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Abstract: Most fluid flows of practical applications are turbulent. In flows 
involving interactions with flexible structures, such as an aircraft skin, the 
knowledge of turbulent wall-pressure fluctuations is critical. Both measurements 
and direct numerical simulations of the wall-pressure fluctuations are difficult and 
costly. Therefore, the use of semi-empirical turbulent wall-pressure fluctuation 
models is wide spread. One of the most widely used models is that due to Corcos 
(1963). The biggest advantages of this model are; simplicity and ease of use. 
However, the model has several weaknesses as well and therefore many models 
have been proposed to address them. In this paper, we briefly review existing 
models and then propose a model that remedies their weaknesses. The proposed 
model keeps the simplicity of the Corcos model and it is given in both space-
frequency and wavenumber-frequency spaces. The new model accurately captures 
the convective peak and shows better agreement with experimental data at lower 
wavenumbers.  
Keywords:    Turbulent Wall-Pressure Fluctuations, Wavenumber-Frequency, Space-
Frequency, Fluid-Structure Interaction. 

 
1     Introduction 
 
For flows over flexible structures, the knowledge of the turbulent wall-pressure fluctuations 
is critical for accurate determination of structural vibration and the resulting acoustic 
radiation. For the aircraft industry, both interior and exterior noises are of great importance to 
future growth. Reduction of interior noise is important for passenger comfort, while reducing 
exterior noise will help alleviate the noise pollution in airport communities which have 
become very vocal of late. Since wall-pressure fluctuations are required to determine 
structural vibrations and hence interior noise, many researchers have attempted to either 
measure, model or compute them. Early measurements of turbulent wall pressure fluctuations 
were performed by Willmarth and Wooldridge (1962) who used the space-time correlations 
technique developed by Favre et al. (1957). Willmarth and Wooldridge (1963) extended the 
space-time correlation measurements of the wall pressure to that between wall pressure and 
two velocity components. Corcos (1963) proposed, after a detailed analysis of Willmarth and 
Wooldridge data, a semi-empirical model for the cross-spectral density function as a function 
of frequency and separation distances in the cross-flow and flow directions. This model has 
since become the most useful model for coupling the interaction between fluids and 
structures.  
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Ffowcs William (1982) and Dowling (1992) tried to extend Corcos’ model to the low 
wavenumber region, however their efforts resulted in more complex models with unknown 
constants. Hwang and Geib (1984) proposed a simplified version to the Ffowcs Williams 
model, however Graham (1997) concluded after testing several models for acoustic radiation 
from vibrating plates that Hwang and Geib’s model was not adequate. Efimtsov (1982) 
modified the Corcos model by taking into account the dependence of spatial correlation on 
boundary layer thickness and spatial separation. The model was designed for aircraft 
applications and has parameters that depend on Mach number. Similar to Corcos’, the 
model’s weakness is at low wavenumbers. Smol’yakov and Thachenko (1991) modified the 
Corcos model to make the coherence contours in the space-frequency space into elliptic 
curves and to improve Corcos’ predictions at low wavenumbers. Chase (1987) improved on 
his own earlier model (1980) and that of Corcos when compared to experimental data, 
however the wavenumber white characteristic of experimental observations at low 
wavenumbers was not reproduced. More recently, Caiazzo et al. (2016) proposed a 
generalized Corcos-like model that allowed controlling the decay in the wavenumber domain 
below the convective peak while preserving its mathematical advantages. 
The importance of wall pressure fluctuations to various engineering application has led a 
large number of research papers some of which have not been mentioned in this brief 
introduction. In order to keep up with the advancement of the field, several literature reviews 
have been published starting from Willmarth (1975) to Eckelmann (1988) then Bull (1996) 
and more recently Juve (2015). These reviews are critical in that they update the state of 
advancement in the field and set the stage for future research efforts. 
 
2     Problem Statement 
 
Estimating the statistical properties of the wall-pressure-fluctuations (WPF) in a turbulent 
boundary layer is of critical importance to many practical engineering applications. One such 
application is flow induced vibration and noise radiation both interior and exterior to a given 
vehicle. It is well-known that the necessary and sufficient information for the WPF is given 
by the space-time covariance function defined as 
 
  𝑅𝑝𝑝(𝜁, 𝜂, 𝜏) =< 𝑝(𝑥1, 𝑥2, 𝑡)𝑝(𝑥1 + 𝜁, 𝑥2 + 𝜂, 𝑡 + 𝜏) >.   (1) 
 
with (𝜁, 𝜂) being the separation distances in the (𝑥1, 𝑥2) directions and 𝜏 being the separation 
in time. In most applications, it is the Fourier transform of Equation (1) that is desired, i.e. the 
wavenumber-frequency spectrum, 𝑅�𝑝𝑝(𝑘1,𝑘2,𝜔), or the cross spectrum, i.e. the space-
frequency spectrum, 𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔). The coordinate system used in this paper is shown on 
Figure 1 with 𝑒1 being the streamwise, 𝑒2 the cross-flow and 𝑒3 the wall normal directions, 
respectively. The arrow on the left side of the figure shows the flow direction. 
 



 3 

    
        Figure 1: Coordinate system used. 
 
One of the earliest and most widely used models was due to Corcos (1963), who proposed a 
cross-spectral density of the form 
 
  𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = 𝑅𝑝𝑝∗ (𝜔)𝐴�𝜔𝜔

𝑈𝑐
�𝐵(𝜔𝜔

𝑈𝑐
)𝑒𝑗𝑗𝑗/𝑈𝑐      (2) 

 
Where 𝑅𝑝𝑝∗ (𝜔) is the auto-spectrum, 𝑈𝑐 the convection velocity and 𝐴 and 𝐵 are functions of 
the similarity variables (𝜔𝜔

𝑈𝑐
) and (𝜔𝜔

𝑈𝑐
) and are of the form 

 

      𝐴 �𝜔𝜔
𝑈𝑐
� = 𝑒−𝛼

𝜔|𝜁|
𝑈𝑐  ,       𝐵 �𝜔𝜔

𝑈𝑐
� = 𝑒−𝛽

𝜔|𝜂|
𝑈𝑐     with  𝛼~0.1 − 0.19  and  𝛽~0.7 − 1.2 .    (3) 

 
The coherence is given by 
 

   
�𝑅𝑝𝑝∗ (𝜁,𝜂,𝜔)�
𝑅𝑝𝑝∗ (𝜔)

= 𝐴 �𝜔𝜔
𝑈𝑐
�𝐵 �𝜔𝜔

𝑈𝑐
�.      (4) 

 
In order to obtain the wavenumber-frequency spectrum, one needs to take the Fourier 
transform of Equation (2) to arrive at 
 

 𝑅�𝑝𝑝(𝑘1,𝑘2,𝜔) = 1
𝜋2
�𝑈𝑐
𝜔
�
2
𝑅𝑝𝑝∗ (𝜔) 𝛼𝛼

[𝛼2+(𝑘1𝑈𝑐𝜔 −1)2][𝛽2+(𝑘2𝑈𝑐𝜔 )2]
 .   (5) 

 
The simplicity and ease of use of the Corcos model led to its extensive use in many 
engineering applications involving structural vibrations. However, the Corcos model has 
many shortcomings such as the overestimate of the spectrum level at low wavenumbers and 
the innacurate shape of the coherence contours predicted by the model.  
 
2.1     Wall Pressure Fluctuation Model 
 
In this paper, a new model for the wall pressure fluctuations is proposed that keeps the 
simplicity of the Corcos model but corrects some of its shortcomings. The proposed model 
uses prior research results of Singer (1996b) who showed that the coherence contours 
obtained from Large Eddy Simulation computations were ellipses while those given by the 
Corcos models were straight lines (see proof in Appendix A). The new model uses 
experimental results to anchor the low wavenumber spectral level predicted 
. 
 
We start by writing the generalized wavenumber vector as 
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   𝑘�⃗ = 𝑘1𝑒1 + 𝑘2𝑒2 + 𝑘𝜔𝑒𝜔      (6) 
 
 where 𝑘𝜔𝑒𝜔 represents the contribution from frequency in the direction of the convection 
velocity, 𝑈𝑐, which is 𝑒1. This leads to 𝑘𝜔𝑒𝜔 = − 𝜔

𝑈𝑐
𝑒1 and hence 

 
   𝑘�⃗ = �𝑘1 −

𝜔
𝑈𝑐
� 𝑒1 + 𝑘2𝑒2.      (7) 

 
Equation 7 shows that the wavenumber vector is centered on the convective ridge where most 
of the flow energy resides.  
 
Based on direct numerical simulation results of Choi and Moin (1990) and large eddy 
simulation results of Singer (1996b) and Viazzo et al. (2001), we propose a wavenumber-
frequency spectrum, 𝑅�𝑝𝑝(𝑘1,𝑘2,𝜔), that satisfies the following conditions; (1) 𝑅�𝑝𝑝(𝑘1, 0,𝜔) 
should match Efimtsov’s prediction around the convective peak for all frequencies, (2) 
𝑅�𝑝𝑝(𝑘1, 0,𝜔) should agree with experimental data at low wavenumbers and (3) the coherence 
contours should be elliptic in shape. With those conditions, we propose a spectrum of the 
form 
 
   𝑅�𝑝𝑝(𝑘1,𝑘2,𝜔) = 𝐶1𝑅𝑝𝑝∗ (𝜔)𝑒−𝛼�𝑟𝑘     (8) 
 
with 𝛼� = 𝛼𝛼 where 𝛼 is an empirical constant and 𝛿 the boundary layer thickness. In 
Equation (8), 𝐶1 is a constant, 𝑅𝑝𝑝∗ (𝜔) is the auto-spectrum and 𝑟𝑘is such that 
 

 |𝑟𝑘|2 = �𝑘1 − �𝜔
𝑈𝑐
��
2

+ (𝑚𝑘2)2 with  𝑚 being the scaling factor obtained by  
 
minimizing the error given by  
     

  𝐸(𝑚,𝜔) = ∫ �𝑅�𝑝𝑝(𝑘1, 0,𝜔) − 𝑅�𝑝𝑝(0, 𝑘1
𝑚

,𝜔)�
2𝑘1𝑐𝑐𝑐𝑐𝑐𝑐

0 𝑑𝑘1 .  (9) 
 
A similar expression was used by Singer (1996b). The cross-spectrum can be obtained by 
taking the inverse Fourier transform of Equation (8)  
 
 𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = ∬𝑅�𝑝𝑝 (𝑘1,𝑘2,𝜔)𝑒𝑗(𝑘1𝜁+𝑘2𝜂)𝑑𝑘1𝑑𝑘2.                  (10) 
 
Integrating using complex variables results in (see Appendix B) 
 

 𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = 2𝜋 𝐶1
𝑚𝛿2

𝑅𝑝𝑝∗ (𝜔)𝑒𝑗
𝜔
𝑈𝑐
𝜁 𝛼

�𝛼2+� 𝜂
𝛿𝛿�

2
+�𝜁𝛿�

2
�
3/2 .                  (11) 

For 𝜁 = 𝜂 = 0, one can get the auto-spectrum 
 
 𝑅𝑝𝑝∗ (0,0,𝜔) = 𝑅𝑝𝑝∗ (𝜔) = 2𝜋 𝐶1

𝑚𝛿2
𝑅𝑝𝑝∗ (𝜔) 1

𝛼2
                      (12) 

 
leading to  
   𝐶1 = 𝛼2𝑚𝛿2 1

2𝜋
.                    (13) 
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The cross-spectrum is therefore given by 
 

 𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = 𝑅𝑝𝑝∗ (𝜔)𝑒𝑗
𝜔
𝑈𝑐
𝜁 𝛼3

�𝛼2+� 𝜂
𝛿𝛿�

2
+�𝜁𝛿�

2
�
3/2 .                         (14) 

 
With 𝑚 obtained from 
 
 𝐸(𝑚,𝜔) = ∫ �𝑅𝑝𝑝∗ (𝜁, 0,𝜔) − 𝑅𝑝𝑝∗ (0,𝑚𝑚,𝜔)�

2𝜁𝑐𝑐𝑐𝑐𝑐𝑐
0 𝑑𝑑.            (15) 

     
 
2.1.1     Empirical Constants 
 
We first focus on the decay coefficient 𝛼. Using experimental results of Farabee and 
Casarella (1991), Abraham and Keith (1998), Leclercq and Bohineust (2002) and the direct 
numerical simulation results of Choi and Moin (1990) it can be shown that the auto-spectra 
for different freestream velocities collapse when nondimensionalized using a combination of 
inner and outer variables; 𝜏𝑤,𝑢𝜏 and 𝛿; such that 𝑅�𝑝𝑝(𝜔)𝑢𝜏/𝜏𝑤2 𝛿 for auto-spectra and 𝜔𝜔/𝑢𝜏 
for frequency. The nondimensionalized auto-spectra exhibit a peak around 𝜔𝜔

𝑢𝜏
~50. In 

addition, using Efimtsov (1982) who modified the Corcos model to include the boundary 
layer thickness using flight data, we arrived at a decay coefficient of the form 
 
   𝛼 = 1

𝜋
𝑎1

�1.0+𝑎2�
𝜔𝜔
𝑢𝜏
−𝜔𝑚𝛿

𝑢𝜏
�
2
               (16) 

where 𝜔𝑚𝛿
𝑢𝜏

~50 and (𝑎1, 𝑎2) are obtained for conditions (1), (2) and (3) given for Equation 
(8). In this paper, the following parameters are used; 𝑎1 = 4.7 and 𝑎2 = 3.0𝑒−5 and the 
scaling factor, 𝑚, for a zero-pressure gradient turbulent boundary layer flow is 𝑚~ 1

7.7
 𝑜𝑜 1

7.8
 

. 
 
For the choice of the auto-spectra, Figure 2 shows that only the model proposed by Goody 
(2004), red-line, comes close to the experimentally obtained auto-spectrum of Farabee and 
Casarella (1991), black line with dots. The Chase (1987) model, green-dash, and the Smol-
yakov and Tkachenko (1991) model, blue-dot, are not as accurate. Therefore, in the current 
study we choose to use Farabee and Casarella (1991) auto-spectrum in our model and that of 
Corcos and Efimtsov. For the other models the built-in or model-specific auto-spectrum is 
used. 
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Figure 2: Comparison of normalized auto-spectra; Farabee and Casarella experiments 
(1991), black line with dots; Chase model (1991), green-dashes, Goody model (2004), 
red-line, Smol’yakov and Tkachenko model (1991), blue-dots. 

 
3     Results and Discussion 
 
3.1     Three Dimensional Wavenumber-Frequency Spectra 
 
Figure 3 show a comparison of the proposed three dimensional wavenumber-frequency 
spectra, 𝑅�𝑝𝑝(𝑘1, 0,𝜔), to that of Corcos (1963), Efimtsov (1982), Chase (1987), Smol’yakov 
and Tkachenko (1991) and Witting (1986). The experimental results of Martin and Leehey 
(1977) and Smol’yakov and Tkachenko (1991) are also included in the plot. The 
wavenumber-frequency spectra are normalized by 𝜏𝑤2 𝛿3/𝑢𝜏, the dimensionless frequency 
used is 𝜔𝜔

𝑢𝜏
= 509 or 𝜔𝛿

∗

𝑈∞
= 2.1. The choice of flow quantities follow Smol’yakov and 

Tkachenko (1991);  𝛿
𝛿∗

= 8, 𝑢𝜏
𝑈∞

= 0.033 and 𝑈𝑐
𝑈∞

= 0.8; with (𝛿, 𝛿∗) being the boundary layer 
and displacement thicknesses, respectively; and (𝑈∞,𝑈𝑐,𝑢𝜏) being the freestream, convection 
and friction velocities, respectively. For Witting’s model, it was assumed that 𝐶 = 10, 
𝛿𝑚𝑚𝑚
𝛿∗

= 0.08, 𝛿𝑚𝑚𝑚
𝛿∗

= 0.6 and < 𝑝2 >/𝜏𝑤2 = 8.0. For the Corcos model, 𝛼 = 0.11 and 

𝛽 = 0.77. Figure 3(a) is obtained for a dimensionless frequency of  𝜔𝜔
𝑢𝜏

= 509 (𝜔𝛿
∗

𝑈∞
= 2.1), 

while Figure 3(b) is obtained for  𝜔𝜔
𝑢𝜏

= 727 (𝜔𝛿
∗

𝑈∞
= 3.0). In Figure 3b, the experimental 

results shown in the box originate from Martin and Leehey’s (1977) and Martini et al. (1984). 
 
Figure 3 show that our proposed model captures the convective peak accurately and is in 
agreement with all experimental data sets included on both plots. In the low wavenumber 
area, our model predicts 20-30 dB lower levels than those predicted by Corcos’ and 
Efimtsov’s. The Chase model is the only model that is not wavenumber white below the 
convection peak; instead it decreases rapidly to zero at low wavenumbers as reported by 
other investigators.  
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(a)                                                                      (b) 

 
Figure 3: Comparison of normalized three dimensional wavenumber-frequency spectra 
obtained using our proposed model to other select models from the literature. (a), 𝜔𝜔

𝑢𝜏
= 509  

and the squares represent experimental data obtained for 𝜔𝜔
𝑢𝜏

= 436.36 ~ 557.58 (𝜔𝛿
∗

𝑈∞
=

1.8 ~ 2.3). Black square are data from Tkachenko et al. (2008) and red squares are from 
Smol’yakov and Tkachenko (1991). (b), 𝜔𝜔

𝑢𝜏
= 727 and the black box represents the locus of 

the data from Martin and Leehey (1977) and Martini et al. (1984). 
 
 
 
Figure 4(a)-(d) show comparisons of our proposed three dimensional wavenumber-frequency 
spectrum to those in the literature for 𝜔𝜔

𝑢𝜏
= 142.35. The flow quantities used for Figure 4(a) 

are those from Viazzo et al. (2001); 𝑢𝜏
𝑈∞

= 0.048, 𝑈𝑐
𝑈∞

= 0.65.; and for Witting’s model 𝐶 = 7, 
𝑧𝑚𝑚𝑚
𝛿∗

= 0.65 and 𝑧𝑚𝑚𝑚
𝛿∗

= 0.65. Most models are in agreement with the LES results of Viazzo 
et al. (2001) around the convective peak, however, disagreements show up on either side of 
the peak. On the low wavenumber side, our model and that of Smol’yakov and Tkachenko 
(1991) show a much better agreement with the LES results. Corcos’ and Efimtsov models 
overestimate the spectrum level by as much as 30 dB. For Figure 4(b)-(d), the 
nondimensional frequency, 𝜔𝜔/𝑢𝜏, varies from 24.8 to 248 and the flow quantities used are 
those from Smol’yakov and Tkachenko (1991). At a low nondimensional frequency of 24.8, 
Figure 4(b), the influence of the boundary layer thickness becomes important. The shape of 
the Corcos model spectrum is unchanged as it is independent of the boundary layer thickness, 
while that of Efimtsov becomes broader with a lower level peak. Our model spectrum is in 
agreement with that of Efimtsov near and below the peak, as expected. The other spectra 
show a prominent convective peak similar to Corcos’ with Witting spectrum having the 
highest level and sharpest peak. As the nondimensional frequency is increased to 85, Figure 
4(c), a lower level convective peak is predicted by the Efimtsov model, while our model 
predicts a sharper higher level peak. All other models predict a prominent convective peak 
with a higher level. Note that the Efimtsov model spectrum is approaching that of Corcos 
away from the convective peak. Our model exhibits lower levels on both sides of the peak. 
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As the nondimensional frequency is increased to 248, Figure 4(d), the convective peak 
becomes prominent and both the Corcos and Efimtsov models predict nearly the same 
spectrum across all wavenumbers. Our model predicts the same convective peak with slightly 
higher level, however on the low wavenumber side of the peak, our model predicts levels that 
are much lower than that of Corcos’ and Efimtsov’s. The other models also show lower 
levels away from the peak. The Chase model predicts a rapid decrease in level at low 
wavenumbers. 
 

 
                                       (a)                                                                       (b) 

 
                                     (c)                                                                       (d)  
 
Figure 4: Comparison of three dimensional wavenumber-frequency spectra. (a) 𝜔𝜔

𝑢𝜏
= 142.35, 

the black line with symbols represents LES results from Viazzo et al. (2001), (b) 𝜔𝜔
𝑢𝜏

= 24.8, 

(c) 𝜔𝜔
𝑢𝜏

= 85 and (d) 𝜔𝜔
𝑢𝜏

= 248. 
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Figures 3 and 4 cover a nondimensional frequency range of  𝜔𝜔
𝑢𝜏

= 24.8 to 727. For all the 
nondimensional frequencies, the Corcos model exhibits the same shape: a prominent 
convective peak with a higher level spectrum at low wavenumbers. Our model captures the 
convective peak accurately at all frequencies and predicts lower spectral levels at low 
wavenumbers. Our proposed spectrum shows a dependence on boundary layer thickness at 
low frequencies similar to Efimtsov’s. 
 
3.2     Low Wavenumber Spectral Level 
 
For low speed and/or underwater applications, the low wavenumber range of the spectrum is 
very important. Therefore accurate prediction of the spectral level is critical in these 
applications. Figure 5 shows a comparison of predicted spectra from the various models to 
the experimental results of Bonness (2010), Martin and Leehey (1977) and Martini et al. 
(1984) and  Smol’yakov and Tkachenko (1991). The figure shows that the widely used 
model, i.e. Corcos model, fails to predict the correct level of the spectra in the low 
wavenumber range. The Efimtsov model, which mimics the Corcos model to a large extent 
fails as well. Smol’yakov and Tkachenko’s model under predicts the level, while the Witting 
model over predicts it. The Chase model predicts a rapid decrease in level at low 
wavenumbers. The level predicted by our model is in good agreement with all the data sets 
shown on the figure and hence outperforms all the models in the low wavenumber range. 
 
                            

 
         Figure 5: Comparison of predicted low wavenumber spectral level from various models. 
      Bonness (2010),     Martin and Leehey (1977) and Martini et al. (1984),      Smol’yakov  
                                                                    (1991). 
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3.3     Two Dimensional Wavenumber-Frequency Spectra 
 

A two dimensional spectrum, 𝑅�𝑝𝑝(𝑘1,𝜔), is obtained by integration of a three dimensional 
spectrum 
   𝑅�𝑝𝑝(𝑘1,𝜔) = ∫𝑅�𝑝𝑝(𝑘1,𝑘2,𝜔)𝑑𝑘2               (17) 
 
which implies that the detailed contour shapes and convection bandwidth will affect the two 
dimensional spectra. Comparisons of two dimensional spectra obtained from our proposed 
model and from Corcos’, Efimtsov, Smol’yakov and Tkachenko, Chase and Witting to the 
LES results of Viazzo et al. (2001) are shown on Figure 6(a)-(b) for dimensionless 
frequencies of 𝜔𝜔

𝑢𝜏
= 103, Figure 6(a), and 203, Figure 6(b). The flow data used was that from 

Viazzo et al. (2001); 𝑢𝜏
𝑈∞

= 0.048 and 𝑈𝑐
𝑈∞

= 0.65. Given the results for the three dimensional 
spectra obtained from Corcos’ and Efimtsov’s models, section 3.1 above, it is no surprise that 
the level predicted for the two dimensional spectra at low wavenumbers by these two models 
is higher than that obtained from the LES results. For the two dimensionless frequencies of 
Figure 6, it can be concluded that the proposed model gives a better agreement with LES 
results for both frequencies. Given the steep decay of our three dimensional wavenumber-
frequency spectrum for wavenumbers above the convective peak, the resulting two 
dimensional spectra have lower levels across the wavenumber range as shown of Figures. 
6(a)-(b). 

 

 
(a)                                                                    (b)  

 
Figure 6: Two dimensional wavenumber-frequency spectra (a) 𝜔𝜔

𝑢𝜏
= 103 and (b) 𝜔𝜔

𝑢𝜏
= 203. 

The black line with symbols represents the LES results from Viazzo et al. (2001). 
 
 
3.4     Contours of Wavenumber-Frequency Spectra Near the Convective Peak 
 
The shape of the wavenumber-frequency spectra contours around the convective peak is of 
great importance to the problem of noise radiation especially at high speeds as pointed out by 
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Graham (1996). Hence it is critical to predict the shape of the contours correctly. Large Eddy 
Simulation results Gloerfelt and Berland (2013) showed that the contours are ellipses while 
Corcos’ model predicts diamond shape contours with straight lines. Figure 7 shows the shape 
of the contours predicted by several models. Our proposed model shows elliptic shape 
contours, Figure 7(a), whereas Corcos’, Figure 7(b), and Efimtsov, Figure 7(c), show 
diamond shape with straight line. The Chase model also shows elliptic shaped contours 
similar to our proposed model, Figure 7(d), however, Smol’yakov and Tkachenko model 
exhibits figure eight shaped contours, Figure 7(e), which are rather unusual. Witting’s model 
predicts very narrow contours near the convective peak with sharp corners, Figure 7(f). 
 

              
                          (a)                                  (b)                                   (c)  

          
                           (d)                                  (e)                                 (f) 
 
Figure 7: Comparison of the coherence contours in the wavenumber space for 𝜔𝜔

𝑢𝜏
= 727. 

              (a) Our model, (b) Corcos, (c) Efimtsov, (d) Chase, (e) Smol’yakov and Tkachenko,  
              (f) Witting. 
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3.5     Coherence Contours 
 
Singer (1996b) carried out a large eddy simulation computation for 𝜔𝜔

𝑢𝜏
= 77.77(𝜔𝛿

∗

𝑢𝜏
=

10.11) and flow quantities of  𝑈𝑐
𝑢𝜏

= 16.5 and 𝛿
∗

𝛿
= 0.13. Figure 8(a) shows the coherence 

contours obtained from the Large Eddy Simulation in solid lines and the dashed lines 
obtained from the Corcos model represented by the product 𝐴 �𝜔𝜔

𝑈𝑐
�𝐵(𝜔𝜔

𝑈𝑐
). It is clear from the 

figure that the solid lines are curved like ellipses and that the dashed lines are nearly straight 
lines. Figure 8(b) shows the coherence contours calculated using our model for the same 
parameters as those above. Our predicted contour shapes are in good agreement with those 
calculated using LES.  
 

 
(a) (b) 

 
        Figure 8: Coherence contours with increments of 0.1 for 𝜔𝜔

𝑢𝜏
= 77.77 (𝜔𝛿

∗

𝑢𝜏
= 10.11). (a) 

solid line : LES results, dashed line: Corcos model. (b) Proposed model. 
 
Figure 9 shows the coherence profile as a function of the dimensionless separation distance 
obtained using our model and that obtained from LES results of Singer (1996b). One should 
note that 𝛿∗ is small hence the difference between the model prediction and LES results is 
also small. 
 

                                                        
          Figure 9:  Comparison of coherence profiles, 𝜔𝜔

𝑢𝜏
= 77.77 �𝜔𝛿

∗

𝑢𝜏
= 10.11�. 
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4     Conclusions  
 
In this paper, a new semi-empirical model of the wall pressure fluctuation has been presented. It is 
based on computational results, LES and DNS, and experimental measurements. The model 
improves on the Corcos (1963) and Efimtsov (1982) models that have been used extensively in 
various engineering applications. The improvements are in the correct shape of the coherence 
contours and the level of the spectra at low wavenumbers. The proposed spectrum maintains the 
simplicity of the Corcos (1963) model and has a mathematical formulation in both the wavenumber-
frequency and space-frequency domains. All the testing performed on the model show better 
agreement with numerical and experimental results at various dimensionless frequencies. 

 
Appendix A: Shape of Coherence Contours  
 
The wall-pressure fluctuation is defined by the space-time covariance  
 
 𝑅𝑝𝑝(𝜁, 𝜂, 𝜏) = 〈𝑝(𝑥1, 𝑥2, 𝑡)𝑝(𝑥1 + 𝜁, 𝑥2 + 𝜂, 𝑡 + 𝜏)〉            (A.1) 
 
and given the shape of 𝑅𝑝𝑝(𝜁, 𝜂, 𝜏), shown on Figure A-1, around the zero separation in 𝜁 
 

                                        
   
                 Figure A-1: Illustration of the WPF covariance as a function of the streamwise 

                    separation for a fixed spanwise and temporal separations. 
 

then 
 
 𝑅𝑝𝑝(𝜁, 𝜂, 𝜏) = 𝑅𝑝𝑝(−𝜁, 𝜂, 𝜏)   and similarly   𝑅𝑝𝑝(𝜁, 𝜂, 𝜏) = 𝑅𝑝𝑝(𝜁,−𝜂, 𝜏)         (A.2) 
 
hence 
 
       𝜕𝑅𝑝𝑝

(𝜁,𝜂,𝜏)

𝜕𝜕
�
𝜁=0

= 0 and   𝜕𝑅𝑝𝑝(𝜁,𝜂,𝜏)
𝜕𝜕

�
𝜂=0

= 0.                    (A.3) 

 
The cross-spectrum can be written as 
 
  𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = 1

2𝜋 ∫ 𝑅𝑝𝑝(𝜁, 𝜂, 𝜏)𝑒−𝑖𝑖𝑖𝑑𝑑          (A.4) 
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and the coherence is the defined as 
     Γ(𝜁, 𝜂,𝜔) = 𝑅𝑝𝑝∗ (𝜁,𝜂,𝜔)

𝑅𝑝𝑝∗ (𝜔)
.        (A.5) 

 
Along the coherence contour lines  Γ(𝜁, 𝜂,𝜔) = 𝑐𝑐𝑐𝑐𝑐. , therefore using Equation (A.4) 
along with 𝜕Γ

𝜕𝜕
= 0 one arrives at 

    ∫ �
𝜕𝑅𝑝𝑝(𝜁,𝜂,𝜏)

𝜕𝜕
+ 𝜕𝑅𝑝𝑝(𝜁,𝜂,𝜏)

𝜕𝜕
∙ 𝑑𝑑
𝑑𝑑
� 𝑒−𝑖𝑖𝑖 𝑑𝑑 = 0      (A.6) 

 
and given that 𝜔 is arbitrary and for all separation times 𝜏 
 
   𝜕𝑅𝑝𝑝(𝜁,𝜂,𝜏)

𝜕𝜕
+ 𝜕𝑅𝑝𝑝(𝜁,𝜂,𝜏)

𝜕𝜕
∙ 𝑑𝑑
𝑑𝑑

= 0       (A.7) 
leading to 
    𝑑𝑑

𝑑𝑑
= − 𝜕𝑅𝑝𝑝(𝜁,𝜂,𝜏)/𝜕𝜕

𝜕𝑅𝑝𝑝(𝜁,𝜂,𝜏)/𝜕𝜕
.        (A.8) 

 
Using (A.3) into (A.8) leads to 
 
   𝑑𝑑

𝑑𝜁
�
𝜁=0

= 0  and   𝑑𝑑
𝑑𝑑
�
𝜂=0

= −∞ .   (A.9) 

 
Equations (A.9) shows that the derivatives of the contour curve varies from 0, on the 𝜂 axis, 
to −∞, on the 𝜁 axis, as shown on Figure A-2. If one assumes  
 
    𝑑𝑑

𝑑𝑑
= − 1

𝑚2
𝜁
𝜂
      (A.10) 

 
then the coherence contour shapes are 
 
    𝜁2 + (𝑚𝑚)2 =  𝑟2     (A.11) 
 
which represents a family of ellipses. For the Corcos (1963), the coherence is given by 
 
   Γ(𝜁, 𝜂,𝜔) = 𝐴 �𝜔𝜔

𝑈𝑐
�𝐵 �𝜔𝜔

𝑈𝑐
�     (A.12) 

 
with 𝐴 and 𝐵 given by Equation (3), then 
 
   𝑑Γ

𝑑𝑑
= 0 = 𝜕𝜕

𝜕𝜕
𝐵 + 𝐴 𝜕𝜕

𝜕𝜕
𝑑𝑑
𝑑𝑑

     (A.13) 
 
which leads to 
 
    𝑑𝑑

𝑑𝑑
= − 𝛼

𝛽
.      (A.14) 

 
Indicating that the contour curves are parallel lines with a negative slope as shown on Figure 
A-2.  
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               Figure A-2: Illustration of a coherence contour line 
    
 
Appendix B: Derivation of the Cross-Spectrum 
 
Starting from Equation (7) 
 
  𝑅�𝑝𝑝(𝑘1,𝑘2,𝜔) = 𝐶1𝑅𝑝𝑝∗ (𝜔)𝑒−𝛼𝑟𝑘𝛿 with  𝐶1 = 𝛼2𝑚𝛿2 1

2𝜋
          (B.1) 

 
The cross-spectrum is defined by 
 
  𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = ∬𝑅�𝑝𝑝(𝑘1,𝑘2,𝜔)𝑒𝑖(𝑘1𝜁+𝑘2𝜂)𝑑𝑘1𝑑𝑘2           (B.2) 
 
which after using Equation (B.1) becomes 
 

  𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = 𝐶1𝑅𝑝𝑝∗ (𝜔)∬𝑒−𝛼�𝑟𝑘 𝑒𝑖�𝑘1−
𝜔
𝑈𝑐
�𝜁+𝑖𝑘2𝜂𝑒𝑖

𝜔
𝑈𝑐
𝜁𝑑𝑘1𝑑𝑘2 

                                  = 𝐶1𝑅𝑝𝑝∗ (𝜔)𝑒𝑖
𝜔
𝑈𝑐
𝜁 ∬𝑒−𝛼�𝑟𝑘 𝑒𝑖(𝑘�1𝜁+𝑘�2

𝜂
𝑚)𝑑𝑘�1𝑑𝑘�2.        (B.3) 

 
In Equation (B.3), 𝑘�1 = 𝑘1 −

𝜔
𝑈𝑐

  and 𝑘�2 = 𝑚𝑘2. Figure B-1 shows the polar coordinates used 
and defined by 
 

 |𝑟𝑘|2 = �𝑘1 −
𝜔
𝑈𝑐
�
2

+ (𝑚𝑘2)2       and  𝜃 = 𝑎𝑟𝑟𝑟𝑟𝑟 � 𝑚𝑘2
𝑘1−

𝜔
𝑈𝑐

�.        (B.4) 

 
Equation (B.3) becomes 
 

 𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = 𝐶1
𝑚
𝑅𝑝𝑝∗ (𝜔)𝑒𝑖

𝜔
𝑈𝑐
𝜁 ∫ ∫ 𝑒−𝛼�𝑟𝑘𝑒𝑖𝑟𝑘�𝜁𝜁𝜁𝜁𝜁+

𝜂
𝑚𝑠𝑠𝑠𝑠�∞

0
2𝜋
0 𝑟𝑘𝑑𝑟𝑘𝑑𝑑.      (B.5) 

 
Let 𝐺 represent the integral 
 

 𝐺 = ∫ ∫ 𝑒−𝛼�𝑟𝑘𝑒𝑖𝑟𝑘�𝜁𝜁𝜁𝜁𝜁+
𝜂
𝑚𝑠𝑠𝑠𝑠�∞

0
2𝜋
0 𝑟𝑘𝑑𝑟𝑘𝑑𝑑 = ∫ 𝑑𝑑

�𝛼�−𝑖�𝜁𝜁𝜁𝜁𝜁+𝜂
𝑚𝑠𝑠𝑠𝑠��

2
2𝜋
0 .    (B.6) 
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                                          Figure B-1: The polar coordinate system. 
 
 
The 𝜃-integral will be carried-out in the complex plane using the method of residues. Let 
𝑧 = 𝑒𝑖𝑖  then  
 
𝑑𝑑 = 𝑑𝑑

𝑖𝑖
,   

 𝑐𝑐𝑐𝑐 = 1
2
�𝑒𝑖𝑖 + 𝑒−𝑖𝑖� = 1

2
�𝑧 + 1

𝑧
� and  𝑠𝑖𝑖𝑖 = 1

2𝑖
�𝑒𝑖𝑖 − 𝑒−𝑖𝑖� = 1

2𝑗
�𝑧 + 1

𝑧
�.   (B.7) 

 
As 𝜃 varies from 0 to 2𝜋, the complex number z move in a counterclockwise direction on a 
unit circle, therefore 𝐺 can be represented by 
 
𝐺 = ∫ 𝑑𝑑

�𝛼�−𝑖�𝜁𝜁𝜁𝜁𝜁+𝜂
𝑚𝑠𝑠𝑠𝜃��

2
2𝜋
0 = ∮ 1

�𝛼�−𝑖𝜁2�𝑧+
1
𝑧�−

𝜂
2𝑚�𝑧−

1
𝑧��

2
𝑑𝑑
𝑖𝑖

   = 4
𝑖 ∮

𝑧𝑧𝑧
[(𝐵+𝑖𝑖)𝑧2−2𝛼�𝑧−(𝐵−𝑖𝑖)]2    

 
             = 4

𝑖
1

(𝐵+𝑖𝑖)2 ∮
𝑧𝑧𝑧

��𝑧−𝑧0
+��𝑧−𝑧0−��

2                           (B.8) 

 

with 𝐴 = 𝜁,  𝐵 = 𝜂
𝑚

   and  𝑧0
± = 𝛼�

𝐵+𝑖𝑖
± √𝛼�2+𝐵2+𝐴2

𝐵+𝑖𝑖
. Recognizing that 𝑧0− is a 2nd order pole  

 
inside the unit circle and letting 𝑓(𝑧) = 𝑧

�𝑧−𝑧0−�
2�𝑧−𝑧0

+�2
, then using the residue theorem for 

𝑓(𝑧) leads to 
 

  𝑅𝑅𝑅[𝑓(𝑧)] = lim𝑧→𝑧0−
𝑑
𝑑𝑑

[(𝑧 − 𝑧0−)2𝑓(𝑧)] = lim𝑧→𝑧0−
𝑑
𝑑𝑑
� 𝑧

�𝑧−𝑧0
+�2
� = 𝛼�(𝐵+𝑖𝑖)2

4(𝛼�2+𝐵2+𝐴2)
3
2
   (B.9) 

 
and hence 
 
  𝐺 = 4

𝑖
1

(𝐵+𝑖𝑖)2 2𝜋𝑖 ∗ 𝑅𝑅𝑅[𝑓(𝑧)] = 2𝜋 𝛼�

(𝛼�2+𝐵2+𝐴2)
3
2
.    (B.10) 

 
Substitution into Equation (B.5) with 𝛼� = 𝛼 ∙ 𝛿 leads to 
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  𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = 2𝜋 𝐶1
𝑚𝛿2

𝑅𝑝𝑝∗ (𝜔)𝑒𝑖
𝜔
𝑈𝑐
𝜁 𝛼

�𝛼2+� 𝜂
𝑚𝑚�

2
+�𝜁𝛿�

2
�

3
2
   (B.11) 

For 𝜁 = 𝜂 = 0 then 
 
 𝑅𝑝𝑝∗ (0,0,𝜔) = 𝑅𝑝𝑝∗ (𝜔) = 2𝜋 𝐶1

𝑚𝛿2
𝑅𝑝𝑝∗ (𝜔) 1

𝛼2
     and    𝐶1 = 𝛼2𝑚𝛿2 1

2𝜋
 (B.12) 

 
and hence 

  𝑅𝑝𝑝∗ (𝜁, 𝜂,𝜔) = 𝛼3𝑅𝑝𝑝∗ (𝜔)𝑒𝑖
𝜔
𝑈𝑐
𝜁 1

�𝛼2+� 𝜂
𝑚𝑚�

2
+�𝜁𝛿�

2
�

3
2
.   (B.13) 
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