 

similarity are getting worse simultaneously. However, if one adopt RBF interpolation with optimized 

support radius, the element become valid and geometrically much more similar to the linear element. 

After analyzing the quality of certain mesh element, we calculate the scaled Jacobian of whole meshes 

(Figure 12). In the histograms we notice that using identical support radius to perform RBF 

interpolation is not able to produce valid mesh. Also, besides the invalid elements, the mesh contains 

some poor-quality elements. In contrast, interpolation with optimized support radius can generate 

valid mesh and even the worst element has scaled Jacobian of 0.42. 

This validation case shows that support radius optimization is necessary for some curvilinear meshes 

and our method is able to deal with these meshes within acceptable computational cost.  
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5     Examples of application 
 

In this section, we are going to apply our method to three meshes with different kind of curvilinear 

elements: highly stretched boundary layer mesh with triangular and quadrilateral elements and a very 

coarse isotropic triangular mesh. Both boundary layer mesh have a polynomial approximation of 

degree 3p  , as for the isotropic mesh, the polynomial order is 4.  

Figure 7: Third order conform-boundary-only mesh of a 16% relative thickness ellipse (left) and the 

detail of large curvature part (right).   
  

Figure 8: Curvilinear mesh generated by identical support radius.   

  

Figure 9: Grouping on mesh elements attached to ellipse.  

 

Figure 10: Curvilinear mesh generated by optimized support radius.  
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(a)  Scaled Jacobian for mesh generated by identical support radius 

 
(b) Scaled Jacobian for mesh generated by optimized support radius 

 
 

Also, in order to show that our method is practical for meshes used in aerodynamic analysis, we 

consider two classical geometries as the test cases of boundary layer meshes. For these two meshes,   

if one perform a CFD simulation with polynomial order 4p  , the y
(estimated at the first Gauss 

point near wall) of first layer mesh elements will be less than 1.  

 

Figure 11: Comparison of a certain curvilinear element between different meshes. Clearly, 

optimized support radius is able to produce better element in both aspects of geometrical similarity 

and scaled Jacobian.  

 

Figure 12: Comparison of mesh quality between two curvilinear meshes. Obviously, the quality of 

mesh generated by optimized support radius is much better than identical one.  
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5.1     Anisotropic triangular boundary layer mesh 
 

We start our examples with highly stretched anisotropic triangular elements. A classical high-lift 

geometry of the 30P-30N is considered. This airfoil was a benchmark case from the first International 

Workshop on High Order CFD Methods (HiOCFD). The mesh in radial direction is much finer than 

circumferential direction which is a typical situation for high Reynolds number flow simulation and 

will result in a highly distorted curvilinear mesh. There are totally 142 elements attached to the curved 

geometry. We first divide them into 4 groups according to their elemental boundary displacement 

ratios. Then, the build-in optimizer begins to search a proper set of support radius. Once the optimizer 

find acceptable values, mesh untangling is performed by a RBF interpolation. The whole procedure 

costs 20.42 seconds and the regularized mesh is placed in Figure 13. The orthogonality near wall is 

well-remained and we see that even for the parts where the boundary layer is highly distorted, our 

method is capable to generate well-shaped elements. The scaled Jacobian is plotted in Figure 14, it’s 

clear that all the elements are valid.  

 
(a)  Regularized curvilinear mesh 

 

              
(b)  Detail of slat cusp                   (c) Detail of leading edge in main element         (d) Detail of leading edge in flap 

 

 

 

Figure 13: Curvilinear triangular boundary layer mesh of 30P-30N. Figure (b), (c) and (d) show the 

details of large curvature parts from slat, main element and flap, separately.  

 

Figure 14: Scaled Jacobian of Curvilinear 30P-30N mesh.   
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5.2     Quadrilateral boundary layer mesh 
 

Some high order CFD solvers are more efficient if quadrilateral elements are employed rather than 

triangular elements. To demonstrate our method also works for quadrilateral elements, an airfoil 

RAE2822 is selected as the test case. There are 56 elements attached to the airfoil and they are 

divided into 4 groups. Our algorithm spends 4.43 seconds to produce the final curvilinear mesh 

(Figure 15). In the untangled curvilinear mesh, even the highly stretched and distorted elements in 

leading edge are well regularized. Also, the quality of whole mesh is good, only a few elements have 

scaled Jacobian below 0.5. 

 

      

 

 

 
5.3     Isotropic triangular mesh 
 

Coarse isotropic triangular mesh is also frequently adopted in high order community, in order to show 

that our method can deal with this kind of mesh, we apply the method to another high lift airfoil L1T2 

with very coarse isotropic triangular elements (Figure 17(a)). In this case, only 47 elements are 

attached to the airfoil boundary and they are sorted into 4 groups. The conform-boundary-only mesh 

is invalid at leading edge of main element (Figure 17(b)). After RBF interpolation, we regularize the 

mesh successfully, and the invalid element become valid (Figure 17(c)). In this case, the whole 

untangling process lasts 10.52 seconds. Comparing to the last two examples, we note that our method 

is more efficient dealing with highly stretched mesh. However, for isotropic mesh, the computational 

cost is also acceptable. 

 

6     Conclusion and Future Work 

 
We improve the robustness of high order mesh generation using RBF interpolation with compact 

support by introducing an optimization process of support radius and propose a fast estimation of 

curvilinear mesh quality to make the algorithm more efficient. In all numerical experiments, we were 

Figure 15: Curvilinear quadrilateral boundary layer mesh of RAE2822.   

 

Figure 16: Scaled Jacobian of Curvilinear RAE2822 mesh.   
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able to generate valid mesh with well-shaped elements within acceptable computational cost.  

Ongoing work includes extending the mesh quality indicator Q  and our improved method to highly 

distorted 3D complex unstructured curvilinear elements. As for the untangling method itself, the 

remained requirements are mainly about efficiency. To be honest, this issue has been considered from 

the first place. One of the most important reasons we adopt RBF interpolation to untangle mesh 

element and genetic algorithm to optimize support radius is that the communities have already 

developed many methods to improve their efficiency. For RBF interpolation, a number of data 

reduction strategies have showed their potential of speeding up the mesh deformation process. As for 

genetic algorithm, several parallel implementations have been developed for decades. We are going to 

adopt some sophisticated technique to make our method more efficient and useful and these would 

lead to a practical high order mesh generation program.   

 

 
(a)  Regularized curvilinear mesh 

 

                           
(b) Detail of leading edge in main element                                              (c) Detail of leading edge in main element 

        (conform-boundary-only mesh)                                                                              (untangled mesh) 

 

 

 
 

Figure 17: Curvilinear isotropic triangular mesh of L1T2. In conform-boundary-only mesh, some 

mesh elements are self-intersected. After RBF interpolation, these elements are well untangled.  
  

Figure 18: Scaled Jacobian of Curvilinear L1T2 mesh.   



 14 

References 
 
[1] Hesthaven J S, Warburton T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, 

and Applications. Springer Publishing Company, Incorporated, 2007. 

[2] Liu Y, Vinokur M, Wang Z J. Spectral difference method for unstructured grids I: Basic 

formulation. Journal of Computational Physics, 2006, 216(2):780-801. 

[3] Wang Z J, Liu Y, May G, et al. Spectral Difference Method for Unstructured Grids II: Extension 

to the Euler Equations. Journal of Scientific Computing, 2007, 32(1):45-71. 

[4] Huynh H T. A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous 

Galerkin Methods. AIAA Journal, 2007. 

[5] Toulorge T, Desmet W. Curved Boundary Treatments for the Discontinuous Galerkin Method 

Applied to Aeroacoustic Propagation. AIAA Journal, 2015, 48(2):479-489. 

[6] Bernard, P.‐ E, Remacle, J.‐ F, Legat V. Boundary discretization for high‐ order 

discontinuous Galerkin computations of tidal flows around shallow water islands. International 

Journal for Numerical Methods in Fluids, 2010, 59(5):535-557. 

[7] Wang Z J, Fidkowski K, Abgrall R, et al. High‐order CFD methods: current status and 

perspective. International Journal for Numerical Methods in Fluids, 2013, 72(8):811-845. 

[8] Xie Z Q, Sevilla R, Hassan O, et al. The generation of arbitrary order curved meshes for 3D 

finite element analysis. Computational Mechanics, 2013, 51(3):361-374. 

[9] Hartmann R, Leicht T. Generation of unstructured curvilinear grids and high ‐ order 

discontinuous Galerkin discretization applied to a 3D high‐lift configuration. International 

Journal for Numerical Methods in Fluids, 2016, 82(6):316-333. 

[10]  Persson P-O, Peraire J. Curved Mesh Generation and Mesh Refinement using Lagrangian Solid 

Mechanics. 47th AIAA aeroapace sciences meeting and exhibit, Orlando (FL), USA, AIAA 

paper 2009-949.2009. 

[11]  Poya R, Sevilla R, Gil A J. A unified approach for a posteriori high-order curved mesh 

generation using solid mechanics. Computational Mechanics, 2016, 58(3):457-490. 

[12]  D. Moxey, D. Ekelschot, Ü. Keskin. High-order curvilinear meshing using a thermo-elastic 

analogy . Computer-Aided Design, 2016, 72:130-139. 

[13]  Fortunato M, Persson P O. High-order unstructured curved mesh generation using the Winslow 

equations. Journal of Computational Physics, 2016, 307:1-14. 

[14]  Remacle J F, Toulorge T, Lambrechts J. Robust Untangling of Curvilinear Meshes. Journal of 

Computational Physics, 2013, 254(12):8-26. 

[15]  Gargallo-Peiró A, Roca X, Sarrate J. A surface mesh smoothing and untangling method 

independent of the CAD parameterization. Springer-Verlag New York, Inc. 2014. 

[16]  Gargallo-Peiró, Roca X, Peraire J, et al. Defining Quality Measures for Validation and 

Generation of High-Order Tetrahedral Meshes. Computer Animation & Virtual Worlds, 2013, 

20(4):473-489. 

[17]  Sherwin S J, Peiró J. Mesh generation in curvilinear domains using high-order elements. 

International Journal for Numerical Methods in Engineering, 2002, 53(53):207-223. 

[18] Ims J, Duan Z, Wang Z J. meshCurve: An Automated Low-Order to High-Order Mesh 

Generator. 22nd AIAA Computational Fluid Dynamics Conference,Dallas(TX), USA. 2015. 

[19]  Liu X, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping. 

Journal of Computational Physics, 2006, 211(2):405-423. 

[20]  Zhang W, Gao C, Zhengyin Y E, et al. Research Progress on Mesh Deformation Method in 

Computational Aeroelasticity. Acta Aeronautica Et Astronautica Sinica, 2014, 35(2):303-319. 

[21] Buhmann M D. Radial Basis Functions: Theory and Implementations. Cambridge Monographs 

on Applied and Computational Mathematics. 2003. 

[22]  Boer A D, Schoot M S V D, Bijl H. Mesh deformation based on radial basis function 

interpolation. Computers & Structures, 2007, 85(11):784-795. 

[23]  Rendall T C S, Allen C B. Efficient mesh motion using radial basis functions with data 

reduction algorithms. Journal of Computational Physics, 2009, 228(17):6231-6249. 

[24]  Rendall T C S, Allen C B. Reduced surface point selection options for efficient mesh 

deformation using radial basis functions. Journal of Computational Physics, 2010, 229(8):2810-



 15 

2820. 

[25]  Gillebaart T, Blom D S, Zuijlen A H V, et al. Adaptive radial basis function mesh deformation 

using data reduction. Journal of Computational Physics, 2016, 321(C):997-1025. 

[26]  Sastry S P, Zala V, Kirby R M. Thin-plate-Spline Curvilinear Meshing on a Calculus-of-

Variations Framework. Procedia Engineering. 2015, 124:135-147. 

[27]  Zala, V., Shankar, V., Sastry, S.P. et al. Curvilinear Mesh Adoptation using Radial Basis 

Function Interpolation and Smoothing. J Sci Comput. 2018. 

[28]  Kashi A, Luo H. Curved mesh generation using radial basis functions. 46th AIAA Fluid 

Dynamics Conference, Washington (D.C.), USA. 2016. 

[29]  Gargallo-Peiró A, Roca X, Peraire J, et al. Defining Quality Measures for Validation and 

Generation of High-Order Tetrahedral Meshes. Proceedings of the 22nd International Meshing 

Roundtable. Springer International Publishing, 2014:109-126. 

[30]  Dey S, O'Bara R M, Shephard M S. Towards curvilinear meshing in 3D: the case of quadratic 

simplices. Computer-Aided Design, 2001, 33(3):199-209.

 


