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Abstract: This article presents a comparison of the implicit (no model) large-eddy simulation
(LES) technique and the local integral length-scale approximation (ILSA) sub�lter model. The
focus is on the numerical simulation of �at plate turbulent boundary layers and active �ow con-
trol using synthetic jets. After initial veri�cation of the simulation setup, comparative studies are
presented to investigate the dependence on spatial and temporal resolution, the level of arti�cial
dissipation, and some additional simulation parameters. Overall the ILSA model produces slightly
more consistent and accurate results than the implicit LES approach. It also reduces computa-
tional cost by reducing the number of linear iterations required at each stage of the time-marching
method. The controlled results generated by the implicit LES are in reasonably good agreement
with experiment and give additional details of the spatial change in time-average skin friction.
However, more work is needed to e�ciently apply the ILSA model to the controlled case. Instabil-
ities originating in the slot of the jet limited the ILSA model to a time step size one to two orders
of magnitude smaller than the implicit LES approach.
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1 Introduction

Fuel has become one of the dominant operating costs for commercial airlines [1]. Furthermore, the burning
of fossil fuels has a negative impact on both local air quality and global climate change [2, 3, 4]. The amount
of fuel burned by aircraft is directly related to their drag. For a typical commercial aircraft, over 50% of total
aircraft drag is due to viscous drag. The skin friction caused by the interaction of the turbulent boundary
layer with the aircraft surface is the key contributor to this drag term. Active turbulent boundary layer
control is one promising approach to reducing skin friction drag and thus fuel burn.

Numerical simulation can play a signi�cant role in the development of new �ow control technologies. It
provides a complete description of the entire �ow �eld, including derived quantities such as vorticity or the
Q-criterion. This can help identify di�erent structures in the �ow and the in�uence of the control strategy
on those structures. Furthermore, it can be used to relate the in�uence of the control to experimentally
observable quantities, such as wall pressure or skin-friction, to better develop closed loop control strategies for
practical application. Other bene�ts of numerical simulation include the ability to have complete control over
simulation and boundary conditions, to integrate numerical optimization for sensor or actuator placement,
and the ease of geometry manipulation.

While direct numerical simulation (DNS) of the turbulent boundary layer and control mechanisms would
be ideal, it is also prohibitively expensive. For studies of larger parameter sets or higher Reynolds numbers,
large-eddy simulation (LES) is an attractive alternative. With this approach the aim is to simulate the large
energetic scales in the �ow, while applying a model for the small and mostly dissipative scales. Modern
actuators do not have the temporal or spatial response required to manipulate the smaller structures in wall
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bounded turbulent �ows; however, Hutchins and Marusic [5] found evidence of large superstructures in the
logarithmic region of the boundary layer. These superstructures correlate to turbulent activity near the wall
[6]. This phenomenon becomes increasingly signi�cant with Reynolds number. The simulation of control
strategies targeted at large structures formed at higher Reynolds numbers align well with the capabilities of
the LES approach.

One common LES approach is to under resolve a direct numerical simulation without adding a model for
the subgrid scales. This is called the implicit LES technique. The numerical methods used to stabilize the
governing equations, for example numerical �ltering or arti�cial dissipation, function as a subgrid model for
the smallest scales in the �ow. This can also be viewed as solving the Favre-�lter Navier-Stokes equations
with zero turbulent-eddy viscosity (no model LES). Despite little physical motivation for the way in which
the subgrid scales are handled, it has been successfully applied a range of turbulent �ow �elds, including wall
bounded �ows [7, 8, 9]. This approach is inexpensive, with minimum implementation and computational
cost.

Another approach is to include a physically motivated subgrid model. One such model is the local
Integral Length-Scale Approximation (ILSA) model developed by Rouhi et al. [10]. This is an algebraic
eddy-viscosity model which seeks to generate a grid-independent approximation of the integral length scale.
For this reason, it has been described as a sub�lter model, rather than subgrid model. The ILSA model uses
a spatially and temporally varying model constant to enforce a prescribed level of sub�lter activity locally,
which is a particular bene�t for wall bounded �ows [10]. The ILSA model does not require the solution to
additional transport equations, making it a relatively low cost upgrade to the implicit LES approach.

This paper presents a comparison of the two LES techniques discussed above. The focus is on their relative
performance for simulating �at plate turbulent boundary layers and active �ow control using a spanwise
oriented synthetic jet. The models' behaviour at various spatial and temporal resolutions, along with di�erent
simulation parameters, is investigated. An assessment of their suitability for controlled simulations with
reference to experimental data is also be presented.

Section 2 presents a brief description of the �ow solver used in this work, the governing equations, and
the two large-eddy simulation techniques considered. This is followed by a description of the computational
domain, boundary conditions, and grids in Section 3. An initial low-Reynolds number uncontrolled simulation
is presented in Section 4, followed by a comparison of the two models applied to a higher-Reynolds number
set of simulations in Section 5. The performance of the methods applied to a controlled simulation using a
single synthetic jet is discussed in Section 6. Section 7 summaries the conclusions of this work.

2 Flow Solver and Sub�lter Model

Numerical simulations are carried out using the three-dimensional compressible �ow solver called DIABLO,
which can solve either the Naver-Stokes or Favre �ltered Navier-Stokes equations. The spatial discretiza-
tion is obtained using fourth-order �nite-di�erence summation-by-parts (SBP) operators on C0 continuous
structured multiblock grids. Boundary conditions and block interface coupling are weakly enforced with
simultaneous approximation terms (SATs). The discretization is stabilized with high-order matrix arti�cial
dissipation compatible with the SBP-SAT approach. Temporal integration is obtained with fourth-order
explicit-�rst-stage singly-diagonally-implicit Runge-Kutta (ESDIRK4) methods [11]. Additional details of
the �ow solver can be found in the following references [12, 13, 14, 15, 16].

2.1 Favre Filtered Navier-Stokes Equations

The non-dimensional Favre �ltered Navier-Stokes equations in curvilinear coordinates are written as

∂Q

∂t
+
∂Ei
∂ξi

=
1

Re

[
∂Ev,i
∂ξi

]
, (1)

where Re is the Reynolds number. The vector of conserved variables is

Q = J−1 [ρ, ρũ1, ρũ2, ρũ3, ρẽ]
T
, (2)
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where J is the metric Jacobian of the curvilinear coordinate transformation, ρ is the density, ũi are the
Cartesian velocity components, and ẽ is the total energy per unit mass. The �ow variables (ρ, ũi, ẽ)
represent the resolved low-frequency components of a density-weighted Favre �ltering process

φ = φ̃︸︷︷︸
resolved

+ φ′′︸︷︷︸
sub�lter

, (3)

where

φ̃ =
ρφ

ρ
, (4)

and φ is the Reynolds average.
The governing equations (1) are non-dimensionalized using the following relationships

t =
t̂ â∞
ĉ
, xi =

x̂i
ĉ
, ρ =

ρ̂

ρ̂∞
, ui =

ûi
â∞

, e =
ê

ρ̂2
∞â

2
∞
, µ =

µ̂

µ̂∞
, (5)

where φ̂ denotes a dimensional quantity, and the subscript∞ denotes a free-stream value. The characteristic
length scale is denoted ĉ, and a =

√
γp/ρ is the speed of sound, where p is the pressure and γ = 1.4 is the

speci�c heat ratio. The Reynolds number in (1) is thus de�ned as Re = ρ̂∞â∞ĉ
µ̂∞

, for the freestream molecular
viscosity µ̂∞. The inviscid and viscous �uxes in (1) are

Ei =


ρũi

ρũŨi + ξi,x1
p

ρũŨi + ξi,x2
p

ρũŨi + ξi,x3
p

(ρẽ+ p)Ũi

 , and Ev,i =


0

τ̃xix1

τ̃xix2

τ̃xix3

ũj τ̃xixj
+

µPr−1+µtPr
−1
t

γ−1 ξj,xi
a2
ξj

 , (6)

respectively, where Ũi = ξi,xj ũj are the contravariant velocities, and Pr = 0.72 and Prt = 0.9 are the
laminar and turbulent Prandtl numbers, respectively. The components of the stress tensor are de�ned as

τ̃xixj = 2(µ+ µt)S̃
∗
ij , (7)

where µt is the turbulent eddy viscosity discussed in the following sections, S̃∗ij = S̃ij − 1
3δijS̃kk is the

deviatoric strain-rate tensor, S̃ij = 1
2

(
ξk,xi

ũj,ξk + ξk,xj
ũi,ξk

)
is the standard strain-rate tensor, and δij is

the Kronecker delta. The equation of state is p = ρ(γ − 1)
(
ẽ− 1

2

(
ũ2
i

))
and the non-dimensional molecular

viscosity is calculated using Sutherland's law

µ =
a3(1 + S/T∞)

a2 + S/T∞
, (8)

where a =
√
γp/ρ, S = 198.6◦R is Sutherland's constant, and T∞ = 460◦R is the free-stream temperature.

In the derivation of the governing equations (1) we have applied the eddy-viscosity approximation

−ρu′′i u′′j = τ̃at,ij = τ̃t,ij −
δij
3
τ̃t,kk = −2µtS̃

∗
ij . (9)

We have also used Fourier's law qi = µ
Pr(γ−1)ξj,xi

a2
ξj

and assumed that Cpρu′′j T = µt

Prt(γ−1)ξj,xi
a2
ξj
, where

Cp is the speci�c heat capacity under constant pressure. In contrast, we have assumed that Cp
µ
Pr ξj,xi

T ′′ξj
is negligible. We have assumed that |τ ′′ij | << |τ̃ij | and therefore terms with τ ′′ij are neglected. Likewise,
we have assumed that the turbulent kinetic energy is small compared to the enthalpy and therefore we have
neglected terms 1

2ρu
′′
j u
′′
i u
′′
i and u′′i τij . Finally, we have neglected �uctuations in the molecular viscosity.

To simplify the presentation in the remainder of this article we will drop the diacritics associated with
the Favre averaging. As an example, it will be assumed Q = J−1[ρ, ρu1, ρu2, ρu3, ρe]

T represents only the
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resolved �ow variables.

2.2 Implicit Large-Eddy Simulation

In implicit large-eddy simulation the contribution from the sub�lter scales (φ′′) is assumed to be modelled
implicitly by the numerical stabilization of the discretized governing equations. This implies that the tur-
bulent eddy viscosity in the viscous �uxes of (1) is zero. While there is less physical motivation for this
approach, it is: 1) easy to implement, 2) relatively inexpensive computationally, and 3) has been shown to
generate accurate results for wall-bounded turbulent �ows [7, 8, 9]. In the present approach, the stabilization
is provided by a matrix arti�cial dissipation model.

2.3 Integral Length Scale Approximation Model

The integral length scale approximation model (ILSA) is an algebraic eddy-viscosity model. It seeks to
model the in�uence of the sub�lter scales through a turbulent eddy viscosity

µt = ρ(CkLest)
2||S||, (10)

where the norm is computed ||S|| =
√

2SijSij , and Ck is a model coe�cient. A primary goal in the
development of the ILSA model was to obtain an approximation of the integral length scale which becomes
grid independent beyond a certain level of grid re�nement [10]. The approximation used is

Lest =
< Kres >

3/2

< εtot >
, (11)

where < φ > denotes an average over one or more homogeneous directions in the �ow. In this work we use
a time-averaging of the form

< φ[n+1] >=

(
1− dt

Tavg

)
< φ[n] > +

dt

Tavg
φ[n], (12)

where Tavg is the averaging time scale. The turbulent kinetic energy of the resolved �eld is Kres = 1
2u
′
iu
′
i,

where the �uctuating values are computed as φ′ = φ− < φ >. The turbulent dissipation rate of the resolved
and sub�lter �elds is computed using

ρεres = 2µS′∗ij ξk,xiuj,ξk = 2µS′∗ijS
′∗
ij = µ||S′∗||2,

ρεflt = 2µtS
′∗
ij ξk,xi

uj,ξk = 2µtS
′∗
ijS
′∗
ij = µt||S′∗||2,

ρεtot = (µ+ µt) ||S′∗||2.

(13)

Combining these de�nitions, we see that the turbulent eddy viscosity is de�ned implicitly via

µt = ρ

(
Ck

< 1
2u
′
iu
′
i >

3/2

< (µ+µt)
ρ ||S′∗||2 >

)2

||S||. (14)

Following Rouhi et al. [10], we evaluate the averaged quantities at the previous time step to make the
expression explicit.

A key aspect of the model is the de�nition of the division between resolved and sub�lter scales, which is
accomplished through the spatially and temporally varying model coe�cient. The model coe�cient is based
on an approximation of the sub�lter activity

sτ =

[
< τat,ijτ

a
t,ij >

< (τat,ij +Raij)(τ
a
t,ij +Raij) >

]1/2

(15)
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Figure 1: Computational domain and boundary conditions. Blue planes denote in�ow and recycle planes.
Red planes denote the convective out�ow plane and the reference plane. The green region denotes the
working region.

where

Raij = u′iu
′
j −

δij
3
u′ku

′
k, (16)

is the anisotropic part of the resolved stresses. Substituting the eddy-viscosity approximation and the ILSA
eddy viscosity, we obtain a quadratic equation for the square of the model coe�cient

χ1

(
1− (1/sτ )

2
)
C4
k − χ2C

2
k + χ3 = 0, (17)

where
χ1 =< 2L4

est||S||2||S∗||2 >,

χ2 =< 4L2
est||S||S∗ijRaij >,

χ3 =< RaijR
a
ij >=< 8

3K
2
res >,

(18)

and the averaging is computed over homogeneous directions in the �ow. Again, in the present work we
average in time only, and averaged quantities are evaluated at the end of the previous time step.

2.3.1 Linearization of the turbulent eddy viscosity

The preconditioner used in the implicit Newton-Krylov-Schur solution process requires a linearization of the
turbulent eddy viscosity. This is computed for the local ILSA model as follows

∂µt
∂Q

=



2(CkLest)
2ξi,xj

ρξi(ukSik)

−2(CkLest)
2ξi,xj

ρξiSi1

−2(CkLest)
2ξi,xj

ρξiSi2

−2(CkLest)
2ξi,xj

ρξiSi3

0



T

. (19)

3 Simulation Setup: Domain, Grid, and Boundary Conditions

The computational domain is constructed relative to a target 99% boundary-layer thickness δ◦. This also
de�nes the characteristic length ĉ used in the non-dimensionalization of the governing equations. Using
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this reference length scale, the size of the domain used for the initial uncontrolled simulation and in the
controlled case is (20 × 4 × 3)δ◦ in the streamwise, wall-normal, and spanwise directions, respectively. The
working region where data is collected and analysed is x ∈ [10, 15]δ◦. Figure 1 shows a schematic of the
domain. The size and location of the working region is chosen to minimize the in�uence of the arti�cial
in�ow and out�ow boundary conditions on the data collected. Likewise, the spanwise dimension is chosen to
ensure that spanwise periodicity does not in�uence the turbulent �ow �eld and to minimize the interaction
of the synthetic jet across the periodic boundaries. For the comparison studies, a smaller domain spanning
(10×3×3)δ◦ is used to minimize computational cost. Data is collected from the plane located at 7.5δ◦ from
the inlet.

The �at plate is simulated with a no-slip adiabatic wall boundary condition using a high-order SBP
approximation of the temperature gradient. To avoid simulating the entire synthetic jet (slot, cavity, and
diaphragm), a velocity boundary condition is imposed at the base of the slot to model the diaphragm and
cavity. The velocity pro�le is sinusoidal in time and trapezoidal in space with the prescribe velocity covering
78.8% of the slot base and decaying to zero at the walls of the slot. The turbulent in�ow data is generated
using the recycle/rescale approach proposed by Lund et al [17] and the compressible extension for density and
temperature presented in Stolz and Adams [18]. Based on the target Reθ, empirical relationships are used
to determine the simulation Reynolds number Reδ◦ and the inlet boundary-layer thickness for the rescaling
procedure. The recycle plane is located at x = 6.25δ◦ and 7.5δ◦ in the smaller and larger simulation domains,
respectively. These locations are chosen to minimize errors introduced by the recycling procedure itself and
disturbances created by the synthetic jets located at x = 10δ◦. A convective boundary condition is imposed
at the out�ow (see for example [19]):

∂Q

∂t
+ < u >

∂Q

∂x

∣∣∣∣
outflow

= 0, (20)

whereQ is the vector of conserved �ow variables, and< u > is the convection velocity obtained from the mean
�ow 1.25δ◦ and 2.5δ◦ upstream of the boundary for the smaller and larger simulation domains, respectively.
This is done to decouple the out�ow condition from the solution at the boundary itself, mitigating potential
instabilities. The assumption is that the mean boundary-layer properties do not vary signi�cantly between
the reference and boundary planes. At the top of the domain, a characteristic boundary condition is applied
in the uncontrolled simulations and the solution is extrapolated from the interior for the controlled. Finally,
as alluded to above, the spanwise walls of the computational domain are periodic.

The computational domain is discretized into orthogonal structured multiblock grids. The grids are
equally spaced in the streamwise and spanwise directions, and have hyperbolic tangent spacing in the wall-
normal direction. They are decomposed into blocks of 33×33×16 or 333 nodes, depending on the simulation,
and the solution is computed in parallel. Table 1 presents the details regarding mesh spacing and node counts.
In the controlled case, the grid is re�ned in the vicinity of the synthetic jet. Furthermore, an additional block
is added for the slot itself. The slot in the present simulation has dimensions 0.3δ◦ wide, ∼ 0.023δ◦ long,
and 0.075δ◦ deep. The resulting block topology for the controlled simulation domain is shown in Figure 2.
The block topology and grid distribution near the jet is shown in Figure 3.

4 Low Reynolds Number Uncontrolled Simulations

Before comparing the two LES approaches, we verify that our �ow solver can replicate the desired zero
pressure gradient �at plate boundary layer. This is done with the implicit LES approach. The �ow solver
applied in this work is compressible, therefore a Mach number of 0.2 is chosen to ensure that the numerical
solution is well-conditioned without the use of low Mach number preconditioning. This is high relative to
many low speed experimental data sets we use for comparison, but the impact is expected to be negligible.
The selection of a lower target momentum thickness Reynolds number Reθ = 1500 is done to generate a
relatively well resolved �ow �eld, while minimizing computational cost. With the end goal of simulating
synthetic jets for �ow control, the larger simulation domain is selected. The results presented below are
obtained using a time step of ∆t = 0.04 in non-dimensional time units.

In this simulation, the Reθ realized at the beginning of the working region is just over 1600, slightly
higher than the target value set at Reθ = 1500. The Reτ realized at the same location is over 650, the shape
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Simulation Nodes Spacing
Nx Ny Nz Ntot x+

max y+
min z+

max

Uncontrolled - Reθ = 1500

Baseline 961 129 289 ∼ 39× 106 13 0.5 6.5

Uncontrolled - Reθ = 3230

Coarse 121 129 225 ∼ 4× 106 94 0.9 15
Medium -Baseline 241 161 321 ∼ 14× 106 47 0.5 11
Fine 481 193 449 ∼ 47× 106 23 0.5 7.5
streamwise 481 161 321 ∼ 28× 106 23 0.5 11
spanwise 241 161 449 ∼ 20× 106 47 0.5 7.5
wall-normal 241 225 321 ∼ 20× 106 47 0.5 11

Controlled - Reθ = 4210

Baseline 545 161 289 ∼ 27× 106 54 1 14
-slot(x1) 13 65 33 ∼ 2.8× 104 2 1 13

Table 1: Grid details for the uncontrolled and controlled simulations. Note that the number of nodes given
in each direction is the number of unique computational nodes in that direction, whereas the approximate
total number of nodes given includes repeated nodes at block interfaces.

Figure 2: Block topology for controlled simulations.

factor is about 1.45, and the friction velocity scaled by the freestream �ow velocity is 0.0017.
Figure 4a shows the mean streamwise velocity pro�le, along with the empirical curves for the viscous

sublayer and law of the wall. Compared with theory, the velocity in the present simulation is slightly
overpredicted in the bu�er layer, which then extends through the log region. The slope in the log layer is,
however, reasonably well predicted. This behaviour is observed in many other LES simulations [20, 21, 22].
Sayadi and Moin [20], who compared several di�erent LES approaches to DNS results, were able to improve
the agreement of the LES models in the bu�er layer only by signi�cantly increasing the grid resolution. The
results of the present implicit LES simulation lie very close to these �ne grid results from Sayadi and Moin,
when overlaid with each other (not shown here).

Consider the streamwise velocity �uctuations shown in Figure 4b. The present simulation over predicts
the magnitude of the peak �uctuations as compared to the DNS results from Wu and Moin [23] at Reθ = 900.
The present peak value is 3, as compared to 2.75 in the reference. This behaviour continues through the
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Figure 3: Block topology and grid near a synthetic jet, with the additional block needed to simulate the
slots shown in red.

(a) Streamwise mean velocity pro�les. (b) Streamwise �uctuation velocity pro�les.

Figure 4: Implicit LES - Reθ = 1500.

logarithmic region, similar to the mean velocity pro�les discussed above. Note that the Reynolds number
in the reference simulation is lower; however, this does not account for all of the deviation. Again, these
deviations are consistent with the use of LES.

Diagnostic plots show empirical relations for the streamwise velocity �uctuations as a function of the mean
velocity pro�le [25]. Figure 5a highlights the observed linear region in the outer part of the boundary layer
superimposed on the linear �t presented in Alfredsson et al. [24]. The �uctuations exhibit the correct slope,
but are a little over predicted. Figure 5b highlights the linear region observed near the wall superimposed
on the linear �t presented in Alfredsson et al. [25] (Note the di�erent axes). The present simulations match
well with the linear �t.

The results presented above match reasonably well with the reference theory and simulations. The
observed deviations are consistent with the use of LES modelling observed in the literature. To eliminate
other possible sources of error which can cause a shift in velocity pro�les, we also investigate compressibility
e�ects and the strength of any pressure gradients in the present simulations.

Compressibility can have a signi�cant impact on the expected boundary-layer pro�les, causing a shift
in the law of the wall (see for example [26]). This is primarily a concern with supersonic boundary layers,
but can in�uence subsonic �ows as well (for example [27, 28]). The present simulations are performed at a
higher Mach number than the reference experiments, M = 0.2, but within the incompressible regime and
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(a) Streamwise velocity �uctuation pro�les
with linear �t from Alfredsson et al. [24].

(b) Streamwise velocity �uctuation pro�les
with linear �t from Alfredsson et al. [25].

Figure 5: Implicit LES - Reθ = 1500.

hence the in�uence of compressibility is expected to be negligible. Indeed the density and temperature vary
by less than 2% throughout the whole domain. As further veri�cation, the van Driest transformed log-law
velocity pro�le [29] is computed. Comparing the transformed and untransformed pro�les yields a di�erence
on the order of 1%. This supports the assumption that compressibility e�ects are negligible in the present
simulations.

Favourable and adverse pressure gradients can also have a signi�cant impact on the resulting boundary-
layer properties. To ensure that little or no pressure gradient is present in the simulations, the acceleration
parameter:

K =
ν

u2
e

due
dx

, (21)

is computed, where ue is the boundary layer edge velocity. Substituting non-dimensional variables requires
division by the Reynolds number associated with the governing equations to obtain the correct magnitude.
Probing along the entire length of the domain, the acceleration parameter was found to be less than 3×10−8.
This is below the threshold where the mean �ow becomes a�ected by a pressure gradient [30, 31] and supports
the assumption that the pressure gradient is negligible in the present simulations.

5 Higher Reynolds Number Uncontrolled Simulations

With con�dence that the �ow solver is generating good results consistent with the approximation used, we
seek to compare the implicit LES technique and the local ILSA sub�lter model. We increase the momentum
thickness Reynolds number to Reθ = 3230 in order to match experiments conducted at the University of
Toronto [32, 33]. The smaller simulation domain is used for the comparison so that a larger set of simulation
parameters can be considered. A coarser grid than at the lower Reynolds number is also used relative to
turbulent scalings. This is especially true in the streamwise direction, which was thought to be the least
important direction in �ow. The results below show that the importance of the streamwise direction was
under predicted.

A baseline turbulent �ow �eld is generated for the comparative simulations using the medium grid
described in Table 1. The solution is initialized with an empirical turbulent mean velocity pro�le and
randomly perturbed. The solution is then advanced 1000 non-dimensional time units with a time step of
∆t = 0.1. Separate simulations were run for the implicit LES technique and ILSA model. These baseline
�ow �elds are then interpolated onto the appropriate grid using trilinear interpolation. The solution on each
new grid is then advanced between 200 and 500 more time units to allow the �ow to adjust to the new grid.
It is these results which are presented in the discussion below.
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Figure 6: Implicit LES - Temporal convergence at Reθ = 3230

5.1 Implicit LES

General observations. As demonstrated in the previous section, the implicit LES technique performs
reasonably well given that the sub�lter modelling is not physically motivated. As expected, the quality of
the results is highly dependent on the spatial grid used. This approach tends to be more robust than local
ILSA model, though not always as consistent in the accuracy of the results.

Temporal resolution. In the same way that a coarse grid and arti�cial dissipation will damp high-
frequency modes in the solution, so will a large time step with the L-stable ESDIRK4 time-marching method.
Computationally we want to use as few time steps as possible to minimize time and resource costs, while
retaining the important details of the �ow. To evaluate this balance of computational cost and accuracy, we
perform a temporal resolution study on the medium grid using three time step sizes: 0.1, 0.05, and 0.025.

Figures 6a and 6b compare the mean streamwise velocity pro�les of the simulations, along with the
empirical law of the wall and experimental measurements. Relative to the turbulent variables u+ and y+,
the velocity is over predicted by a signi�cant margin. This begins in the bu�er layer and extends through
the log region to the far�eld. This is similar to what was observed at the lower Reynolds number, but to a
greater extent. The slope in the log region is, however, reasonably well predicted. When compared relative to
the freestream velocity, the mean velocity pro�le is in much better agreement. There is still some deviation
in the bu�er layer, but it is not nearly as signi�cant and the computational results match well in the viscous
sublayer and outer part of the boundary layer. With respect to temporal resolution, the �gures show that
the mean velocity pro�les are not signi�cantly a�ected by time step size. Some deviation is observed in the
upper part of the log region, but the change is not monotonic relative to the step size.

The �uctuating velocity pro�le is shown in Figure 6c. In this case, we see that temporal resolution plays
a signi�cant role. Reducing the size of the time step increases the peak �uctuations in both the near wall and
outer region of the boundary layer. This behaviour is likely correlated with the increased velocity observed
mean velocity pro�le. The outer peak in the �uctuating velocity pro�le is not observed in the experiment
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Figure 7: Implicit LES - Spatial convergence at Reθ = 3230

and must be taken as an error in the simulation. A potential source of this error is the use of a relatively
small averaging time scale, which is discussed more below. If this is not the case, the plot indicates that
there are larger sources of error in the simulations than the temporal resolution, which are highlighted as
the step size is reduced. One area where the simulation match well the experiments, and the empirical result
[34], is in the location of the near wall peak.

Throughout the range of time steps sizes evaluated, we found that the friction velocity Reynolds number
Reτ remains fairly constant. The average value of Reτ = 1076 is fairly close to the experimentally measured
value of Reτ = 1070 at the target momentum thickness Reynolds number. The momentum thickness
Reynolds number is also fairly constant across the range of time step sizes; however, it is larger than the
target value. This may be due in part to the empirical relations used to set the simulation parameters, and
due in part to LES modelling errors.

Spatial resolution. As expected, spatial resolution has a big impact on the implicit LES results. To
demonstrate this, a spatial resolution study is carried out using three successively �ner grids. These grids
do not form a nested family of grids, in that the coarser grids are not obtained by removing every other
node from the �ner grids. Two considerations in�uenced this decision: 1) balancing the computational cost
on the �nest grid and the minimum resolution on the coarsest grid; and 2) having a similar o�-wall spacing
on the two �ner grids. In this study a time step size of 0.025 is used.

As seen in Figure 7a the mean velocity in the bu�er layer relative to the turbulent variables is much less
over predicted as the mesh is re�ned. As before, this extends through log region and into the far�eld. The
improvement does not appear to be a function of the friction velocity, as it only varies by about 1% across
the di�erent grid levels. Less of a di�erence is observed relative to the mean velocity pro�le scaled by the
freestream velocity shown in Figure 7b.

Considering the �uctuating velocity pro�le shown in Figure 7c, the �ne grid is able to improve agreement
in the near wall peak relative to the experimentally measured values. The result from the medium grid,
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Figure 8: Implicit LES - Selective spatial re�nement at Reθ = 3230

however, appears to be an outlier using the time step size of ∆t = 0.25. As mentioned previously, this is
potentially due to the use of a small averaging time scale. A second pro�le for the medium grid obtained
with a time step size of ∆t = 0.1 is included in Figure 7d. This pro�le is more consistent the the expected
result of sequential grid re�nement, at least in the near wall peak.

The spatial re�nement yields a small increase in friction velocity Reynolds number from 1049 on the
coarse grid to 1128 on the �ne grid. Nothing conclusive can be said about the change in momentum thickness
Reynolds in this case, but it remains over predicted as in the temporal convergence study discussed above.

Selective spatial re�nement. To explore the grid parameters that had the greatest impact on the so-
lution, the medium grid is re�ned separately in the streamwise, spanwise, and wall normal directions. Our
expectation was that either the spanwise or wall normal re�nements would yield the greatest bene�t. In the
former case, this is based on the small spanwise scale of streamwise vortices near the wall, and in the latter
case, on the fact that there are signi�cant wall normal gradients near the wall. Surprisingly, the streamwise
re�nement yields the greatest improvement in the mean and �uctuating velocity pro�les, as seen in Figures
8a through 8c. In fact, re�ning in the streamwise direction yields nearly the same results as the �ne grid,
which made use of re�nement in all three directions. This result partially explains the change in quality
of results between the lower Reynolds number simulations and the higher Reynolds number comparative
studies. The former had spacing more than 3.5 times smaller in the streamwise direction.

Arti�cial dissipation. Extending the study of spatial resolution, we also consider the amount of arti�cial
dissipation that is applied. Three values were considered for the fourth-dissipation coe�cient: 0.05, 0.025,
0.0125. Halving the value once more led to an unstable simulation on the medium grid using a time step
size of 0.025.

As with the grid density considered above, the lower values of the dissipation coe�cient had an impact of
the accuracy of the time-averaged values. Figure 9a shows improvements in the bu�er and log layers of the
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Figure 9: Implicit LES - Arti�cial dissipation at Reθ = 3230

mean velocity pro�le. The improvement is less signi�cant than with the grid density, but is still noticeable.
With the �uctuating velocity pro�le shown in Figure 9c, little di�erence is observed between the largest and
middle values. The lowest value shows a signi�cant improvement in the near wall peak, and the pro�le of
the outer region is much smother. However, the outer region is somewhat under predicted.

In contrast to the spatial re�nement, lowering the arti�cial dissipation coe�cient also lowered the friction
velocity Reynolds number. A similar trend was observed in the momentum thickness Reynolds number.
Certainly a lower value of the dissipation coe�cient is preferable, so long as the simulation remains stable.

Averaging time scale As seen in some of the results above, erroneous �uctuations are visible in the
outer part of the boundary layer, and even in the far�eld. To evaluate the source of this error, a number of
simulation parameters were varied one by one to evaluate which had the greatest in�uence in the far�eld.
The parameters included in the study were: the type of boundary conditions, the type of block interface
SAT, the order of the dissipation model used, the averaging time scale used for the turbulent in�ow and
convective out�ow boundary conditions, and a modi�cation of the in�ow boundary to enforce a laminar
freestream 2.5δ◦ above the wall. This parameter study was carried out using the coarse grid and a relatively
large time step of 0.05. The results (not shown here) indicated that increasing the averaging time scale
had the most positive impact in the far�eld. By increasing the averaging time scale from 8 to 40 nearly
eliminated all the far�eld �uctuations.

5.2 Local ILSA sub�lter model

For the local ILSA simulations presented below, we use a sub�lter activity level of sτ = 0.02 and a model
averaging time scale of 1 non-dimensional time unit, unless speci�ed otherwise. This was done to test the
model's suitability for application to the controlled case, where the mean �ow is time dependant. The results
are compared to a longer averaging time below.
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Figure 10: Local ILSA - Temporal convergence at Reθ = 3230:

General observations. In general, we found that the local ILSA model performs well compared to the
implicit LES approach. The results obtained from the local ILSA model tend to be more consistent and
accurate when using the same simulation parameters. While the model requires the computation of a
turbulent eddy viscosity, we found that the local ILSA model required less CPU time per time step than
the implicit LES approach. This largely comes from a 15− 20% reduction in linear iterations. However, in
order to checkpoint and restart the simulations requires signi�cantly more information to be written to disk.
Speci�cally, this includes all the averaged nodal quantities required by the model (< ui >,< Si,j >,< K >
,< ε >,< χi >). While the results generated from the local ILSA model are more consistent and the solution
times lower, the use of the model was found to be less robust. In early stages of a simulation, while the �ow
is still developing, instabilities sometimes stopped the solution. Once the �ow was developed, the boundary
layer thickness would occasionally blow up. Recovery from both failures was possible by backtracking and
adjusting the simulation parameters slightly.

Temporal resolution. The temporal resolution study presented for the implicit LES technique is repeated
here for the ILSA model. This was done with the same grid, time step size, and general simulation parameters,
but using a baseline �ow �eld generated with the ILSA model.

The mean velocity pro�les computed relative to turbulent variables are shown in Figure 10a. The general
qualities are similar to the implicit LES approach. This includes the agreement in the viscous sublayer and
the magnitude of the overshoot in the bu�er layer, which then extends through the log region to the far�eld.
As with the implicit LES techniques, little variation is seen as the time step is changed. In the case of the
ILSA model, this even less in the log region than the implicit LES approach.

In contrast, there is more variation in the mean velocity pro�le when scaled by the freestream velocity.
It may be that the boundary layer thickness is being over prediction in this case. As mentioned previously,
the boundary layer thickness has diverged on occasion when using the ILSA model. As with the implicit
LES simulations, the disagreement is most signi�cant with the �nest time step size. A similar disagreement
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Figure 11: Local ILSA - Spatial convergence at Reθ = 3230:

is also observed in the �uctuating velocity pro�le shown in Figure 10c, where it appears the simulations have
slightly di�erent boundary layer thicknesses. In general, agreement is slightly better in the near wall peak
region as compared with implicit LES approach, and the results are signi�cantly improved in the outer layer.

As with the implicit LES simulation, little variation in the friction velocity Reynolds number is observed.
In contrast, the momentum thickness Reynolds number improves dramatically with the �nest time step size.
This was also observed in other local ILSA simulations using the smaller step size. Future work should
investigate the potential trade-o�s of using even smaller step sizes.

Spatial resolution. Spatial resolution is expected to in�uence the ILSA simulations di�erently than those
using the implicit LES technique. This is due to the grid independent construction of the ILSA model and
the use of a prescribed level of sub�lter activity. Indeed this behaviour is visible in the spatial resolution
study which we carry out. The results of this study are shown in Figures 11a through 11c. A noticeable
improvement is observed between the coarse and medium grid, but almost none between the medium and
�ne grid. A consequence of this behaviour, for the grids tested, is that the implicit LES generates a more
accurate solution to the mean velocity pro�le on the �ne grid than the ILSA model. However, the ILSA
model does produce a more accurate pro�le of the �uctuating velocity.

In this case, both the friction velocity and momentum thickness Reynolds numbers only change slightly
with grid resolution.

Arti�cial dissipation. As the local ILSA model introduces additional dissipation through the turbulent
eddy viscosity, it is interesting to see how the amount of arti�cial dissipation in�uences the results. In
general, it has been observed that less arti�cial dissipation is needed when using the ILSA model, than when
using the implicit LES technique. Therefore, we consider three values of the fourth-dissipation coe�cient,
which are half as large as used with the implicit LES technique: 0.025, 0.0125, and 0.00625. Halving the
dissipation coe�cient again, on the medium grid with time step of 0.025, led to an unstable simulation.
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Figure 12: Local ILSA - Arti�cial dissipation at Reθ = 3230:

The results of this test are shown in Figures 12a through 12c. As with the temporal re�nement study, the
ILSA model did not appear to be very sensitive to the value of the dissipation coe�cient. Small improvements
in the mean velocity pro�le are observed, but less signi�cantly than with the implicit LES approach. In
the case of the �uctuating velocity pro�le, there is minimal improvement in the near wall peak, and the
intermediate value yields a slightly better result in the outer part of the boundary layer.

In contrast to the results obtained with the implicit LES approach, the friction velocity Reynolds num-
ber increases slightly as the dissipation coe�cient is lowered. However, both approach the experimentally
measured value: implicit LES from above and local ILSA from below.

Averaging time scale. The ILSA simulations su�er less from erroneous �uctuations in the far�eld; how-
ever, the same parameter study done for the implicit LES approach is repeated here. As before, the most
signi�cant impact on the results comes from increasing the averaging time scale used for the turbulent in�ow
and convective out�ow boundary conditions.

Local ILSA sub�lter model averaging time scale. Simulations using the ILSA model have a second
averaging parameter, for the quantities in the ILSA model itself. For this study we have been using time
as the homogeneous direction in the �ow. As with the in�ow and out�ow boundaries, one would expect
that increasing the averaging time scale would be bene�cial. The challenge comes when we want to consider
control using synthetic jets. In this case, the mean �ow near the jet and downstream from the jet is not
steady. Therefore, controlled simulations using the ILSA model need to balance averaging out the turbulence,
and capturing the time dependent nature of the mean �ow.

To evaluate the model's response to the averaging time scale, we considered two simulations with time
scales of 1 and 40. Results (not shown here) yield almost no di�erence in the mean velocity pro�le. The longer
averaging time scale did improve the agreement in the outer boundary layer slightly, but little di�erence is
observed in the near wall peak.
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11.5 x/δ 15 x/δ

Figure 13: Experimental - St=2.3, r=0.44: Change in skin friction coe�cient evaluated using oil �lm
interferometry for a single jet z/δ = [0.15, 0.45] [left] and the Clauser chart method from hot-wire data for
two jets z/δ = [0.15, 0.45] and [−0.15,−0.45] [right]. Jet are located at 10δ◦.

6 Controlled Simulations

In this section we evaluate the two LES approaches for simulating �ow control using a single spanwise oriented
synthetic jet. In this case, we chose a slightly higher momentum thickness Reynolds number of 4210. The jet
used in these simulations has a spanwise size of 0.3δ◦ and an aspect ratio of 13 : 1. This simulation condition
and jet geometry are chosen to match the experimental setup at the University of Toronto [32, 33]. The
Mach number remains at 0.2 and the time step ∆t is chosen to be 1/10th of the jet cycle period, ∼ 0.217.
The averaging time scale used in these simulations was 20 non-dimensional time units.

We de�ne the jet actuation with two parameters: the Strouhal number St = δf/u∞ and blowing ratio
r = ujet/u∞, where δ is the boundary layer thickness, f is the forcing frequency, ujet is half of the average jet
exit velocity over the blowing cycle, and u∞ is the freestream �ow velocity. Experimental results identi�ed
the jet parameters of Strouhal number 2.3 and blowing ratio 0.44 as potentially leading to a reduction in skin
friction drag. This was based on hot-wire and oil-�lm interferometry located 1.5 and 5 δ◦ downstream of the
jet, respectively, shown in Figure 13. The potential for drag reduction motivated the numerical investigation
of these jet parameters. However, subsequent experimental measurements made with hot �lms at a greater
number of measurement locations indicate the reverse to be true. It appears that there are pockets of reduced
skin friction, but the overall in�uence of the jet will lead to an increase in skin friction drag.

6.1 Implicit LES technique

General observations. The introduction of �ow control using a synthetic jet adds extra challenges for
the numerical simulation. To avoid instabilities requires much greater care in the selection of simulation
parameters. Much of the instability comes from within the slot of the jet. Occasionally, instabilities also
manifest just above the jet exit. In order to alleviate the step size restriction these instabilities create, the
fourth-di�erence dissipation coe�cient is set to the largest value considered in the uncontrolled simulations of
0.05. Furthermore, second-di�erence dissipation is added within the slot itself. Second-di�erence dissipation
reduces the spatial order to unity and is almost exclusively reserved for dealing with shocks. However, given
that we are not that interested in this study with the �ow inside the jet (we are already modelling the
diaphragm and cavity), we found this to be a reasonable compromise to accelerate the simulations.

Change in skin friction Figure 14 shows the map of the change in time-averaged skin friction coe�cient
resulting from the synthetic jet actuation. It shows an elongated strip of skin friction reduction both
upstream and downstream of the jet along its centerline. The maps of the change in phase-averaged skin
friction shown in Figure 15 provide further insight. These show that the long region of reduced skin friction
drag downstream of the jet persists throughout the entire cycle. The region of reduced skin friction upstream
of the jet grows from the end of the blowing phase through to the mid point in the suction phase before
decaying again.

Two long regions of increased skin friction drag emanate from the edges of the jet, and a third shorter
region forms downstream along the jet's centerline. Integrating the skin friction over the region spanned by
{x× z} = {[5, 15]× [0, 3]}δ◦, excluding the spanwise strip where the jet is located x = [9.99, 10.01]δ◦, yields
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Figure 14: Implicit LES - St=2.3, r=0.44: Spatial map of change in time-averaged skin friction
coe�cient resulting from synthetic jet actuation.
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Figure 15: Implicit LES - St=2.3, r=0.44: Spatial maps of change in phase-averaged skin friction
coe�cient.

an increase in drag of about 1.7%. Despite the large increase in drag near the jet, the long strips of drag
reduction along the jet's centerline minimize the impact on the overall result. Future work should investigate
small variations on these parameters to see if the persistent region of drag reduction can be maintained while
minimizing the increase in drag right at the jet. It may also be worth introducing some type of feed-forward
controller to better target speci�c structures in the �ow.
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Figure 16: St=2.3, r=0.44: Change in time-averaged skin friction coe�cient along jet centerline [left] and
along the streamwise line between the jets [right]. Open symbols are from the experimental data; asterisks
are the same points from the computations.
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Figure 17: St=2.3, r=0.44: Change in time-averaged skin friction coe�cient along spanwise lines of
x = 10.33δ◦ [left], x = 11.5δ◦ [middle], and x = 15δ◦ [right]. Open symbols are from the experimental data;
asterisks are the same points from the simulations. The lines are also from simulation data.

6.1.1 Comparison with experiment

Figures 16 and 17 compare the change in time-averaged skin friction coe�cient along the streamwise and
spanwise lines corresponding to experimental hot �lm measurement locations. Note that the o�-center
experimental values highlighted are repeated values. Measurements were only taken to one side of the
jet, not both. The o�-center numerical results highlighted are averaged values from both sides of the
jet. Strong gradients are visible around some of the measurement locations, both in the streamwise and
spanwise direction. Thus small inaccuracies in sensor placement or variations in the �ow direction in the
experiments could have a signi�cant impact on the results. Furthermore the �gures indicate that further
time-averaging would bene�t the computational results. Considering the �gures together, the numerical
results show reasonably good agreement with the experimental measurements.

6.2 Local ILSA sub�lter model

Several attempts were made to apply the ILSA model to the controlled simulations described above. However,
using the same grid and similar simulation parameters, the initial step size required to maintain stability
with the ILSA model is more than two orders of magnitude smaller than with the implicit LES technique.
This can be gradually increased, but must remain about an order of magnitude smaller once the simulation
settles down. For long time simulations this is very costly; therefore, no controlled simulation results are
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presented for the ILSA model. Similar to the implicit LES technique, the instability in the simulations
originates in the synthetic jet slot or just above the slot. Adding second-dissipation within the slot did not
stabilize the simulation. The only means we found to increase the time step size further, was to sacri�ce the
depth of convergence of the residual on each time step from < 10−8 to < 10−4. This is not ideal.

7 Conclusions

This paper compares two large-eddy simulation techniques for the simulation of turbulent boundary layers
and �ow control using synthetic jets. The �rst approach is the implicit LES technique. In this case we
solve the Navier-Stokes equations and unresolved modes are damped by fourth-di�erence matrix arti�cial
dissipation compatible with the summation-by-parts spatial discretization. The second technique considered
is the local ILSA sub�lter LES model. It solves the Favre-�ltered Navier-Stokes equations with an algebraic
eddy-viscosity model for the unresolved modes. The model uses mesh-independent approximation of the
integral length scale and prescribes a certain level of sub�lter turbulent activity locally through a spatially
and temporally varying model coe�cient.

The implicit LES approach requires no additional equations to be solved; therefore it is relatively e�cient.
It is also found to be very robust. An initial low Reynolds number simulation using the implicit LES technique
veri�es the �ow solver for solving zero pressure gradient �at plate boundary layers. Analysis shows very little
in�uence from compressibility e�ects or erroneous pressure gradients.

In the comparative studies, the temporal resolution did not have the expected impact on the quality of
the implicit LES results. Increasing the temporal resolution did not improve agreement in the bu�er layer,
rather it highlighted erroneous �uctuations in the outer part of the boundary layer. Additional simulations
found that increasing the averaging time scale used in the turbulent in�ow and convective out�ow boundary
conditions minimizes erroneous �uctuations in the far�eld which might be corrupting these conclusions. In
contrast, spatial resolution did have the expected in�uence on the results. However, it was the streamwise
resolution, rather than spanwise or wall normal resolution, that had the most bene�cial e�ect on the results.
The studies also showed that minimizing arti�cial dissipation can have a small but bene�cial impact on the
quality of the results.

The local ILSA model performed very well. Despite requiring the evaluation of an additional algebraic
equation, the solution time was reduced relative to implicit LES. This came from a 15 − 20% reduction
in linear iterations. The ILSA model also produced more consistent and accurate results. However, the
model was found to be less robust. In the comparative studies, the temporal resolution had little e�ect on
the velocity pro�les, but the �nest time step considered did improve the agreement in momentum thickness
Reynolds number. Spatial convergence studies highlighted the grid-independent nature of the model, but
also prevented further improvements on the �nest grid. The additional dissipation from the ILSA model
enabled lower values of arti�cial dissipation to be used. However, little change is observed in the results as
the dissipation coe�cient is changed. Larger averaging time scales for the model variables generated slightly
better results; however, the shorter time scale used in the majority of the simulations did not a�ect the
results greatly.

For the controlled simulations, only the implicit LES approach was able to consistently generate results.
This was aided by a slight increase in fourth-di�erence dissipation and the addition of second-di�erence
dissispation within the slot only. The results generated by the implicit LES approach are in reasonably good
agreement with experiment. They also give much more detail of the spatial change in time-averaged skin
friction. In contrast, the local ILSA model required a time step one to two orders of magnitude smaller than
the implicit LES technique in order to maintain stability of the simulation, even with additional dissipation.

In summary, the local ILSA model provides many bene�ts relative to the implicit LES technique for
uncontrolled turbulent boundary layers. More work is needed to apply the model to the controlled case. The
implicit LES approach is less consistent in the quality of results but more robust.
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