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Abstract: The hyperbolic systems of equations describing the shallow water surface waves are
solved numerically using finite difference schemes and an explicit time integration procedure. The
equations are similar to Isentropic Euler equations (with γ = 2) and can be simplified using a
potential flow model. The results of Isentropic Euler, potential model and full Euler equations are
compared for typical flows around pointed and blunt bodies for several Mach numbers. On the
other hand, water table experiments are described and the flow over obstacles are studied. Using
the theory of Hydraulic Analogy, the relations between compressible flows and shallow water surface
waves are discussed. Flow patterns, including formation of shock waves and expansion fans are
presented. It is demonstrated that the water table can be an inexpensive educational tool for
demonstration of transonic and supersonic flow phenomena.

1 Introduction
Supersonic wind tunnels are very expensive. To show students shock waves, one can use instead a water
table experiment. The purpose of this work is to exploit the relation between compressible flows and
shallow water surface waves to demonstrate, in the classroom, the details of flow patterns around different
shapes. Numerical simulations, with a simple code, should produce similar results, at least qualitatively.
The governing equations for the shallow water surface waves, assuming hydrostatic pressure across the layer,
are derived, see ref [1, 2, 3]. The governing equations for one dimensional flows in a variable area duct are
also given.

Next, the two dimensional compressible flow equations are considered, including the full Euler Equa-
tions, the Isentropic Euler Equations, the full Potential Equation, and the Transonic Small Disturbance
approximation. The analogy between shallow water waves and the two dimensional compressible flow is
then established and the limitations are outlined.

Numerical simulations based on the equations in conservation forms augmented with artificial viscosity
terms are discussed. More sophisticated schemes are given in ref [1, 2]. The theory of hydraulic analogy
is described in ref [3, 4], while the water table experiment is discussed in ref [5]. Typical numerical and
experimental results are shown for a cylindrical and diamond airfoil, as well as for internal flows in nozzles.
Finally, some concluding remarks are mentioned.

2 Governing Equations
The equations governing shallow water surface waves are

(ρwh)t + (ρwuh)x + (ρwvh)y = 0 (1)

ρwut + ρwuux + ρwvuy = −Px (2)

ρwvt + ρwuvx + ρwvvy = −Py (3)

where,
P = Patm + ρwg(h− z).
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Hence,

Px = ρwghxPy = ρwghy

Notice ρw drops off all of the equations. The momentum equation can be rewritten in conservation form as
follows.

(hu)t + (hu2)x + (huv)y = −1

2
g(h2)x (4)

(hv)t + (huv)x + (hv2)y = −1

2
g(h2)y (5)

These can be represented in the non dimensional form:

(hu)t + (hu2)x + (huv)y = −1

2

1

Fr
(h2)x (6)

(hv)t + (huv)x + (hv2)y = −1

2

1

Fr
(h2)y (7)

Where h is now normalized by h∞ and u, v are normalized by V∞. The Froude number (Fr) is given by
Fr = V∞

gh∞
, where gh∞ = c2∞ and c∞ is the speed of surface waves far from the body.

The governing equations for unsteady two dimensional compressible flows are as follows.

ρt + (ρu)x + (ρv)y = 0 (8)

(ρu)t + (ρu2)x + (ρuv)y = −Px (9)

(ρv)t + (ρuv)x + (ρv2)y = −Py (10)

(ρE)t + (ρuH)x + (ρvH)y = 0 (11)

Where E is the internal energy, H is the total enthalpy, and H = E+ P
ρ = cvT + P

ρ + 1
2 (u2 +v2), ignoring

the potential energy terms.
The isentropic Euler equations, in non dimensional form are shown below.

ρt + (ρu)x + (ρv)y = 0 (12)

(ρu)t + (ρu2)x + (ρuv)y = −Px (13)

(ρv)t + (ρuv)x + (ρv2)y = −Py (14)

Where the pressure is normalized by ρ∞V 2
∞ and the isentropic relation is P = ργ

γM2
∞

A potential flow model can be used where:

ρt + (ρΦx)x + (ρΦy)y = 0 (15)

Φt +
ργ − 1

(γ − 1)M2
∞

+
1

2
((∇Φ)2 − 1) = 0 (16)

The second equation is Bernoulli’s law for unsteady flows, with no time variation in the far field.
The Transonic Small Disturbance approximation is given as:

ut = ((1−M2
∞)u− 1

2
(γ + 1)M2

∞u
2)x + vy (17)

βvt = −vx + uy (18)

Where u, v are the perturbation velocity components. For β = 0, the second equation represents the
irrotationality condition. We used β = 1 and the system becomes symmetric hyperbolic equations. Together
with the no-penetration boundary condition at solid surfaces and vanishing disturbances in the far-field, the
above formulations are complete.

For simplicity, the Hydraulic Analogy is outlined, for the case of steady quasi-one dimensional nozzle
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flow, in Figure 1.
The density of compressible flow corresponds to the height of the thin water layer over a flat plate, and

the Mach number corresponds to the Froude number. The limitations of the analogy are clear. The flow is
assumed isentropic and the ratio of specific heats, γ = 2.

The governing equations for steady flow in a nozzle are the conservation laws of mass, momentum, and
energy. The law for mass conservation and that for momentum conservation can be combined in the form:

(u+ P̄ )x = −Ax
A
P̄ (19)

Where u is normalized by a∗, the speed of sound at sonic conditions, and A is normalized by A∗, the
throat area. Notice that P̄ = AP , and the expression P̄ = (γ+1

2γ ) 1
u − (γ−12γ )u can be derived taking the total

enthalpy as constant. For smooth flows, this equation can be integrated to give a standard relation for A
A∗

as a function of M∗. For a given value of A
A∗ , there are two solutions, one with M∗ < 1 and the other with

M∗ > 1. For flow with a shock, the jump condition across the shock is M∗1M∗2 = 1

On the other hand, for isentropic Euler, the pressure is related to density by P = 1
γ ρ

γ . For the case of
γ = 2, P̄ = 1

2
A

(Au)2 . The smooth solution is the same as the full Euler case, but for solutions with shocks,
the shock jump conditions are different.

3 Numerical Methods
We present two methods for steady quasi one dimensional flows in nozzles, shock fitting and upwind scheme,
for both the full and isentropic Euler formulations. To simulate flow with a shock, we calculate two branches
of the solution in the divergent part of a convergent/divergent nozzle. One starts from the throat, marching
point by point in space, to the exit using second order accurate discretization and Newton’s iteration at
each step to account for non-linearity. Similarly, the second branch is calculated by starting at the exit and
marching backwards. The shock is located by joining the two branches at a point, where the shock jump
condition (u+ P )1 = (u+ P )2 is satisfied, or M∗1M∗2 = 1 for full Euler.

The upwind scheme is based on forward and backward calculations as before, except an artificial viscosity
in conservation form is added to capture the shock. Uniform artificial viscosity of the order ∆x, will smear
the shock profile. On the other hand, using a variable viscosity coefficient leads to a sharper shock. The
viscosity coefficient is chosen to be proportional to

νi+ 1
2

= α
|ui+1 − ui|2

|ui+1|2 + |ui|2
, νi− 1

2
= α

|ui − ui−1|2

|ui|2 + |ui−1|2
(20)

The numerical results for full and isentropic Euler calculations for a simple converging-diverging nozzle
are shown in Figures 2, 3. The full Euler calculations are in good agreement with the results of [6].

Calculations for nozzles with two throats are shown in Figures 4, 5. Results for three throats are presented
in Figures 6, and 7. The results are in good agreement with the results of [7], where non-unique solutions
are reported for these nozzle geometries.

On the other hand, a more general scheme is used, with marching in time, not in space. Consider the
one dimensional example:

ut + uux = (εux)x (21)

Where ε is the coefficient of artificial viscosity. With the boundary conditions u(−1) = 1, u(1) = −1 and
u(x, 0) = sin(nπx) + c the equation is augmented with a second order term with derivatives in time. The
modified equation reads

βutt + ut +
1

2
(u2)x = (εux)x. (22)

Central differences are used in time and in space to construct an explicit, three-level scheme. The
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coefficient β is chosen to guarantee numerical stability. In the present case, β is of order unity.

βi,n
ui,n+1 − 2ui,n + ui,n−1

∆t2
+
ui,n+1 − ui,n−1

2∆t
+

1
2 (u2i+1,n − u2i−1,n)

2∆x
=

1

∆x
[εi+ 1

2 ,n

ui+1,n − ui,n
∆x

− εi− 1
2 ,n

ui,n − ui−1,n
∆x

]. (23)

Figure 8 shows the initial condition and the final solution. As expected, the final solution exhibits a
shock in the middle of the domain with only some slight smearing over several points. Numerical results for
nozzle flows are shown in Figures 9, 10, and 11,

To apply the above scheme to systems of two or three equations for two dimensional flows, we use:

β ~Wtt + ~Wt + ~F
(
~W
)
x

+ ~G
(
~W
)
y

=
(
ε1 ~Wx

)
x

+
(
ε2 ~Wy

)
y

(24)

Again, central differences are used in time and in space to construct an explicit three level scheme. The
convergence to steady state can be accelerated as will be described somewhere else. A fourth-order artificial
viscosity proportional to∇2ε0∇2 ~W can be blended with the above second order terms if higher order accuracy
is required.

The numerical results for the flow over a wavy wall are shown in Figure 12. Numerical results for
supersonic flow around a cylinder at Mach 1.2 and 1.4 are presented in Figures 13 and 14. These solutions
were obtained by solving the isentropic Euler equations (γ = 2) using the scheme presented in equation 24
over a polar coordinate grid.

Numerical results for transonic and supersonic over a diamond airfoil at Mach numbers 0.85, 0.95, 1.1,
and 1.4 are presented in Figures 15, 16, 17, and 18, respectively. Each set of figures present similar solutions
computed using the different fluid equations presented in Section 2. The dissipation scheme from equation
24 are also utilized for shock capturing.

4 Experimental Results
Experiments are run on a table built at UCD, shown in Figure 19 , in order to observe the analogous shock
patterns. The water table allows for models of various geometry to be attached to a 1.6 meter long motorized
track. The maximum speed of the track is 0.698 meters per second. Figure 20a and Figure 20b display both
a detached bow shock in front of a cylinder model and an attached oblique shock on a diamond airfoil.

Flow over a wavy wall is shown in Figure 21a and flow over a concave wall is shown in Figure 21b . Flow
over a cylinder with (a two dimensional) spike is shown in Figure 21c . Notice the formation of the attached
shock because of the spike, followed by the curved shock. Flow through a converging-diverging, double, and
triple nozzle are shown in Figures 22, 23, and 24, respectively.

5 Concluding Remarks
Numerical simulations of shallow water surface waves are presented using an explicit three level scheme for
several models. Qualitative comparisons with experimental results of water table experiments are encourag-
ing. More work is needed to demonstrate quantitatively the validity of the hydraulic analogy, in particular
for cases with unsteady flows.

6 Acknowledgements
This work is funded by the NSF Improving Undergraduate STEM Education (IUSE) Program Award No.
1505080.

4



References
[1] Eleuterio Francisco Toro. Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley and Sons

Ltd., 2001.
[2] W. Y. Tan. Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for a Two-

dimensional System of Shallow-water Equations. Elsevier, August 1992.
[3] J. J. Chattot and M. M. Hafez. Theoretical and Applied Aerodynamics. Springer Netherlands, Dordrecht,

2015.
[4] M. Hafez. Hydraulic analogy and visualisation of two-dimensional compressible fluid flows: part 1:

theoretical aspects. International Journal of Aerodynamics, 6(1):41–66, January 2018.
[5] M. Hafez, F. Jan, B. Linke, and I. Garretson. Hydraulic analogy and visualisation of two-dimensional com-

pressible fluid flows: part 2: water table experiments. International Journal of Aerodynamics, 6(1):67–82,
January 2018.

[6] Jean-Jacques Chattot. Computational Aerodynamics and Fluid Dynamics: An Introduction. Springer
Science & Business Media, February 2004.

[7] Pavel Solin and Karel Segeth. Non-Uniqueness of Almost Unidirectional Inviscid Compressible Flow.
Applications of Mathematics, 49(3):247–268, June 2004.

5



Figure 1: Quasi one dimensional hydraulic analogy summary.
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(a) Full Euler γ = 1.4 (b) Full Euler γ = 2 (c) Isentropic Euler γ = 2

Figure 2: Upwind scheme results, showing M∗ for simple converging-diverging nozzle

(a) Full Euler γ = 1.4 (b) Full Euler γ = 2 (c) Isentropic Euler γ = 2

Figure 3: Shock fitting results, showing M∗ for simple converging-diverging nozzle
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(a) Full Euler γ = 1.4 (1 shock) (b) Full Euler γ = 1.4 (2 shocks)

(c) Isentropic Euler γ = 2 (1 shock) (d) Isentropic Euler γ = 2 (2 shocks)

Figure 4: Upwind scheme results, showing M∗ for the double throat nozzle
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(a) Full Euler γ = 1.4 (b) Isentropic Euler γ = 1.4

(c) Isentropic Euler γ = 2

Figure 5: Shock fitting results, showing M∗ for the double throat nozzle
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(a) Full Euler γ = 1.4 (1 shock) (b) Full Euler γ = 1.4 (2 shocks) (c) Full Euler γ = 1.4 (3 shocks)

(d) Isent. Euler γ = 2 (1 shock) (e) Isent. Euler γ = 2 (2 shocks) (f) Isent. Euler γ = 2 (3 shocks)

Figure 6: Upwind scheme results, showing M∗ for the triple throat nozzle

(a) Full Euler γ = 1.4 (b) Isentropic Euler γ = 1.4 (c) Isentropic Euler γ = 2

Figure 7: Shock fitting results, showing M∗ for the triple throat nozzle
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(a) Initial condition. (b) Solution.

Figure 8: Simple scalar transport problem.
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Figure 9: Mach number results solved with full Euler equations (γ = 1.4) and time-stepping for (9a)
converging-diverging nozzle, (9b) two throat nozzle with one shock, and (9c) two throat nozzle with two
shocks (see reference [6])
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Figure 10: Non-unique solutions (Mach number) for a two-throat nozzle solved using full Euler (γ = 1.4)
with shock-capturing and time-stepping to convergence (see ref [7]).
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Figure 11: Non-unique solutions (Mach number) for a three-throat nozzle solved using full Euler (γ = 1.4)
with shock-capturing and time-stepping to convergence(see ref. [7]).
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(a) M∞ = 2.06, γ = 2
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(b) M∞ = 2.26, γ = 2

Figure 12: Numerical solutions for flow over wavy wall corresponding to water table results.
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Figure 13: Bow shock locations of the cylinder in supersonic flow (γ = 2).
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(a) M∞ = 1.2
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(b) M∞ = 1.4

Figure 14: Numerical solutions of isentropic Euler equations (γ = 2) for supersonic flow over a cylinder.
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(a) Transonic Small Disturbance, γ = 2
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(b) Isentropic Euler, γ = 2
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(c) Full Euler, γ = 1.4

Figure 15: Diamond airfoil in M = 0.85
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(a) Transonic Small Disturbance, γ = 2

(b) Isentropic Euler, γ = 2

(c) Full Euler, γ = 1.4

Figure 16: Diamond airfoil in M = 0.95
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(a) Transonic Small Disturbance, γ = 2
(b) Isentropic Euler, γ = 2

(c) Full Potential, γ = 2 (d) Full Euler, γ = 1.4

Figure 17: Diamond airfoil in M = 1.1
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(a) Transonic Small Disturbance, γ = 2
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(b) Isentropic Euler, γ = 2
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(c) Full Potential, γ = 2
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(d) Full Euler, γ = 1.4

Figure 18: Diamond airfoil in M = 1.4
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Figure 19: Water table testing apparatus

(a) (b)

Figure 20: Cylindrical and diamond airfoil on the water table

19



(a) Wavy wall

(b) Concave wall

(c) Cylinder with spike

Figure 21: Experimental results of various model geometries
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Figure 22: Experimental results of converging-diverging nozzle

(a) Single Shock (b) Double Shock

Figure 23: Experimental results of double throat nozzle

(a) Single Shock (b) Double Shock (c) Triple Shock

Figure 24: Experimental results of triple throat nozzle
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