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Abstract

A common programming interface for all types of computational geometries is introduced, allowing 
type specialization, starting with distinct HPC optimizations separating structured and unstructured 
geometry branches. For structured types, element data is generated procedurally, while for 
unstructured types, data is both explicit and declarative. Further specialization down the tree defines 
Grid, Tree, Mesh, and Network types, each with their own characteristic uses, optimizations, and 
further sub-classifications. Unified access patterns can be implemented in heterogeneous (e.g. CPU, 
GPU) compute environments, providing a foundation to develop robust multi-domain spatial 
algorithms that utilize any geometry types.
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1 Introduction

Presented with a spectrum of real-world engineering challenges, it is evident no one geometry type is sufficient to cover all 
realms of numerical analysis. For a specific application, there always appears to be an appropriate grid, mesh, etc. A 
taxonomy helps catalog common underlying attributes and functions across known functionalities, resulting in a class 
hierarchy (related by inheritance) and common interface for all geometry types. This allows numerical algorithms (such as 
those used in physical models) to call through a common set of functions and dispatch to the appropriate optimization for a 
given type. Such characteristics are essential to modern HPC, scientific computing, and machine design.

As a first example of geometry specialization, consider a function that returns the position of a node in an optimized 
geometry: Unstructured meshes should read previously-written memory, whereas structured grids should calculate values at 
runtime using a constant-time indexed lookup (mitigating cache-misses and page-faults). Varied underlying machinery 
access geometries using the same function signature, redirecting runtime behavior while enforcing unified access patterns. 

Benefits should be apparent to teams performing multi-disciplinary analyses. One team may be solving a structured fluid 
grid while another team may be optimizing an unstructured mechanical mesh. A common geometric language enables:

• effective and accurate communication across domains
• optimization of computing resources
• reuse and expansion of numerical algorithm assets
• project success for complex system work-flows

This paper provides technical foundations of a software geometry kernel enabling these functionalities within discrete 
computational domains, yielding a 50-fold span in memory and runtime performance as demonstrated in Xplicit Computing 
Inc’s XCompute™ products and prototypes from 2012 through 2018. The breadth of numerical computing and its diverse 
future is presented anecdotally to support lacuna and allude to characteristic applications.
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2 Class Inheritance – Hierarchy 

An inheritance model’s utility is to create a more modular and intuitive program – so that member attributes and functions 
can be reused or redefined as desired. One corollary is that developers and users are exposed to convenient standard 
structures and access patterns, further facilitating design cohesion, efficiency, and testability. Focus and clarity further 
enhances high-level optimizations and innovations when developing new algorithms.

Necessity for inheritance may not be immediately apparent, but stark contrasts exist between grid and mesh types: meshes 
have memory buffers for element positions and topology, while grids can calculate positions and elements procedurally.  
Yet, all must store scalar field data (but not necessarily topology) and conform to strict interface patterns established in the 
geometry base. Domains form a larger spatial family with profound commonalities and specializations:

2.1 Runtime Polymorphism – Modularity

C++ is statically-typed so class structures and functions must be defined at compile-time, but are not bound until runtime 
when a call through a virtual function table (vtable) invokes the appropriate overridden function in the derived class 
associated with the object – thus, redirecting behavior. Virtual functions imply those overridden with a specialized derived 
version containing identical function signature. This provides flexibility to general purpose programming that can make use 
of generic function dispatch, which can be useful when developing generic calling algorithms. Underlying common 
functions can be found in Appendix A.

Domain is a concrete virtual base class that can only call functions defined in its column on the table, providing 
functionalities for generic functions like: checking whether one domain intersects another or ray cast through space – 
yielding key optimizations (and internal faculties) per type. Functions like position containment and delta between extrema 
are less specialized but find wide application (spanning server and client applications).

Geometry inherits its attributes and functions from Domain, though itself is an abstract base containing both pure virtual and 
function overrides. Geometric topology, scalar data, and construction introduces new utilities such as element access, region 
creation, and value sampling. Further specialization in procedural and declarative branches uncover major differences in 
function management: Procedural leaves almost all functions to be defined later in derived types. Declarative populates its 
table with overrides that are utilized by derived types. Build functions for Grid, Tree, Network, and Mesh types have unique 
and highly-specialized implementations.

Polymorphism provides another crucial technique to define and re-define OpenCL to mimic C++ function dispatching (on 
co-processor devices such as GPUs). As a function or a member override, string literals containing source code fragments 
are compiled into a larger CL program. Similarly, file paths can be changed to include external headers that geometry CL 
code may need in its Just-In-Time (JIT) compilation prior to kernel launch. Unlike C++, this redefinition can be done 
during runtime (and run on any device) – a breakthrough for dynamic heterogeneous programming.
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Illustration 1: Geometry Type Taxonomy. It 
is posited such inheritance and resulting 
polymorphism can support a standard 
common programming interface and 
optimizations for any type.

Illustration 3: Example grid position function override  
specialization, redirecting generic call to return values  
dynamically generated by local function. This may 
increase processing overhead, but minimize IO traffic.

Illustration 2: Example mesh position function override 
specialization, redirecting generic call to return values 
statically stored in memory. This may minimize 
processing overhead, but also increases IO traffic.



2.2 Application Examples
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Illustration 4: Large computable geometries on consumer hardware, with structured & unstructured types in global space spanning 
wide length-scales. Half of Ford Mustang Shelby GT350R and aerospike rocket “Armstrong” on a structured brick road. Many of the 
domains used in automotive and aerospace analysis can leverage procedural geometries, while complex manifolds such as the Mustang 
body remain declared in memory. Procedural components and routing can be generated with specialized structured algorithms and 
others can be designed in CAD or other program. Adaptive resolution and numerical efficiency across all types enable both larger and 
faster simulations on equivalent resources. Regions are colored individually while regions of car are bound in yellow boxes.

Modern analyses require systems interact over wide space-time scales. Single global discretization approach is an extremely inefficient 
and non-scalable approach to multi-physics. Therefore, abstractions must provide a way to discretize and solve each problem 
individually and integrate as part of the whole. All permutations should be supported robustly with unified data coupling algorithms.

Illustration 5: Inter-domain mutual coupling between disparate geometry types. Unstructured mesh 
on left, structured grid on right, running two independent numerical methods coupled in time and 
space. In this test, a cylinder is placed inside a gas flow, with wake clearly visible through domains. 
Inter-operable algorithms enable higher-level coupling and global accuracy.



3. Geometry Base Interface

Currently, most algorithms developed by engineers are one-off scripts with little structure or standardization. This inhibits 
numerical R&D efforts from being reused in later projects as there is no universal way to adapt old code into new contexts. 
Through a universal interface, object-oriented programing encapsulates scientific computing concepts. Complex, integrated 
environments require more robust machine protocols in varying scenarios, as homogeneous approaches do not scale 
favorably against non-linear complexity. Humans and computers need elegant and inclusive spatial abstractions to yield 
cross-cutting functionalities, not more siloed and inefficient ‘codes’ without a lineage or future.

Algorithms encapsulate processes and can be connected to define work-flow across an organization, spanning numerical 
transport to state processes to high-level systems optimization. Ideally, generic algorithms are developed only once, and 
subsequently applied and adapted as an asset. Modularity facilitates code reuse and inspection; all the while establishing 
stylistic cues that further support heterogeneous computing machinery. To improve ease of use but not limit numerical 
capability, a finite set of standard functions are defined in conformance with a Turing-complete language (C++14) to 
support wide programming functionalities. Each geometry type may have optimal differentiation and integration strategies 
creating overlapping compatibility families to facilitate inter-domain processes and fall-back (or redundant) algorithms.

For instance, many numerical methods require evaluation of a gradient, yet there are many ways to achieve this depending 
on the application. If a continuum is assumed in the domain, then sampling can apply Reynolds transport and divergence 
theorem to yield a robust solution. In morphed grids and unstructured meshes, generic operators such as Green-Gauss 
Gradient can be the backbone of ubiquitous finite difference and viscid layer computations. Yet, where there is no 
topological divergence (orthonormal) this generality comes at some unnecessary numerical cost. Assumptions per 
application dictate the appropriateness of an algorithm (verb) bound to a geometry or other argument (noun).

Example: Generic algorithm compatible with grids, meshes, and trees – Green-Gauss Gradient (16 lines)

Gradients of scalar field ϕ( x⃗)  can be sampled over K duals with interface dA and control volume V: 

∇ ϕ( x⃗)=
1

V ( x⃗ )
∮
A

ϕdA d A⃗=
1

V ( x⃗ )
∑
k=0

K

[(1−α)ϕ( x⃗ )+αϕ( x⃗k)]Δ A⃗ k+ϵ(O( x⃗)2) (1)

Where α=0.5 for median sampling. With our API, the equivalent C++ computes gradients for any scalar parameter:

void GreenGaussGradient(DATA& data, GEOMETRY& geometry, PropertyKey val_pk){
    VECTOR& values = data(val_pk); // get data vector for scalar property
    auto grad_pk = PropertyKey(val_pk, Gradient); // create a new pk by appending gradient modifier
    VECTOR& gradient = data(grad_pk); // get data vector for gradient property
    #pragma omp parallel for
    for (int n = 0; n < geometry.nNode(); n++){ // iterate through all nodes (parallel)

double volume = geometry.volume(n); // get volume at target dual node
      if (approxEqual(volume,0.)) // skip if volume is nearly zero
               continue;

gradient.row(n) = VECTOR::Zero(1, geometry.D); // before first dual zero out gradient
auto K = geometry.nNeighbor(n); // get number of neighbors for node n

     for (int k = 0; k < K; k++){ // iterate through interior neighbors of n
FACE face = geometry.getInteriorFace(n, k); // get the interior dual node face n-k

           if(face.empty()) // skip fragment if face is empty
               continue;
           int& ns = face.indices[1]; // flux source node index (opposing)
           double interfaceValue = .5 * (values(ns) + values(n)); // compute interface value as average
           for (auto d=0; d<geometry.D; d++) // for each spatial dimension
               gradient(n,d) += interfaceValue*face.area[d]/volume; // sum gradient using Green’s theorem
        }
    }
}
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GEOMETRY is an abstract base class that derives from DOMAIN serving as a common programming interface for all 
types. An algorithm can call through a generic GEOMETRY pointer (address) and its functions will redirect to variations 
available in the vtable. Derived types can also call static base versions of function overrides. Generic algorithms operate on 
any geometry type through a unified base, greatly-improving code reuse and algorithm modularity. At its core, a name, 
heterogeneous DATA record and revision:

std::string name; // name of the geometry
DATA data; // scalar attributes, such as Position or SDF vectors
REVISION revision; // major and minor change counter
STRUCTURED* background{nullptr}; // ptr to background geometry (optional, see § 3.3)

REGIONS may be defined by the user or algorithms zero through D dimensions for manifolds x⃗∈ℝ
D

, including:

REGIONS<GROUP> groups; // 0d node groups of nodes
REGIONS<LOOP> loops; // 1d loops of edges
REGIONS<SURFACE> surfaces; // 2d surfaces of faces
REGIONS<VOLUME> volumes; // 3d volumes of cells

GEOMETRY is never instantiated itself, but its base functions (in Appendix A) are called from algorithms and behavior is 
redirected to take advantage of characteristic optimizations in derived types. Unified interface promotes high-level 
algorithm modularity and unlock optimizations that provide a more than an order-magnitude benefit to analysis resolution 
and/or execution speed. Assumptions about the topology can reduce traffic and memory access – where possible functions 
that may have otherwise accessed memory calculate values “on the fly” given a set of encoded inputs. Such procedural 
approach yields major benefits but limits flexibility that is apparent in explicit declarative types. Still, remarkable spectrum 
of unique adaptability and suitability exist for each, suggesting diverse future adaptations and applications on the horizon. 

3.1 Structured Procedural Branch

STRUCTURED geometry is an abstract base with the defining attribute that topology is sufficiently-ordered to enable 
return of elements through a generative procedure. That is, given an integer-based element location ijk, we can call a 
function to return position and neighbors. Topology information is not explicitly stored, as elements and attributes are 
computed deterministically from a set of analytic functions rather than member attributes defined in memory. Beyond base 
geometry interface, few attribute or functional commonalities can be described in this virtual class, reflected by sparsity in 
its vTable. Efficiency in memory and computation is a primary advantage, enabling increase in capacity by more than an 
order of magnitude due to alleviated interconnect traffic and processor cache faults. Benefits are realized in numerical 
methods that present a more physical interpretation, and less apparent in schemes that reconstruct associativity as required 
by the processing format (incurring larger solver memory penalties). While some geometries may have optimal methods, the 
aim is to take advantage of efficiency where possible, and rely on compatibility when required. 

3.1.1 Structured Regular Grids

Grids provide the simplest spatial scaffolding to approximate PDEs. Finite Difference Method (FDM) and Lattice-
Boltzmann Method (LBM) demonstrate continued demand as applied to Large Eddy Simulation (LES) and Direct 
Numerical Simulation (DNS) - the evolution of the fluid field is assumed statistically isotropic (a priori), yet resolved in 
time and space with Courant numbers ideally on order of unity to limit numerical diffusion and phase error.

GRID inherits from STRUCTURED geometry, but adds the following member attributes:

glm::ivec size; // node count in each dimension
int basis; // coordinate transform (Cartesian, cylindrical, spherical, …)

Grid indexing samples field regularly through domain with integer location k⃗
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ϕ( x⃗ ( k⃗ )) for k⃗=( i , j , k , l)∈ℤ
D

(2)

Spatial vector entries are ordered left to right, map similarly to non-dimensional, Cartesian, and other spaces:

k⃗ (i , j , k , l)∼ξ⃗ (ξ ,η ,ζ , τ)∼ x⃗ (x , y , z ,t )∼θ⃗(r ,θ , z , t)∼.. . (3)

Orthogonal basis transformations project grids to other coordinate bases, including non-dimensional, cylindrical, and 
spherical isometries. Associativity remains untouched (with exception to degenerate boundaries) although accessors for 
position, face normal, and volume functions are transformed for local scaling and skewing. Tensor Qn is locally-varying 
(per-node, varying as a function of position):

x⃗ '=Qn x⃗ for Qn
−1

=Qn
T

 ∀ n∈ x⃗ (4)

Regular sampling presents an opportunity to incorporate digital signal processing techniques, well-suited to problems where 
spectral resolution and characterization are important, such as in LES [15]. The goal is to preserve spectral integrity of 
conserved scalar ϕ( x⃗) for each degree of freedom (energy, momentum, mass, charge, species...) using strong form of 

substantive derivative along velocity transport ψ⃗=ϕ u⃗ on orthogonal spatial basis:
 

 q̇≝
D ϕ

D t
=∑

d=0

D ∂ ψd

∂ xd

or in terms of scalar rate ϕ̇=q̇−∇⋅ψ⃗ (5)

q̇ is the source-generation term (zero for locally conservative or free), with non-conserved quantities (pressure, 
temperature, velocity…) derived in state equations. Taylor Series project continuous function derivatives about x⃗+d x⃗ :

ϕ( x⃗+d x⃗)=∑
k=0

K
(d x⃗)

k

k!
⋅∇k ϕ( x⃗)+ϵ(O( x⃗ )K) (6)

FDM achieves K-order accuracy by enlarging differencing stencil (expanding and factoring Eq 6) or tuning coefficients per 
numerical characteristics. Balanced differencing procedures (e.g. mirrored permutations outlined by MacCormack in 1971 
[33]) limit numerical bias and improve robustness. Numeric and geometric singularities require dynamic low-pass filtering 
and variable timing to permit Courant numbers near or above unity. Feedback control f adjusts timing using temporal 
residual estimates from difference in last two temporal integration stages targeting residual ϵo :

d Co( x⃗)=Co( x⃗ )⋅f (1−ϵ( x⃗) /ϵo)d t  (7)
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Illustration 6: Simple orthogonal grids of size IJK[10,10,10], from left to right: Cartesian, cylindrical, spherical isometries with 
min[1,0,0] & max[2,1,1]. This particular example demonstrates a regional degeneracy on the spherical surface k+. 



Frequency response characterization is efficient and accurate within structured domains as Z-transform convert a regularly-
sampled discrete filter h(k)  from index k-space to complex frequency z-space H (z)=Z (h(k⃗ )) , in 1d [25]:

H (z)= ∑
k=−K

K

h(k) z−k
(8)

Transfer function H (z)  can be directly applied to spectral field Φ(z)=Z (ϕ( k⃗ )) :

Φ ' (z)=H (z)Φ(z )      (9)

Finite Impulse Response (FIR) filter h( k⃗ )  of size K and rank D is convolved with ϕ(k⃗ ) to modify signal:

ϕ' ( k⃗ )=h( k⃗ )∗ϕ( k⃗ )+ϵ(O(k⃗ )
K
)      (10)

Inverse H−1
(z) is analytically determined from H (z) , and equivalent filter h−1

(k )=Z−1
(H−1

(z)) can 
deconvolve processed signals to estimate original, as used in Smagorinski SGS turbulence models [15]:

 ϕ(k⃗ )=h( k⃗ )
−1

∗ϕ ' ( k⃗ )+ϵ(O (k⃗ )
K
) (11)

Gradients can be obtained by convolving differencing filters g⃗( k⃗ ) and scalar field ϕ(k⃗ )  in each dimension:

∇ ϕ(k⃗ )= g⃗ (k⃗ )∗ϕ(k⃗ )+ϵ(O( k⃗ )
K
) (12)

Finite Difference Time Domain (FDTD) is a similar technique used for time-varying elliptic/parabolic electro-magnetics, 
usually Maxwell’s Equations as function of curl (e.g. vorticity potential methods). FDM and FDTD are bound by analogous 
timing and stability with respective mediating local wave-speed a( x⃗) for sound and light. Index of refraction λ  

dictates local light speed c ( x⃗)=c∞/λ ( x⃗ ) , resulting in high electric field gradients near dielectric interfaces.

Tensor transformations extend grids to non-orthogonal curvilinear bases such as axisymmetric, C, H, and O topologies, 
ideal for analyses along analytic or piece-wise curves. Differencing schemes must correct for varying d x⃗ /d k⃗  or revert 
to a Green-Gauss or Least Squares Gradient. Topology remains unchanged, requiring semi-smooth matrix Qn on x⃗ :

Qn x⃗<(Qn−dQn)( x⃗+d x⃗) equivalent to local change constraint: d Qn( x⃗+d x⃗ )<Qn(d x⃗) (13)
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Illustration 7: Tensor morphing to resolve circle in structured grid. Left to right: 1x, 2x, 4x refinement



3.1.2 Structured Bifurcating Trees

Binary trees (such as quadtrees, octrees) provide the most efficient encoding of volumetric data, yielding constant access 
time and dynamic refinement with lightweight underlying representation.[14] The domain is divided in each dimension into 
locations that intrinsically preserve hierarchy information in an integer code, shifting load onto compute device (rather than 
memory or IO bottlenecks). Arithmetic properties of binary encoding allow direct bit-wise manipulation to resolve parent, 
child, and neighboring locations without memory access or relational tree traversal. Important for the foreseeable future, 
trees have promise for far-field physics (coupled to boundary meshes), complex topologies, and multiphase flows. 

TREE inherits from STRUCTURED and defines integer location codes for each dimension:

std::vector<glm::ivec> locations; //ijk integer location codes for valid branches, l=level

Locations within K⃗  divide domain in powers of two up to max L levels deep (starting at root location ko=2L−1
, 

computing all attributes from an encoded large integer for each spatial dimension. Location  k⃗  has center position:

x⃗ (k⃗ )= x⃗min+( ⃗xmax− x⃗min) k⃗ /2L
(14)

Quadrature points are cast into domain and positions are quantized into locations x⃗→ k⃗ to the desired level for initial 
tree leaves. Remaining tree topology is generated from these leaves using location operators, limiting memory access. 
Neighbor accessors require knowledge of local tree hierarchy, extracted from any valid location code. Child locations are 
computed from previous locations at level l with ⃗k l +1=k⃗ l±k⃗ l /2 . Parent location is found by shifting the least 

significant true bit (at L-l-1) up by one, equivalent to ⃗k l−1[ L−l ]=1 and k⃗ l[ L−l−1]=0 . Location code 
machinery dynamically construct and return elements, starting with overrides for utilities such as nElement:

size_t TREE::nNode() const {return (1<<D)*locations.size();}; // 2^D nodes per location
size_t TREE::nEdge() const {return D*(1<<(D-1))*locations.size();}; // D*2^(D-1) edges per location
size_t TREE::nFace() const {return D*(D-1)*locations.size();}; // D*(D-1) faces per location
size_t TREE::nCell() const {return locations.size();} // 1 cell per location

Procedural overrides used in FDM and FVM redirect to location-based calculations, such as volume:

V ( k⃗ )=DOMAIN : : volume ()/2D⋅l
(15)
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Illustration 8: Examples of trees in 2d and 3d. Left, prototype quadtree demonstrate growth layers around discrete shape.  
Right, octree (container) improves search space during mesh winding-number calculation.



3.2 Unstructured Declarative Branch

UNSTRUCTURED geometry is an abstract base with explicitly-defined associative topology, requiring additional members 
to support declarative ELEMENTS (stored in memory):

NODES nodes; // 0d nodes
EDGES edges; // 1d boundary edges 
EDGES connections; // 1d interior edges

3.2.1 Unstructured Closed Meshes

MESH are UNSTRUCTURED, defined by a closed cellular topology on manifolds x⃗∈ℝ
D

:

FACES faces; // 2d boundary faces 
FACES interfaces; // 2d interior faces
CELLS cells; // 3d interior cells
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Illustration 9: Stochastic meshing process with 20K nodes, unrefined: a) Shape is defined by reference surfaces used to solve SDF 
background. b) Nodes are injected into valid SDF locations and equalized. c) Triangulation updates topology with over-wrapped 
mesh (comprised of convex hulls). d) Elements are evaluated and cleaned against SDF while surfaces are unwrapped. e) Original 
(darker) mesh superimposed over new mesh to visualize spatial deviation. f) Close-up showing error around high-curvature features.  



Polygonal meshes are common in feature-driven continuum mechanics – a marked improvement in flexibility and capacity 
to resolve details at varying length scales. Finite Element Method (FEM) and Finite Volume Method (FVM) are designed for 
such topologies (yet compatible with other types such as grid).

Generating a computationally-effective mesh remains a big pain point for practicing engineers [2,3]. Not only can geometric 
definition be tricky, but the resulting domain must be conducive to numerics that follow. Variable sampling may meet 
feature detail requirements, meanwhile establishing baseline limitations on the Courant number – constraining numerical 
performance or choice in solver. Ironically, small elements have least significant physical impact on the solution and should 
be discarded if contributions are below machine precision. Conformance and resolution must find balance with numerical 
conditioning as penalties amplify in downstream processes. 

Meshing tends to fall into two categories: feature-based and stochastic. Feature-based solutions typically construct the 
domain by progressively-resolving regions from low-to-high fidelity. Control nodes are defined along parametric curves. 
Loops of edges and nodes are created along the curve between control nodes. Surface patches and corresponding faces, 
edges, and nodes are filled between loops. Volumes consisting of cells, faces, edges, and nodes are progressively resolved, 
providing high feature-control from feature-based representation. Large portions can be dominated by optimal element types 
(e.g. Hex8 in 3d), yet near complex interfaces, poor elements limit local CFL conditioning or matrix stiffness.[32] This is 
quantified as a bimodal element quality distribution based on cell circumscribe or potential energy test around each node.

Stochastic mesh generation based on Per-Olof Persson’s thesis has been implemented – yielding high-quality unimodal 
distributions to improve computability.[4] A background geometry solves the Signed Distance Field (SDF) around the input 
reference surfaces to define an implicit shape function ϕ( x⃗) with reference surfaces at S.[19] Negative values define 
interior and positive exterior (though robust sign determination can require expensive winding-number computation): 

 |∇ ϕ( x⃗ )|≝1 and ϕ(S)≝0 (16)

Initial nodes are distributed across valid (positive or negative) SDF locations, followed by improvement taking an edge-wise 
spring-truss analogy. Displacement is constrained normal to boundaries, while nodes near SDF-defined surfaces iteratively 
project to progressively conform:

Δ x⃗=
ϕ( x⃗ )∇ ϕ(x)

|∇ ϕ(x )|
2 +ϵ(O( x⃗ )

2
)       (17)

Upon completion, concave hulls and invalid elements are evaluated at quadrature points against the SDF and cleaned (with 
a surface unwrapping procedure) yielding naturally-fitting simplexes, to be later interpreted as median duals if desired. 
Enhancements to feature size and curvature refinement can be implemented by appending algorithms (that process upon 
SDF or other properties) to the meshing script. Stochastic equalization can be applied after feature-based mesh generation to 
yield more isotropic CFL characteristics by annealing neighbors k, forcing toward local radius goal ro:

‖x⃗− x⃗k‖=ro( x⃗)+ϵ(O( x⃗ )
2
)        (18)

Triangulation size and speed present the primary challenge of stochastic closed-cell techniques. Semi-frequent Delaunay 
triangulations are required to update cell associativity as inter-node distances equalize and rearrange while annealing. 
Interval is controlled by tracking maximum relative node displacement since last triangulation, where values r/ro~0.5 
demonstrate good balance between triangulation and equalization expense. As an ideal mesh is resolved, triangulations 
decrease in frequency and the meshing process accelerates. While many other heavy algorithms prove naturally parallel, 
rapid triangulation of millions of nodes require special adaptation of a native parallel Delaunay triangulator based on GFlip-
3d [6,7] for OpenCL-compatible devices.

Linear elements can achieve higher spatial accuracy by reconstructing and storing secondary element neighborhoods locally 
or using tree-like search spaces, though remain poorly-conditioned beyond second-order accuracy (due to proportional 
memory cost with diminishing returns). High-speed memory and interconnects remain relatively expensive, so mesh 
generation and resulting topology footprint keep unstructured meshes from dominating numerical analysis, especially where 
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processes are resolved (instead of modeled). Galerkin approaches alleviate mesh limitations by constructing the solution as 
the sum of piecewise linearly-independent basis functions, demonstrating forward directions for unstructured domains.

FVM applies Advection Upstream Splitting Method (AUSM) or Roe flux to integrate median dual node-cells in strong form 
with Monotone Upwind Schemes for Scalar Conservation Laws (MUSCL) reconstruction yielding second-order accuracy 
for each degree of freedom ϕ .[18] A face-volume flux approach results in a robust scheme when convection drives 
transport. Venkatakrishnan and Barth-Jesperson limiters help suppress numerical overshoot.[1] Scalar transport around dual 
node at x⃗  is the sum of flux density ψ⃗=ϕ u⃗  flowing through surrounding K median dual fragments with source q, 
area normal dA, and volume dV, and α=0.5 for median sampling: [9]

q̇ ( x⃗)−ϕ̇( x⃗)=∇⋅ψ⃗( x⃗)=
1

Δ V ( x⃗)
∑
k=0

K

[(1−α)ψ⃗( x⃗ )+α ψ⃗( x⃗k)]⋅Δ A⃗k +ϵ(O( x⃗ )
2
)   (19)

A coefficient table enables arbitrary-order explicit Runge-Kutta time integration, while CFL timing can be adapted from 
FDM temporal integration strategies (eq 7). Although a robust formulation for continua, where local convection is much less 
than the mediating wave speed u( x⃗ )≪ a( x⃗) , FVM becomes poorly-conditioned and dominated by numerical 
diffusion. Elements in viscid flow become numerically inefficient within the boundary layer so a wall function or local 
time-stepping emolliates restrictions. In cases such as the incompressible limit, a different technique should be applied.

Continuous Galerkin FEM does not rely on velocity transport and can also achieve arbitrary-accuracy with weak form of 
the PDE by dividing the domain into non-overlapping elements connected by a sum of continuous weighted interpolants. 
Values are sampled at position x⃗ by averaging across N local element nodal values ϕn with sum: [37]

 ϕ( x⃗)=∑
n=0

N

Ln( x⃗ )ϕn+ϵ(O( x⃗ )K) requiring   N≥
1

D !
∏
d=1

D

(K +d) to form a basis. (20)

Lagrange polynomial shape function Ln is evaluated within element ξ⃗n∈[−⃗1, 1⃗] , for tensor product elements (3d hex) :

Ln( x⃗)=∏
i≠n

x−x i

xn−x i
∏
j≠n

y− y j

yn− y j
∏
k≠n

z−zk

zn−zk

 (21)

Other simplex shapes require more involved shape functions and quadrature rules, detailed in references [19] & [20].

Gauss-Legendre quadrature rules exactly integrate shape functions, while gradients are computed in terms of analytic 
derivatives.[16] For steady-state problems the spatial discretization results in system of nonlinear equations Ri v=0 , 

where v=(ϕ0 ,ϕ1, ... ,ϕNDOF)
T

 is the interleaved assembly of scalar states, with one equation for each unconstrained 
degree of freedom. This system R is solved using Newton-Raphson iteration:

 d v=−Ri v τ( ∂ Ri v τ

∂ v j
)
−1

updating state vector v τ+1=vτ +d v (22)

Jacobian ∂ Ri vτ /∂ v j  is symmetric if the PDE is self-adjoint, and the linear system may be efficiently solved using a 
preconditioned conjugate gradient iterative solver, such as OpenCL-based ViennaCL. Temporal steady-state solution can be 
converged with Newton-Raphson iteration. Time-varying domains can use an appropriate ODE solver such as implicit-
explicit Crank-Nicolson (e.g. Heat Equation) or Newmark-Beta (e.g. Linear Elastodynamics). Explicit Runge-Kutta 
integration techniques can also be used for transient analyses, though as §4 indicates, memory constraints can limit scale of 
space-time resolved analyses (in favor for structured types).
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3.2.2 Unstructured Open Networks

NETWORK are UNSTRUCTURED, distinguished by an open Markov-chain structure to constitute the most casual 
topology associativity. If associativity information can construct a graph-like sparse matrix, stability may not be guaranteed, 
so an implicit technique may be required to converge upon steady-state or harmonic response using eigenvalue analysis.[17] 
Markov matrix Ā  can be processed to yield non-linear ⃗vn+1= Ān v⃗n or harmonic response, though other method can 
prove more numerically efficient by removing the need for topology altogether.

Particle-based methods or Lagrangian networks (from N-body down to zero-body) are often used when gradients are very 
large or when a statistical approach (non-continuum) is desired such as rarefied and plasma flows. Lagrangian domains 

displace x⃗ as d x⃗= ˙⃗x d t  from local data or background geometry, naturally refining node concentration to track 
physical density (as proxy for particle groups).[23,26] Dynamic associativity makes particle methods well-suited for non-
linear interactions such as fracture mechanics and multi-physics.[24] However, the initial node distribution and correction 
for boundary effects can be precarious. Particle In Cell (PIC) utilizes a background geometry or associative map to track 
individuals or groups against background fields to accumulate rarefied gas or plasma field data.

Radial Basis Functions (RBF) use a standard potential function around each particle to reduce N-body complexity using a 
differentiable compact stencil. Smoothed Particle Hydrodynamics (SPH) also localizes the strong form of the PDE through 
convolved integration.[13] Mesh-free methods eliminate the requirement for a formal associative topology, facilitating open 
networking and new opportunities for hybrid techniques such as Direct Simulation Monte-Carlo (DSMC). RBF can apply  
Lie groups for direct integration, as well as indirect integration with Reproducing Kernel Particle Method (RKPM).[35]

Convolved integration evaluates inter-particle forces as the gradient of local net potential field, computed as the 
superposition of displaced standard field potential ϕo( r⃗ ) around each node. Extensions in quantum mechanics and 
vorticity methods may utilize a complex basis potential. Applied to mesh equalization, the standard potential function could 
be selected as the integral of Per-Olof Persson’s linear radial spring-truss analogy  f (r )=−max(1−r /ro ,0) [4]:

Defining standard potential as the integral ϕo(r )≝−∫
∞

r

f (r )d r from a forcing function. (23)

Applied to electrostatics, standard potential function ϕo( r⃗ ) is the integral of the electric force:

ϕo(r )=−∫
∞

r ro
2

r2 d r=
ro

2

r
using f (r )=−(

ro

r
)

2

for this example. (24)
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Illustration 10: Experimental RBF method applied to electrostatics, from left to right: Electrostatic potentials around each RBF node center, force field 
in the x-direction, force field in the y-direction. At equilibrium potential gradients at each node are zero, and when not, gradients evaluate positive or 
negative from neighboring contributions resulting in local acceleration. Iso-potential contours are naturally apparent between nodes, this pattern 
resulting shortly after release of a random initial distribution into a vacuum.



Node positions are projected and superposed onto the background grid using the standard basis potential ϕo( x⃗ )  around 
each center (discretely expressed as an interpolated Dirac delta δ or radially symmetric function with sum of 1.0), resulting 
in extensive net scalar potential field ϕ( x⃗)  with weights (or charge) λ and compact support for accuracy K-1:

ϕ( x⃗)=∑
n=0

N

λn ϕo(|⃗x− x⃗n|)=∑
n=0

N

λnδn
K∗ϕo

K +ϵ(O( x⃗)K) (25)

Local force field f⃗ ( x⃗) is determined from convolution-based gradient of the potential function as δ⃗∇
K
∗ϕ( x⃗) . Local 

forces are sampled at each node and pseudo-physical mass is applied to impose a timescale:

f⃗ ( x⃗)=−∇ ϕ( x⃗ )=
d (m ˙⃗x )

d τ
(26)

As an optimization, sum and gradients can be evaluated only locally around nodes. Non-linear second-order equation 
emerges, harmonic in x⃗ :

m ¨⃗x+ṁ ˙⃗x+∇ ϕ( x⃗)= 0⃗ (27)

Steady-state is reached when  ¨⃗x→ 0⃗∧ ˙⃗x→ 0⃗∧∇ ϕ(r=0)→ 0⃗ . While many applications utilize constant mass, the 

ṁ term can be augmented with artificial damping ζo  to facilitate convergence (at possible expense of global 

accuracy). Light damping is often appropriate –  its effect on internal energy e ( x⃗)=ϕ( x⃗)/ρ( x⃗)−( ˙⃗x⋅˙⃗x )/2  can be 
quantified and correlated to traditional quality metrics.

3.3 Background Geometries

Any geometry can assign a utility “background” for one-way 
interpolation, often STRUCTURED for sampling efficiency. 
Background geometries provide a computational canvas for spatial 
algorithms such as unstructured mesh generation. Before meshing, the 
background geometry solves the SDF to provide the essential implicit 
shape representation required for node equalization [3,5]. Foreground 
can then sample against background geometry field for SDF (or other) 
interpolation. In similar manner (and/or with trees), multi-grids can be 

implemented. The resolution of the background ϕ
*

 dictates the 
spatial detail level resolved in the foreground ϕ at x⃗ , using a 
local sampling strategy of the arbitrary form:

ϕ( x⃗)=
1
kΣ

∑
n=0

N

kn ϕn
*

, where k Σ=∑
n=0

N

kn (28)
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Illustration 11 SDF background field around reference  
surfaces defined by discrete triangles or analytic functions.



Structured Sampling

Type Sample Count N Weighting Coefficient kn Description

Grid 2D

∏
d=0

D

|Δ x⃗−|⃗x− x⃗n|
Δ x⃗ d

|            (29)
linear volumetric fraction, node-centered

Tree K⋅2D

∑
k=0

K

bk∏
d=0

D

|Δ x⃗k−|⃗x− x⃗n|
Δ x⃗k d

|    (30)
recursive volumetric sum, cell-centered

level weights bk of accuracy K

4 Numerics Summary
Type Characteristic Supported

Methods
Spatial Resolution
(per dimension)Ω

Spatial 
Accuracy

Temporal 
Accuracy

IO Size
(B/element)

RAM 
(B/element)Ξ 

Speed-Up
(GPU/CPU)Ψ

Mesh closed simplex FEM, FVM, 
RBF** 1/ϵ≈1015 1, 2 1, 2, + 240-360 800-2400 11-17x

Network** open graph FEM, PIC**, 
RBF** 1/ϵ≈1015 1 1 240-360 Г 800-2400 Г TBD

Grid regular indexed FEM, FVM, 
LBM*, FDM**

D√231
≈103 1, 2, + 1, 2, + 4 16-32 9-28x

Tree** branch locations FVM, FDM** 230
≈109 1, 2 1, 2, + 16 16-32 Г TBD

Ω assumes 64-bit-float, 32-bit integer index (~2B element max per geometry)
Ψ estimate based on single $1000 desktop with approx 1M elements, see Appendix B [36]
Г estimate inferred on similar branch attributes and functions
Ξ includes only geometry kernel CPU memory, not total application memory, assumes 3d

4.1 Native Formats
File Open Save Context Note

xcs Yes Yes system system setup file with parameterized setup and references

xcg Yes Yes geometry geometry file containing spatial data and topology

xco Yes Yes data object object output file for each property-key for each system

xcm * * metaobject media profile for user graphics

xcl ** ** algorithm compute language based on OpenCL with markups

4.2 Exchange Formats
File Import Export Context Note

stl Yes Yes surfaces binary and ascii import, binary-only export

obj ** ** surfaces Wavefront polygon format

ply ** ** surfaces Stanford polygon file format

msh Yes Yes geometry gmsh open format

vol Yes ** geometry neutral mesh format

su2 ** ** geometry Stanford open-source mesh

csv ** Yes system comma separated value

vtu ** Yes system Paraview dataset

xlsx ** ** system Excel spreadsheet based on XML 

stp ** ** system standard exchange of product data

* beta, **scheduled
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5 Declarations & Definitions

5.1 Heterogeneous Data – Regularity

DATA defines a map-like container that manages multiple VECTOR entries by Property Key. VECTOR consists of a master 
host array, analogous device buffer, and revision integers for each. Property Key pk is a unique key composed of a property 
attribute followed by any number of modifiers (to facilitate lexicographical look-up in DATA). A heterogeneous (CPU-
GPU) algorithm may have the following programming pattern:

Contiguous VECTOR representing element values within field ϕ( x⃗)  and positions x⃗  can be accessed from DATA:

if (!data.contains(Positions)) // check to see if data contains an entry for property key “Positions”
return false; // if not, do something else

VECTOR& positions = data(Positions); // get a reference to positions vector (interleaved xyzt)

Operate concurrently on host VECTOR using OpenMP C++:

dmat M = Constants(Transform); // get global data constant for “transform”
#pragma omp parallel for // perform next for loop in parallel
for (int n=0; n<positions.rows(); n++) // loop through all nodal positions, arranged in rows

positions[n] = M * positions[n]; // perform computation without write collision

Synchronize VECTOR to device in preparation for heterogeneous processing:

positions.revision++; // increment revision to indicate host vector has changed
positions.sync(); // if device vector revision is less than host, update device vector

Algorithms and bound arguments consolidate code fragments into OpenCL kernel sources. A builder manages and resolves 
bindings based on string literal substitution. The parallel portion of the above loop may generate CL equivalent:

const int n = get_global_id(0); // get this node (or element) index
positions_arr[n] = M_const * positions_arr[n]; // perform some computation

Instructions are invoked from a script able to execute C++ or OpenCL versions of the algorithm. After kernel launch and 
processing, device values can be buffered back to CPU memory space using revision and synchronization:

positions.device.revision++; // increment device revision to indicate buffer has changed
positions.sync(); // if device revision is greater than host, update host vector

5.2 Local & Global Coordinates

Interacting systems require a common global frame. Positions (and spatial vectors) within GEOMETRY are by convention 
described in untransformed local coordinates. One 3x3 (or 4x4) homogeneous model matrix per domain provides the 
absolute transformation between local and global space x⃗global=Qglobal x⃗ local . Global coordinates for a domain are a 
product of local position with a global model matrix, constructed from the recursive product of local transforms in hierarchy:

Qglobal= ∏
local=root

domain

Qlocal (31)

If transformation Qlocal  is altered, children are recursively refreshed and a new Qglobal is calculated for each domain 
to keep position accessors synchronized. This enables precise compound coordinate transformations and large-scale reuse 
while maintaining a common global state and sub-states (that can be reset to defaults within each child). Local model matrix 
can be individually controlled in static or dynamic routines (i.e. multi-DOF robot arm or moving chimera mesh).
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5.3 Spatial Domains

DOMAIN is a base class that describes the spatial extrema with broad utility in numeric and other contexts. All spatial types 
inherit its convenient functionalities. DOMAIN defines common member attributes:

glm::dvec min; // minimum spatial extrema
glm::dvec max; // maximum spatial extrema
int D; // spatial dimensionality (1d, 2d, 3d)
bool global; // positions in global coordinates?
bool valid; // domain has been set and is usable?

5.4 Computable Elements

ELEMENT is defined as a discrete polyhedral simplex consisting of one or more node 
vertexes and quadrature points, often generated through an automated construction 
process (e.g. mesh generator). In memory they can be represented in contiguous form, 
enabling concurrent functions to return a single element in constant time while 
processing. Access patterns remain universal for querying number of elements with 
nElement, or returning an actual element with getElement functions, while underlying 
machinery is polymorphic.

ELEMENT defines a virtual simplex with base member attributes with up to E indices:

std::array<int, E> indices; // indices of the nodes that constituent this element
int type; // simplex sub-type (Node1, Tri3, Tet4)
int id; // region identifier to map surfaces, volumes, edges, etc.
glm::dvec center; // element barycenter position

NODE, EDGE, FACE, CELL derive from ELEMENT and append additional member attributes:

double NODE::volume; // dual-cell control volume around node
glm::dvec EDGE::length; // distance vector between two nodes
glm::dvec FACE::area; // area normal vector from barycenter
double CELL::volume; // scalar volume

ELEMENTS allow many simplexes to be stored and buffered as contiguous arrays 
(and device buffers). Each element may have different storage characteristics (and 
variable stride), so memory offsets enable constant-time and concurrent access with 
heterogeneous storage. This machinery is not exposed in the API, but are 
implemented under unstructured geometry types as declared topology:

std::vector<int> types; // enumerated types of each element stored
std::vector<int> indices; // node indices with a variable strides
std::vector<int> offsets; // node offset of each element as stride accumulates
std::vector<int> ids; // identifiers to group elements for surfaces, volumes, edges, etc
std::vector<glm::dvec> centers; // element barycenter position

NODES, EDGES, FACES, CELLS  derive from ELEMENTS and append member attributes:

std::vector<double> NODES::volumes; // dual-cell control volumes around nodes
std::vector<glm::dvec> EDGES::lengths; // distance vectors between nodes
std::vector<glm::dvec> FACES::areas; // area normal vectors from barycenter
std::vector<double> CELLS::volumes; // scalar volumes
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Illustration 13: Elements Inheritance

Illustration 12: Element Inheritance 



Example: Accessing an Element – Two Approaches

A. Generic access using base ELEMENT (discarding RTTI):

ELEMENT element = geometry.getElement(elementIndex, 1); // get element of linear dimensionality 
double len = Length(geometry.position(element.indices[0]) – geometry.position(element.indices[1])); // yuck

B. Specialized access using derived EDGE (preserving RTTI):

EDGE edge = geometry.getEdge(INDEX edgeIndex); // get edge using an index
double len = Length(edge.length); // look up specialized attribute, rather than calculating it

5.5 Element Traits

Implemented elements define vertexes and associativity, but some basic attributes are universal for a specific element type 
and should not be patterned. These globals are defined statically to map elements to attributes and functions. For instance, a 
Tet4 always has four nodes, so it is superfluous to include this information along with each defined element. Instead, we can 
call static function ElementTraits::nNode(ElementType type) to determine the number of nodes within an element from its 
type. Additional properties such as number of quadrature points and topological dimensionality can be queried. Specialized 
functions specify how to decompose into sub-elements and visualize each type. 

5.6 Regions of Interest

Indexing multiple elements into regions allows users and algorithms to define and select 
specific spaces (as a subset of the larger topology), such as required when applying 
boundary conditions to surfaces or immersive conditions within volumes, or simply for 
export. Uniform access patterns across elements and regions enables efficiency in 
programming, computation, and user interaction. Inherited region types specialize 
definition of new attributes and functions specific to dimensionality d.

REGION inherits from DOMAIN, specializing as a collection of elements of similar 
dimensionality (e.g. group of nodes, loop of edges, surface of faces, volume of cells):

GEOMETRY* geometry; // ptr to parent that owns this region
int id; // identifier linked to elements with same id 
string name; // assigned literal name
std::set<int> nodes; // unique node indices that comprise this region
int nElement, offset; // regions don’t store elements, but jump to entry via geometry

Region-Element-Simplex Compatibility

d Region Element Simplex

0 GROUP NODE Node1

1 LOOP EDGE Line2, Line3**, Line4**

2 SURFACE FACE Tri3, Tri6*, Tri10**, Quad4, Quad8**, Quad9**

3 VOLUME CELL Tet4, Tet10*, Prism6*, Hex8, HeX20**, HeX27**
* beta, **scheduled
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6 Conclusion

A set of qualitatively-orthogonal geometric constructs aims to facilitate spatial unification of common methods such as 
FDM, FEM, and FVM, as well as rapid expansion into novel numerics including LBM, PIC, and RBF methods. Each type 
possesses characteristic strengths and weaknesses, whereby the union of all types and subtypes form a complete basis for 
numerical computing (in different scenarios and combinations). Inheritance demonstrates clean program structure and 
enables major polymorphic optimizations within structured and unstructured computable domains. At least five numerics 
families were implemented in over one hundred algorithms to test and iterate on generalities and data structures resulting in 
a geometry kernel of approximately six-thousand lines of production C++14 and OpenCL, approximately one-quarter of 
server-side application. Experimental techniques appear to also fall within these classifications and planned expansions. 
100M element geometries were tested on workstations with 32 GB of RAM, confirming 50-fold less memory required in 
structured types compared to unstructured types, implying on identical hardware that resolution can theoretically be further 
resolved by this factor if such types can be implemented. In continua, this may result in widespread adoption of tree 
geometries for far-fields and adapted grids or (least favorably) meshes for near-fields, with boundary algorithm mediating 
independent solvers optimized for the physics within each domain.

6.1 Future Work

• Deployment of LBM, FDM, and review impact on geometry kernel
• Implementation of TREE to improve meshing resolution and support advanced FVM
• Consolidation of FEM machinery to complete unification of the geometry kernel
• Expansion in exchange formats, including parametric data

6.2 Related Work
• A Scalable Convention for Data Properties in Numerical Computing 
• Method of Automated Kernel Generation for Heterogeneous Processing
• Transmission Protocols for Numerical Data and Distribution
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Appendix A  – Function Tables
Spatial Common Functions
Function Name Description Arguments Domain Geometry Str’d Grid Tree Unstr’d Network Mesh

build construction sequence V O O O O

setKernelSource define CL kernel source incl, args, body, needed V O O O

setKernelArgs set CL kernel arguments args, kernel, prefix V O O O

clear clear contents V O O O O

envelope envelope nodes (w/wo mask) spatial, group, reset T

setMinMax set min and max position, reset F

getGlobal get global domain glm::mat F

delta difference between max and min F

center center position calculation F

contains contains position array positions T

contains contains position position V O O

volume total volume calculation V O O

intersects intersects ray test ray V O O

intersects intersects another domain domain V O O

position get position from node index index V O O O

getElement* get element from element index index, type V O O O

nElement* get element count type V O O O

nNeighbor get node neighbor count index V O O O

getAdjaceny get element adjacency index V O

sample sample values at position position V O O O

makeRegions make regions from elements elements T

Element Common Functions
Function Name Description Arguments Element Node Edge Face Cell

empty check for valid information F

contains check whether element uses node index index F

sort reorder elements based on element id F

decompose decompose element into more primitive elements F

visualize represent the element by points, lines, triangles F

isNeighbor search for common topology element F

getDomain get local domain around element geometry F

Region Common Functions
Function Name Description Arguments Region Group Loop Surface Volume

nElement* number of elements in region V O O O O

getElement* get an element by index in region index V O O O O

position get element position at index index F

volume get element volume at index index F

createGroup create unique nodes from elements F

* specialized for derived elements (getNode, getEdge, getFace, getCell; and nNode, nEdge, nFace, nCell; and interior versions)
F = member function V = virtual base function O = function override T = function template
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Appendix B – Preliminary FVM benchmarking, January 2017 [36]

CPU : Intel(R) Core(TM) i5-4670K @ 3.40GHz 
GPU : GeForce GTX 780 

GPU delivered sizable speed-up over CPU for both 
structured and unstructured geometries. Benefits were most 
apparent in larger geometries and higher-order solvers. FVM 
tests reveal more than 15x speed-up on low-cost consumer 
GTX 780GPU as compared to roughly equivalent cost quad-
core i5-4670K CPU. For sufficiently-large resolution, 
second-order grid performance plateaus around 25x, and 
continues to climb. However, performance ratios increase 
more gradually for first-order schemes, likely due to 
increased proportion of overhead to computation. 

Different setups will yield varying results, though underlying 
characteristics should be apparent. CPU with more threads 
will improve performance in parallel-intensive algorithms, 
perhaps preferred for smaller coupled geometries. Very large 
simulations beyond a billion elements may require running 
on CPUs (as there may not be enough co-processor 
memory). Distributed approaches are also viable.

A small relative speed increase is measured after a number of 
iterations as the application compiles the compute program 
dynamically upon launch resulting in an initial timing 
impediment that is more prominent at fewer iteration counts.

Convergence rate is also important 
and varies depending on solver, 
geometry, and setup. Time-accurate 
simulation (aka global time-
stepping) convergence remains 
fairly slow with FVM meshes if 
there is poor local CFL 
conditioning (leading to more 
numerical diffusion). Local time-
stepping accelerates convergence 
by about an order magnitude 
(resulting in phase error in space-
time solution).

Other techniques such as FDM are 
suited to time-resolved analyses, 
while FEM for direct or implicit-
explicit integration – with their 
own convergence characteristics.
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