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Abstract: In this paper we introduce a reformulation of the compressible multicomponent Navier–
Stokes equations that govern the behaviour of mixtures of miscible gases. The resulting equation
set is a first-order hyperbolic system containing stiff source terms, which recovers the conventional
parabolic theory of viscosity, conduction and diffusion as a first-order approximation in the relax-
ation limit. An important advantage of this approach versus other first-order reformulations of the
Navier–Stokes equations is that the wave speeds remain finite as some relaxation parameter tends
to zero. The complete system of equations is presented in one-dimension for binary mixtures of
viscous, heat conducting gases.
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1 Introduction
This paper is concerned with the modelling and numerical simulation of gaseous mixtures at the continuum
level, a topic of great importance in many scientific and engineering disciplines such as astrophysics and
combustion [1, 2]. In particular, it is motivated by the desire to conduct direct numerical simulations (DNS)
of flows that contain shock waves, material interfaces and fine-scale turbulent structures. This combination
of flow features poses significant conflicting requirements on the numerical method that is used, which must
be both robust enough to capture the various discontinuities in the flow but still have good fidelity in the high
wavenumber range of the flow. In particular for DNS, the numerical method should preferably be high-order
accurate in multiple dimensions as this will greatly increase the efficiency of the computation [3]. Numerical
methods that satisfy all of these requirements are most easily designed for systems of hyperbolic conservation
laws, as the theory of hyperbolic partial differential equations is much more advanced than for more general
systems [4]. Thus if the governing equations that describe mixtures of miscible, viscous, compressible fluids
can be written as a system of hyperbolic conservation laws, this allows for the straightforward application of
modern high-order numerical methods which will in turn enable efficient DNS of these flows to be conducted
for higher Reynolds numbers than are currently achievable.

1.1 Conventional governing equations
The conventional mathematical description of these flows is given by the multicomponent Navier-Stokes
equations [5], which can be derived from the Boltzmann equation using Chapman-Enskog theory [6]. In
general, the molecular transport terms that arise from this derivation cannot be related to the primary
flow variables and a further level of approximation is required [7], leading to the classical laws of viscosity,
thermal diffusion and multicomponent mass diffusion [8]. The multicomponent Navier-Stokes equations can
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be written in strong conservation form as follows:

∂ρ

∂t
+∇ · (ρu) = 0

∂ρYk
∂t

+∇ · (ρYku) = −∇ · (J k) k = 1, . . . , N − 1

∂ρu

∂t
+∇ · (ρuuT + pI) = −∇ · σ

∂ρE

∂t
+∇ ·

([
ρE + p

]
u
)

= −∇ · (σ · u+ q)

(1)

In Eqn. (1), ρ is the mass density, Yk are species mass fractions, u is the mass-weighted velocity, p is the
pressure and E = e+ 1

2u
2 is the total energy, where the internal energy e is determined by the equation of

state. For a Newtonian fluid the viscous stress tensor σ is given by:

σ = −η
(
∇u+ (∇u)T

)
+
(2

3
η − ηb

)
∇ · uI (2)

where η is the coefficient of dynamic viscosity and ηb is the coefficient of bulk viscosity, which is typically
neglected (since kinetic theory predicts ηb = 0 for a monatomic gas). The diffusion flux J k for species k is
given by:

J k = ρYkV k (3)

where V k is the diffusion velocity of species k. In the general case these diffusion velocities must be deter-
mined by solving a linear system of size N2 [5], however for binary systems the relationship becomes explicit
and J 1 = J is given by:

J = −ρD
(
∇Y1 +

kT
T
∇T +

kp
p
∇p
)

(4)

where D is the coefficient of mass diffusion, kTD is the coefficient of thermal diffusion and kpD is the
coefficient of baro-diffusion [9]. Similarly, the heat flux q for a binary system is given by:

q =
(
kT

∂µ

∂Y1
− T ∂µ

∂T
+ µ

)
J − κ∇T (5)

where µ is the chemical potential and κ is the thermal conductivity of the mixture. In the absence of
diffusion, the heat flux q reduces to Fourier’s law of conduction. Typically in binary mixing calculations,
baro-diffusion and thermal diffusion terms (and their reciprocal heat fluxes) are ignored, although these
effects may be non-negligible if the two fluids have large molecular weight ratios [7]. In this paper they are
retained in order to satisfy the second law of thermodynamics when comparing with the diffusion terms in
the new model.

1.2 First-order hyperbolic formulation
Recently, a unified first-order hyperbolic formulation of continuum mechanics has been proposed in [10, 11],
which is in theory capable of describing the entire spectrum of viscous flows and even elastic and plastic
deformations in solids. The main features of this model that are desirable from both a mathematical and
physical standpoint are that it is a consistent, overdetermined system that is compatible with the first
and second laws of thermodynamics and is symmetric hyperbolic, which implies that it is well-posed and
causal [11]. Dissipative processes are modelled as algebraic source terms with a characteristic relaxation
time for each process. Since these terms do not depend on any space derivatives, the characteristic speeds
of the system remain finite regardless of whatever value the relaxation time takes, unlike other relaxation
approaches that are used in hyperbolic reformulations of the Navier-Stokes equations [12, 13]. Through
formal asymptotic expansion it can be shown that this purely hyperbolic description of viscous dissipation
and thermal conduction includes Newton’s law of viscosity and Fourier’s law of conduction as a first order
approximation in the stiff relaxation limit. The work presented in this paper builds on this model by adding
a hyperbolic description of binary diffusion of gaseous mixtures to the existing framework.

2



A first-order hyperbolic system is also advantageous for various numerical reasons as well, as it will be
less sensitive to irregularities in the computational mesh, will allow a higher order of accuracy scheme for
a given stencil and will be subject to a less restrictive stability condition (O(∆x) vs. O(∆x2)), therefore
allowing a larger time step. In cells where the time step in a conventional Navier-Stokes code would be
viscous limited (such as in a boundary layer), the time step in the first-order hyperbolic model would only be
subject to a CFL condition, giving a O(1/∆x) speedup in computational efficiency [12]. Hyperbolicity also
means that a wide range of numerical methods are available (e.g. finite volume [4], discontinuous Galerkin
[14], residual distribution [15], active flux [16]), allowing the use of the best suited numerical method for the
problem at hand. Thus methods that were developed for the inviscid part of the Navier-Stokes equations,
such as upwind fluxes and limiters, can be directly applied to the entire hyperbolic model, enabling a simple
and uniform discretisation.

Given the many advantages outlined above to having a first-order hyperbolic formulation of viscous fluid
dynamics, it is therefore of great interest to investigate whether the formulation can be extended to include
diffusion in the miscible, multicomponent case. For the sake of simplicity only binary diffusion will be
considered here. Given the nature of the model, it is only necessary to consider mass diffusion and heat
conduction in the initial formulation, the terms relating to viscosity can be included afterwards for the
complete description. The derivation is structured as follows; starting from a master system of generating
equations (inspired by a single entropy approximation of the equations governing multiphase flow), source
terms are introduced such that the production of entropy is non-negative. Following this, the link with the
classical theory of binary diffusion is established by considering the kinetic coefficients of these source terms
in the relaxation limit. The derivation is completed by presenting the new system of equations in terms of
the parameters of state.

2 Generating system of conservation laws for binary mixtures
In this section a master system for compressible and miscible binary mixtures is formulated, from which the
governing equations are generated. The form of the master system is inspired by the equations of multiphase
flow, specifically the single entropy approximation presented in [17] where the mixture is characterised by
a single entropy s. As in the multicomponent Navier-Stokes equations, both species are assumed to be in
pressure and temperature equilibrium. In one dimension, the parameters of state that describe the mixture
are:

{ρ, Y1, u, w̃, J, s}

The definitions of ρ, Y1 and u are the same as in the conventional theory, however two new state parameters
are introduced to incorporate mass diffusion and heat conduction as per the theory of thermodynamically
compatible systems [18]. The thermal impulse J has been introduced previously in [11], while w̃ is an
artificial variable (of similar form to the relative velocity w used in multiphase models) that is defined such
that its energy gradient in state space, ∂E∂w̃ , is equal to the diffusion flux J . Assuming that the total energy
E is a function of ρ, Y1, u, w̃, J and s, the generating system in one dimension is given by:

∂ρ

∂t
+

∂

∂x

(
ρu
)

= 0

∂ρY1
∂t

+
∂

∂x

(
ρY1u+ Ew̃

)
= 0

∂ρu

∂t
+

∂

∂x

(
ρu2 + ρ2Eρ

)
= 0

∂ρw̃

∂t
+

∂

∂x

(
ρw̃u+ EY1

)
= 0

∂ρJ

∂t
+

∂

∂x

(
ρJu+ Es

)
= 0

∂ρs

∂t
+

∂

∂x

(
ρsu+ EJ

)
= 0

(6)

where Eξ denotes the partial derivative ∂E
∂ξ . The fact that the total energy E is not an unknown but rather

a potential that depends on the remaining unknowns is an important feature of this system, as it means that
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solutions of the above system of equations also satisfy the additional conservation law:

∂ρE

∂t
+

∂

∂x

([
ρE + p

]
u+ EY1

Ew̃ + EsEJ

)
= 0 (7)

which describes the conservation of total energy (note that p = ρ2Eρ). The requirement that E is a potential
and that all of the constitutive terms in the fluxes (and source terms when they are introduced later) in
Equation 6 are generated from this potential means that the overdetermined system 6–7 is consistent [11].
Moreover, if the energy potential is a convex function then Equation 6 can be transformed into a symmetric
hyperbolic form (see [17] for details), which implies that it is well-posed.

2.1 Introduction of source terms
Source terms are now introduced into the master system to represent the dissipative processes of diffusion
and conduction. This is done with adherence to the following requirements; the total energy conservation law
must not be affected, production of entropy must be non-negative and the Onsager principle of symmetric
kinetic coefficients is assumed to hold. Taking this into account, the governing equations with dissipation
are given by:

∂ρ

∂t
+

∂

∂x

(
ρu
)

= 0

∂ρY1
∂t

+
∂

∂x

(
ρY1u+ Ew̃

)
= 0

∂ρu

∂t
+

∂

∂x

(
ρu2 + ρ2Eρ

)
= 0

∂ρw̃

∂t
+

∂

∂x

(
ρw̃u+ EY1

)
= −θ11Ew̃ − θ12EJ

∂ρJ

∂t
+

∂

∂x

(
ρJu+ Es

)
= −θ21Ew̃ − θ22EJ

∂ρs

∂t
+

∂

∂x

(
ρsu+ EJ

)
= Q

(8)

where θij ≥ 0 are the kinetic coefficients (note that θ12 = θ21), interpreted here as relaxation parameters
where the eigenvalues of the matrix θ = [θij ] characterise the rate of relaxation of the heat flux and species
mass flux. The entropy production Q should be non-negative and is derived such that the total energy
conservation law remains unchanged. This gives:

Q =
1

Es

(
θ11E

2
w̃ + 2θ12Ew̃EJ + θ22E

2
J

)
≥ 0 (9)

thus meeting all of the requirements for the introduction of source terms into the master system. Since
the energy conservation law has remained unchanged and the production of entropy is non-negative, then
the master system with source terms included satisfies both the first and second laws of thermodynamics
respectively.

2.2 Closure relations
The remaining task now is to define closure relations for the master system so that the governing equations
can be generated. The total energy must be defined such that the governing equations that are generated
have physical meaning, and is distributed as follows:

E(ρ, Y1, u, w̃, J, s) = E1(ρ, Y1, s) + E2(w̃, J) + E3(u) (10)

where E1 is the internal energy, E2 is the non-equilibrium energy and E3 = 1
2u

2 is the kinetic energy per
unit mass. The internal energy e = E1 is defined as the mass-weighted average of the internal energies of
each species, which are defined through an equation of state of the form εk = εk(ρk, s). Therefore:

e(ρ, Y1, s) = Y1ε1(ρ1, s) + Y2ε2(ρ2, s) (11)

4



Note that the partial density ρk = ρYk

zk
depends on the volume fraction zk and thus e = e(ρ, Y1, z1, s).

However, given the assumption of pressure and temperature equilibrium (i.e p1 = p2 and T1 = T2) then zk
can be determined from Y1 as it will be equivalent with the mole fraction Xk = W

Wk
Yk [19], where Wk is the

molecular weight of species k and W is the molecular weight of the mixture. The non-equilibrium energy is
defined as:

E2(w̃, J) = α2 J
2

2
+ β2 w̃

2

2
(12)

where α and β are parameters yet to be determined. With these definitions, the energy gradients in state
space may now be determined. Following [20], they are given by:

Eρ =
z1p1 + z2p2

ρ2
=

p

ρ2
EY1

= µ1 − µ2 Es = T Ew̃ = β2w̃ EJ = α2J (13)

where µk = εk + pk
ρk
− sT is the chemical potential for species k, meaning that the gradient EY1

is just the
difference in species enthalpies.

3 Determination of kinetic coefficients in the relaxation limit
The introduction of kinetic coefficients into the master system allows for a hyperbolic approximation of the
parabolic theory for diffusive heat and mass transfer by considering the stiff relaxation limit i.e. for small
relaxation times. In the model thermal and mass diffusion are coupled (due to the θ12 = θ21 coefficient) and
therefore an explicit relaxation time for each process cannot be defined, however it is sufficient to consider
the eigenvalues of the matrix Θ which characterise the rate of relaxation. These are assumed to be much
larger than the characteristic rate of transfer of each process. Therefore in the relaxation limit the time
derivative and the convective term in the equations for w̃ and J can be neglected, resulting in:[

θ11 θ12
θ21 θ22

] [
Ew̃
EJ

]
= −

[
∂EY1

∂x
∂Es

∂x

]
(14)

Therefore:
Ew̃ = −χ11

∂EY1

∂x
− χ12

∂Es
∂x

EJ = −χ21
∂EY1

∂x
− χ22

∂Es
∂x

(15)

where the matrix χ = [χij ] is given by: [
χ11 χ12

χ21 χ22

]
=

[
θ11 θ12
θ21 θ22

]−1

(16)

The aim now is to relate the derivatives Ew̃ and EJ to the diffusive and thermal fluxes. For conventional
parabolic theory these will depend on gradients of Y1, T and p in the most general case [9], therefore the
derivative ∂EY1

∂x is written as follows:

∂EY1

∂x
= EY1Y1

∂Y1
∂x

+ EY1T
∂T

∂x
+ EY1p

∂p

∂x
(17)

Noting that Es = T , Equation 15 becomes:

Ew̃ = −χ11EY1Y1

∂Y1
∂x
−
(
χ11EY1T + χ12

)∂T
∂x
− χ11EY1p

∂p

∂x

EJ = −χ21EY1Y1

∂Y1
∂x
−
(
χ21EY1T + χ22

)∂T
∂x
− χ21EY1p

∂p

∂x

(18)
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These need to be related to the the conventional parabolic description, given by Equations 4 and 5:

J = −ρD
(∂Y1
∂x

+
kT
T

∂T

∂x
+
kp
p

∂p

∂x

)
q =

(
kT

∂µ

∂Y1
− T ∂µ

∂T
+ µ

)
J − κ∂T

∂x

(19)

Now, given that EY1
= µ = µ1 − µ2 = h1 − h2 where the species enthalpy hk = εk(ρk, s) + pk

ρk
, it can be

evaluated as follows:

∂

∂x
(h1 − h2) =

( ρc21
ρ1z1

+
ρc22
ρ2z2

)∂Y1
∂x
−
(ρY1c21
ρ1z21

+
ρY2c

2
2

ρ2z22

)∂z1
∂x

+
(Y1c21
ρ1z1

− Y2c
2
2

ρ2z2

)∂ρ
∂x

=
( c21
Y1

+
c22
Y2

)∂Y1
∂x
−
( c21
z1

+
c22
z2

)∂z1
∂x

+
(c21
ρ
− c22
ρ

)∂ρ
∂x

(20)

where ck is the speed of sound in species k, defined as c2k = ∂pk
∂ρk

. Using the assumption of pressure and
temperature equilibrium, the volume fraction zk = W

Wk
Yk, which gives:

∂z1
∂x

=
W 2

W1W2

∂Y1
∂x

(21)

where W is the mixture molecular weight, defined as:

1

W
=
∑
k

Yk
Wk

(22)

Since ρ = ρY1 + ρY2 = ρ1z1 + ρ2z2 then the derivative ∂ρ
∂x can be written as:

∂ρ

∂x
= (ρ1 − ρ2)

∂z1
∂x

+ z1
∂ρ1
∂x

+ z2
∂ρ2
∂x

(23)

To evaluate the derivative ∂ρk
∂x an equation of state must be defined for each species. Assuming both gases

are ideal gives:

ρk =
PWk

RT
(24)

where R is the universal gas constant. Thus ∂ρk
∂x may be written as follows:

∂ρk
∂x

=
Wk

RT
∂p

∂x
− Wkp

RT 2

∂T

∂x

=
ρk
p

∂p

∂x
− ρk
T

∂T

∂x

(25)

Therefore Equation 20 may be evaluated to be:

∂

∂x
(h1 − h2) =

[( c21
Y1

+
c22
Y2

)
−
(W1c

2
1

Y1
+
W2c

2
2

Y2

)
+

(c21 − c22)(ρ1 − ρ2)W 2

ρW1W2

]∂Y1
∂x

+
(c21 − c22)

p

∂p

∂x
− (c21 − c22)

T

∂T

∂x

=
[Y2(1−W1)c21 + Y1(1−W2)c22

Y1Y2
+

(c21 − c22)(ρ1 − ρ2)W 2

ρW1W2

]∂Y1
∂x

+
(c21 − c22)

p

∂p

∂x
− (c21 − c22)

T

∂T

∂x

= EY1Y1

∂Y1
∂x

+ EY1T
∂T

∂x
+ EY1p

∂p

∂x
(26)
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This allows for the terms EY1Y1 , EY1T and EY1p to be determined, which means that the coefficients χij can
be evaluated through use of Equation 18. Noting that EY1 = µ and Es = T , the thermal flux is:

q = EY1
Ew̃ + EsEJ

= µEw̃ + TEJ

= −µχ11
∂µ

∂x
− µχ12

∂T

∂x
− Tχ21

∂µ

∂x
− Tχ22

∂T

∂x

(27)

Also, given that Ew̃ = J then q can be written as:

q =
(
µ+

χ21

χ11
T
)
J − χ11χ22 − χ12χ21

χ11
T
∂T

∂x
(28)

Which means that the thermal conductivity coefficient κ is equal to:

κ =
χ11χ22 − χ12χ21

χ11
T (29)

Given that the mass flux J takes the form:

J = −χ11µY1

∂Y1
∂x
− (χ12 − χ11µT )

∂T

∂x
− χ11µp

∂p

∂x

= −ρD
(∂Y1
∂x

+
kT
T

∂T

∂x
+
kp
p

∂p

∂x

) (30)

Then χ11, χ12 = χ21 and χ22 can be found as follows:

χ11 =
ρD

µY1

χ12 =
(kT
T
µY1
− µT

)
χ11

χ22 =
κ

T
+
χ12χ21

χ11

(31)

where µY1
= EY1Y1

, µT = EY1T and µp = EY1p are found using Equation 26. Thus the kinetic coefficients
θij are given by: [

θ11 θ12
θ21 θ22

]
=

[
χ11 χ12

χ21 χ22

]−1

=

 ρD
µY1

(
kT
T µY1

− µT
)
ρD
µY1(

kT
T µY1

− µT
)
ρD
µY1

κ
T +

(
kT
T µY1

− µT
)2

ρD
µY1

−1

=

µY1

ρD +
(
kT
T µY1 − µT

)2
T
κ −

(
kT
T µY1 − µT

)
T
κ

−
(
kT
T µY1

− µT
)
T
κ

T
κ


(32)

This completes the analysis of the stiff relaxation limit. The generating system can now be used to formulate
governing equations in terms of the state parameters, as all thermodynamic forces have been expressed in
terms of derivatives of the total energy E, and all of the model kinetic coefficients have been defined.

4 Governing equations in terms of parameters of state
For implementation in a numerical method it is more convenient to write the governing equations in terms
of the parameters of state defined in Section 2. Prior to this, a hyperbolic formulation of viscosity will be
added to the model by deriving a one-dimensional form of the evolution equations for the distortion tensor
in [10, 11]. These equations can be added to this existing equation set without affecting any of the previous
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derivations, thus providing a complete hyperbolic description of a viscous binary mixture in one dimension
which will be written in terms of the state parameters for numerical implementation.

4.1 One-dimensional equations for distortion
One-dimensional equations for the distortion tensor A can be derived from the three-dimensional equations
presented in [11] and read as:

∂A11

∂t
+
∂uA11

∂x
= −Ψ11

φ

∂A22

∂t
+ u

∂A22

∂x
= −Ψ22

φ

∂A33

∂t
+ u

∂A33

∂x
= −Ψ33

φ

(33)

where Ψik = EAik
and φ is some function of the strain dissipation time τ . These equations are obtained

under the assumption that the fluid flows with velocity u only in the x-direction and hence Aij = 0, i 6= j.
Assuming that A22 = A33 due to isotropy, and denoting A1 = A11, A2 = A22 gives:

∂A1

∂t
+
∂uA1

∂x
= −Ψ11

φ

∂A2

∂t
+ u

∂A2

∂x
= −Ψ22

φ

(34)

As per [11], the relaxation terms on the right-hand side are given in matrix form as:

Ψ =
∂E

∂A
= c2sAdev(G), G = AAT (35)

where cs is the shear sound velocity, that is, the characteristic velocity of propagation of transverse pertur-
bations. Since Aij = 0, i 6= j then G is given by:

G =

A2
1 0 0

0 A2
2 0

0 0 A2
3

 (36)

and the deviatoric part of G is given by:

dev(G) = G− 1

3
Tr(G) =

 2
3 (A2

1 −A2
2) 0 0

0 − 1
3 (A2

1 −A2
2) 0

0 0 − 1
3 (A2

1 −A2
2)

 (37)

Therefore the energy gradients are:

Ψ11 = c2sA1
2

3
(A2

1 −A2
2)

Ψ22 = −c2sA2
1

3
(A2

1 −A2
2)

(38)

The strain relaxation source term φ is defined following [11]:

φ = τ
c2s
3

det(A)
5
3 = τ

c2s
3

(A1A
2
2)

5
3 (39)

4.2 Modification of the momentum equation
The inclusion of equations for the distortion tensor also requires that a shear stress tensor is added to the
momentum equations. Since the fluid is assumed to flow only in the x-direction, there is only one momentum
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equation:
∂ρu

∂t
+
∂(ρu2 + p− σ11)

∂x
= 0 (40)

Following [11], the shear stress tensor σ is computed as:

σ = −ρAT ∂E

∂A
= −ρc2sGdev(G) (41)

Thus, in matrix form σ is given by:

σ =

−ρc2sA2
1
2
3 (A2

1 −A2
2) 0 0

0 ρc2sA
2
2
1
3 (A2

1 −A2
2) 0

0 0 ρc2sA
2
2
1
3 (A2

1 −A2
2)

 (42)

and therefore:
σ11 = −ρc2sA2

1

2

3
(A2

1 −A2
2) (43)

4.3 Complete system of equations
The full set of state parameters describing the mixture in one spatial dimension is now:

{ρ, Y1, u, A1, A2, w̃, J, s}

The total energy is defined as per Equation 10, with the definition of the non-equilibrium energy extended
to include the components of the distortion tensor:

E2(A1, A2, w̃, J) =
c2s
4
GTF
ij G

TF
ij +

α2

2
J2 +

β2

2
w̃2

=
c2s
6

(A2
1 −A2

2)2 +
α2

2
J2 +

β2

2
w̃2

(44)

where GTF
ij = dev(G) is the trace-free part ofG. The parameter cs cannot be determined explicitly, but via a

formal asymptotic expansion of the tensor G in terms of the small parameter τ , it can be shown that (to first
order in τ) the conventional dynamic viscosity coefficient η = C0τc

2
s, where C0 is some additional constant.

In order to recover both parameters, experimental measurements of high frequency sound propagation are
required (see [11] for further details). Similarly, the parameters α and β are not known explicitly, but the
products εα2 and εβ2 can be connected to the conventional transport coefficients for thermal and mass
diffusion, where ε is some small relaxation parameter (each process will have a characteristic relaxation time
but these cannot be defined explicitly due to coupling as noted in Section 3). This is not trivial to do and
will be the subject of further work.

Therefore the complete set of equations in one dimension, including the effects of viscosity, diffusion and
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conductivity, is given as follows:

∂ρ

∂t
+
∂ρu

∂x
= 0

∂ρY1
∂t

+
∂

∂x

(
ρY1u+ β2w̃

)
= 0

∂ρu

∂t
+

∂

∂x

(
ρu2 + p+ ρc2sA

2
1

2

3
(A2

1 −A2
2)
)

= 0

∂A1

∂t
+
∂uA1

∂x
= −2(A2

1 −A2
2)

τ(A1A5
2)

2
3

∂A2

∂t
+ u

∂A2

∂x
= −A2(A2

1 −A2
2)

τ(A5
1A

7
2)

1
3

∂ρw̃

∂t
+

∂

∂x

(
ρw̃u+ h1 − h2

)
= −θ11β2w̃ − θ12α2J

∂ρJ

∂t
+

∂

∂x

(
ρJu+ T

)
= −θ21β2w̃ − θ22α2J

∂ρs

∂t
+

∂

∂x

(
ρsu+ α2J

)
= Q

(45)

where now the entropy production Q is given by:

Q =
1

Es

( 1

φ
(ψ2

11 + ψ2
22) + θ11E

2
w̃ + 2θ12Ew̃EJ + θ22E

2
J

)
≥ 0 (46)

where θij are given by Equation 32. For numerical implementation it is better to solve the following set of
equations:

∂ρY1
∂t

+
∂

∂x

(
ρY1u+ β2w̃

)
= 0

∂ρY2
∂t

+
∂

∂x

(
ρY2u− β2w̃

)
= 0

∂ρu

∂t
+

∂

∂x

(
ρu2 + p+ ρc2sA

2
1

2

3
(A2

1 −A2
2)
)

= 0

∂A1

∂t
+
∂uA1

∂x
= −2(A2

1 −A2
2)

τ(A1A5
2)

2
3

∂A2

∂t
+ u

∂A2

∂x
= −A2(A2

1 −A2
2)

τ(A5
1A

7
2)

1
3

∂ρw̃

∂t
+

∂

∂x

(
ρw̃u+ h1 − h2

)
= −θ11β2w̃ − θ12α2J

∂ρJ

∂t
+

∂

∂x

(
ρJu+ T

)
= −θ21β2w̃ − θ22α2J

∂ρE

∂t
+

∂

∂x

(
ρEu+

(
p+ ρc2sA

2
1

2

3
(A2

1 −A2
2)
)
u+ β2(h1 − h2)w̃ + α2TJ

)
= 0

(47)

This system of equations cannot be written in a fully conservative form when the equations for the distortion
tensor are included, however recent advances in path-conservative methods for non-conservative systems
provide a suitable approach for discretisation [21]. Indeed, when considering multispecies (or more generally
multiphase) systems it is necessary to discretise the colour function in a non-conservative manner in order
to preserve pressure equilibrium across an isolated contact surface [22], hence the fact that the distortion
tensor equations are non-conservative is less of a hindrance to numerical implementation than may first
appear. Another difficult aspect of this system when considering an appropriate numerical method to use is
the stiffness of the source terms. One option is to use Strang time splitting [23], which allows a stiff ODE
integrator to be used for the source terms, however a more efficient and promising approach is the family of
high order one-step ADER schemes (see [24, 25, 26, 27] and references within). Future work will address the
application of these methods to the current system of equations.
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5 Conclusion and future work
A reformulation of the compressible multicomponent Navier–Stokes equations has been presented in the
framework of thermodynamically compatible conservation laws. The resulting equation set is a first-order
hyperbolic system containing stiff source terms and has been presented in complete detail for one spatial
dimension. Closure relations and expressions for the kinetic coefficients were also presented, along with the
final set of governing equations in terms of the parameters of state.

This work forms a small part of a much greater goal; the formulation of a three-dimensional, hyperbolic,
two-phase, two-pressure, two-velocity, two-temperature model for viscous, miscible and compressible fluids
and its numerical implementation within a high-order, multidimensional finite volume framework. The
next steps towards this goal will be the numerical implementation of the current set of equations, using
the methods discussed in Section 4.3, and a comparison with the conventional governing equations using a
rigorous set of one-dimensional test cases. Once this has been achieved, this model will be used to assist
in determining the necessary parameters and coefficients of a more general single entropy model for two-
phase flow (similar in form to that presented in [17]), which is a better candidate for extension to multiple
dimensions and numerical implementation with very high order methods.
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