
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona,Spain, July 9-13, 2018

ICCFD10-2018-0123

Compact Interface quasi-Newton algorithm for
biomechanical applications in massively parallel

computers

A. Santiago∗, J. Aguado-Sierra∗, E. Casoni∗, R. Arís∗, G. Houzeaux∗, M. Vázquez∗,∗∗
Corresponding author: alfonso.santiago@bsc.es

∗ ,Barcelona Supercomputing Center (BSC), Barcelona, Spain.
∗∗ IIIA-CSIC, Bellaterra, Spain.

Abstract: In this work we present aHPC version of the interface quasi Newton algorithm. This
algorithm is used to couple staggered fluid-structure interaction (FSI) solvers. This algorithm
allows to tackle two of the main problems in computational biomechanics: added mass instability
and n-fieldcoupling. The components of the IQN algorithm are dismembered and fused to obtain a
reduced version, minimizing memory consumption and operations. This algorithm is firstly tested
with a complex 2D case, and after used to compute a whole heart. The fluid-electro-mechanical
model computed in the whole heart, provided deeper insights in the heartbeat behavior. Although
the intracavitary velocities are smaller, the Q-criterion analysis revealed a more complex fluid
pattern, if compared against the outflow tracts. Although the limitations of this model, this work
is a step forward a simulation tool to study physiopathology and test biomedical devices.

Keywords: Fluid Structure Interaction, Biomechanics, cardiac modelling.

1 Introduction
Although in vivoin vitro experiments is essential to improve biomedical research, computational tools are
gradually gaining importance. Biomechanical simulations provide a powerful tool [4, 5, 6] to understand heart
function and its behavior under congenital [7, 8] and acquired pathologies [9, 10, 11]. Besides this, and as
happens in other disciplines, simulations can become a key tool in designing surgical procedures, techniques
or devices. However, modelling the beating heart and its pumping action is a highly complex task. In the
heartbeat, different types of physical problems are involved. In the muscle, the electrical stimuli propagates
through the cardiac myocytes causing the cardiac muscle contraction[12, 13], which in turn exerts work upon
the blood inside the cavities. Therefore, from the computational mechanics standpoint, the heartbeat is a
tightly coupled fluid-electro-mechanical problem.

Nowadays, there is no review paper that deeply analyzes three-physics models of the heart, to the
authors knowledge. The reason for this is, probably, the scarcity of such models. Despite this, partial
reviews can be found in [14, 15, 16]. These fluid-electro-mechanical models solve the three set of equations
in a coupled manner. Despite the work done in experimental and computational research of multiphysics
heart modelling [15], there is no reference of a tightly-coupled scheme that includes electrophysiology, solid
and fluid mechanics in a whole human heart. A bidirectional fluid-structure interaction (FSI) coupling is
consistently seen is models that does not include electrophysiology, but is not usual in three-physics models.
In this last group, the usual FSI approach is one-way scheme, where electro-mechanical action imposes the
displacement to the fluid mechanics without feedback from the fluid to the solid. This is why a robust FSI
method is mandatory to obtain such type of three-physics models. The FSI problem present in the heart is
specially complex for two main reasons. First, as the densities of the fluid (ρf ) and the solid ρs are similar,
added mass instability [2] may arise. Second, the heart have two independent FSI problems that should be
solved at the same time: the left and the right sides.
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Two main methods are available to tackle the FSI problem: the monolithic and the partitioned ap-
proaches. In the former, flow and structure are solved simultaneously and, hence, the interaction between
both domains is taken into account during the solution process. In the latter, flow is solved separately from
structure, requiring a coupling algorithm that deals with the interaction between both domains [17]. As the
monolithic approach treat both domains as a single problem, no coupling iterations between the fluid and
the structure are required in each time step. On the contrary, with the partitioned approach, the flow and
the structure equations have to be solved in each coupling iteration until convergence. The main advantage
of the partitioned approach is that it can reuse reliable and optimized codes to solve both sets of equa-
tions. This makes the partitioned approach modular and easier to maintain. Also, flow and structure can
be solved with different techniques, particularly suited for each kind of equations. Conversely, monolithic
codes typically solve all the equations with the same solution technique, facing the challenging problem of
preconditioning the matrix in such way that allows to converge both problems simultaneously. Partitioned
coupling schemes can be also classified in weakly (also known as loosely or explicit) and strongly (also known
as implicit) coupling. The former solves flow and structure only once per time step, therefore equilibrium of
the interface variables are not ensured. On the latter, convergence is achieved once there is continuity of the
coupling variables. For a further comparison between monolithic and partitioned approaches, please refer to
[18].

In this work, we present a robust FSI algorithm optimized to run in supercomputers, that tackles both
main problems of FSI in biomechanics. This novel method allows to solve the three-physics problem of the
heartbeat.

2 Methods

2.1 General overview of the problem and common computational aspects
From a physical standpoint, the heart pumping action can be decomposed in three coupled problems: the
propagation of the action potential that induces the mechanical deformation of the solid and which in turn
performs work against the fluid (1). The two coupling points are electro-mechanical and fluid-structure,
both of them bi-directional.

The four problems share some common features, described below. All of them are implemented and solved
in Alya, the BSC’s in-house parallel simulation code for coupled multi-physics problems [19, 20, 21, 22, 23].
The four problems are discretized in space using the Finite Element Method (FEM) on non-structured
meshes, and in time using Finite Diferences Method (FDM). Once discretized, the continuum mechanics
models are transformed in algebraic systems. Non-linear problems are linearized and solved either with
Jacobi (i.e. fixed point) or Newton iterations. We describe below the strategy for each problem.

The coupled problem is solved following a multi-code approach, especially well-suited for staggered cou-
pling. The simulation problem is split in two sub-problems: tissue and blood inside the cavities, being each
of the sub-problems solved with a separate Alya instance (for a graphical reference refer to figure 1). Each
of the sub-problems the two instances simulates are usually large and, therefore, parallelized using domain
decomposition.

2.2 Single physics governing equation
2.2.1 Electrophysiology

The computational electrophysiology (EP) scheme used is originally introduced in [20].The EP problem is
decomposed in tissue and cell models. The tissue is solved using a monodomain model, which is governed
by an anisotropic diffusion equation. The cell model is plugged to the tissue model as a non-linear Ordinary
Differential Equation (ODE) system. The cell model is specifically designed from single cell experiments,
with a wide range of complexity degree and application ranges [24, 25, 26, 25, 27, 28]. The EP models
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Figure 1: Model overview. Two bidirectionally coupled problems: electro-mechanical and fluid-structure one,
with three systems of equations describing them: electrophysiology, solid mechanics, and fluid mechanics in
deformable mesh.

general form is as follows:

Cm
dφ

dt
+ Iion(φ,w, c) = Iapp(t)

dw

dt
= mw(φ,w, c)

dc

dt
= mc(φ,w, c) (1)

where φ is the activation potential and Cm the membrane capacitance. Iapp(t) is the applied current,
typically used to impose an initial activation. Iion is the ionic currents term, a sum of all the P ionic currents
considered and whose form depends on the cell model. w and c are respectively the M gating variables and
the P intracellular concentrations of each of the P ionic currents. In this work we use the O’Hara-Rudy cell
model [28] for human ventricles.

2.2.2 Solid mechanics

Lets define Xj a material point in the reference configuration and xi the corresponding point in the deformed
configuration. The equation of balance of momentum with respect to the reference configuration can be
written as:

ρs
∂2ui
∂t2

=
∂Pji
∂Xj

+ ρsbi, (2)

where ui is the unknown, ρs is the tissue density (with respect to the reference volume). Tensor Pji and
vector bi stand for, respectively, the first Piola-Kirchoff (nominal stress) and the distributed body force in
the undeformed configuration. The Cauchy stress σ = J−1PFT, is related to the nominal stress through
the the deformation gradient tensor Fij = ∂xi/∂Xj . J = det(F ) is the Jacobian determinant. In cardiac
tissue models [29], stress is assumed to be a combination of passive and active parts:

σ = σpas + σact(λ, [Ca
2+])f ⊗ f , (3)

where f = fi is the normalised vector along the fibres. Following [30] the passive part is modelled as a
slightly compressible, elastic, invariant-type material [30] and through a transverse isotropic exponential
strain energy function W (b).

The depolarization of the cell membrane triggers the mechanical deformation of the myocytes, modelled
as the stress active part (σact in eqn 3). In this paper we use a Hunter-McCulloch model [31], which assumes
that the active stress is produced only in the direction of the fibre and depends on the Calcium concentration
of the cardiac cell:

σact =
[Ca2+]n

[Ca2+]n + Cn50

σmax(1 + β(λf − 1)). (4)
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where C50 is the Calcium concentration for 50% of σmax, n is a coefficient that controls the shape of the
curve, σmax is the maximum tensile stress generated at the maximum extension ratio λ = 1 and β is a
parameter that scales the active stress produced.

2.2.3 Fluid dynamics in a deformable mesh

Computational fluid dynamics (CFD) inside cavities and vessels is modelled by the incompressible flow
Navier-Stokes equations for a Newtonian fluid on a deformable mesh using an Aritrary Lagrangian-Eulerian
(ALE) scheme. Flow equations are:

ρf
∂ui
∂t

+ ρf
(
uj − umj

) ∂ui
∂xj

+
∂

∂xj

[
+pδij − µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
= ρffi (5)

∂ui
∂xi

= 0, (6)

where µ is the viscosity, ρf is the fluid density, ui is the velocity, p is the mechanical pressure and umj is the
mesh velocity.

The numerical model is based on FEM for space and FDM for the time, using the Variational Multi
Scale (VMS) technique [32] to stabilize convection and pressure. In order to solve this system efficiently in
supercomputers, a split approach is used [19].

The ALE scheme requires the solution of another discretized partial differential equation for the mesh
movement. We use the technique proposed in [33], where the mesh movement is governed by the following
Laplacian equation:

∂

∂xj

(
[1 + αe]

∂bi
∂xj

)
= 0, (7)

which is solved using FEM to discretize the space. In this equation, bi are the components of the displacement
at each point for the domain. The factor αe controls the mesh distortion depending on the minimum and
maximum element volumes in the mesh.

2.3 Fluid structure interaction
2.3.1 Continuity conditions and computational scheme

Mechanical deformation and fluid dynamics is coupled at the the wet surface, which is the contact boundary
or interface between blood (simulated using CFD) and tissue (simulated using CSM). At the discrete level,
continuity of displacements ( CFDdΓc

i , CSMdΓc
i ) and normal stresses ( CSMσΓc

ij nj ,
CFDσΓc

ij nj) for CFD and
CSM respectively, in the wet surface Γc must be enforced:

CFDdΓc
i = CSMdΓc

i

CFDσΓc
ij nj = CSMσΓc

ij nj ,
(8)

The normal stresses CFDσΓc
ij nj are translated as a surface force applied in the contact boundary Γc as:

gi = CFDσΓc
ij nj , (9)

where nj is the normal to the surface. The mesh is constructed to be conforming, having coincident nodes at
Γc, avoiding interpolation approximations that may lead to non-conservativeness of the coupling variables.

Although the CSM is solved altogether with the EP problem, for the sake of clearness, the EP set
of equation is avoided in this section. Anyway, after this problem is included, all said here stands, as
it does not forms part of the FSI problem. Briefly explained, the domain is split in the fluid and solid
domains with a Dirichlet-Neumann decomposition approach. In this way, the CSM problem can be defined
as dI+1

α = CSM(fα) and the CFD problem as f I+1
α = CFD(dα), where the Greek subindex represents the

degrees of freedom (dof). With this, the fixed-point algorithm for each iteration can be written as:

dI+1
α = CSM(CFD(dα)) (10)
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or as:
f I+1
α = CFD(CSM(fα)) (11)

depending on the order the solvers are computed. To obtain convergence of the interface variables, iterations
inside each time step are required:

while Time loop do
dα = diniα
while Coupling loop do

dα = CSM(fα)
fα = CFD(dα)

f I+1
α = ϕGS(fα)

end
end

Algorithm 1: FSI computational scheme. ϕGS represents the relaxation algorithm, dα and fα the dis-
placements and forces in the interface.
In algorithm 1 the CSM and CFD problems are solved in a block manner way, although each one of the

solvers are running in multiple cores. the ϕGS function modifies the unknown before computing the next
iteration. The objective of this step is to accelerate convergence. Several relaxation schemes were developed
in the past as the Aitken [34] or the Broyden [35] methods. In this work, modify the interface quasi-Newton
(IQN) method proposed in [1].

2.3.2 The interface quasi-newton algorithm

In a generic manner, the problem in equations 10 and 11 can be stated as x̃α = H(xα). We can define the
next iterate as xI+1

α = x̃α + ∆xα . The unknown increment ∆xα can be approximated as:

∆xα = Wαiλi. (12)

Where Wαi is:
Wαi =

[
∆x̃I−1

α ,∆x̃I−2
α , ...,∆x̃0

α

]
, (13)

as a matrix containing in each column the unknown increments ∆x̃I−1
α = x̃I−1

α − x̃α. Finally λi is obtained
by solving the following problem:

Vαjλj = rα, (14)

where rα = x̃α − xα is the residue for the interface problem and Vαj is:

Vαi =
[
∆rI−1

α ,∆rI−2
α , ...,∆r0

α

]
, (15)

a matrix containing in each column the residual increments for the interface problem ∆rI−1
α = rI−1

α − rα.
To solve eqn. 14 the matrix Vαi is decomposed by a QR decomposition, where an orthogonal matrix Qαβ
and an upper triangular Uαi are obtained:

Vαi = QαβUβi. (16)

After this decomposition, the vector λi can be built by backsubstitution of the upper triangular matrix Uij :

Uijλj = Qαi∆rα. (17)

As ∆rα = rI−1
α − rα and the objective is to get ∆rα = 0α − rα, we can say:

Uijλj = −Qαirα. (18)

As Qαi is orthogonal, the inverse is equal to the transpose, avoiding the inversion of this matrix. Also, As
Uij is upper triangular, obtaining λi is trivial. Once λi is computed, the increment of the unknown ∆xα can
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be computed as ∆xα = Wαiλi, and the update of the unknown as:

xI+1
α = x̃α +Wαiλi. (19)

Although after eqn. 18 is the algorithm is computationally cheap, obtaining the Qαβ and and Uαi through
the QR decomposition is a computational and memory expensive task.

2.3.3 High performance QR-decomposition

The QR decomposition by Householder reflections can be seen as a change of base, from a linearly independent
set of vectors sorted in a matrix, to an orthogonal base of the original matrix. The goal is to obtain the
orthogonal matrix Qαβ and the upper triangular matrix Uαi, with the following shape:

Qαε = 1Bαβ
2Bβγ ...

qBγε (20)

Uαi = qBαβ ...
2Bβγ

1BγεVεi, (21)

where Bαβ are intermediate matrices obtained during the iterative decomposition. As Qαε in eqn. 20 is
used in eqn. 18 we can reforumlate eqn 20 as:

Qαε = 1Bαβ
2Bβγ ...

qBγεrα (22)

to compute both Qαε and Uαi from right to left and reduce the operations to matrix-vector products avoiding
intermediate dense matrices. This structure of Vαi can be considered as a set of q ordered vectors:

Vαi =


v11

v21

...


v12

v22

...

 · · ·

v1q

v2q

...


 = [vα1, vα2, · · · , vαq] = 1Vαi. (23)

At each of these iterations, the matrix Vαi is modified column by column. The QR decomposition iteratively
makes each column orthogonal to the original base and to each other column in the matrix. The QR
decomposition starts iteration j with a matrix jVαi obtained with data from iteration j − 1. To decompose
the j − th column of jVαi, a unitary vector uα has to be built:

uα =
nα
‖nα‖

with, nα = vα − ‖vα‖ jeα, (24)

where vα is the column to decompose and jeα is a unitary vector with j − th position equal to 1 and to 0
otherwise. Then,

jB∗
αβ = δαβ − 2uαuβ (25)

is the Householder matrix associated to the original plane, and δαβ is the identity matrix. If the matrix jVαi
is premultiplied by jB∗

αβ , a new matrix jB∗
αβ

jVβi is obtained. The resulting matrix is upper triangular in
all the j first columns; and dense everywhere else. In order to properly compute eqn. 22, matrices jBαi are
filled with the identity:

jBαi =

[
Iij 0

0 jB
∗
αi

]
(26)

where Iij ∈ Rj−1×j−1.
To improve computing and memory cost, we propose some modifications for the already modified algo-

rithm. As jBαβ is obtained by the relation eqn 25, the products jBαβ jVβi and qBαβrα can be expanded
as:

jBαβ
jVβi = (δαβ − 2uαuβ) jVβi = jVαi − 2uαuβ

jVβi. (27)
qBαβrα = (δαβ − 2 quα

quβ)rβ = rβ − 2 quα
quβrβ . (28)

In this way, instead of computing and storing jBαβ of size p×p for each iteration j, we compute and save
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q vectors uα of size p. Note that this algorithm not only avoids building the intermediate matrices Bαβ but
also the construction of the final matrix Qαβ of the QR decomposition. In this way, matrices B in equations
21 and 22 are never completely computed and stored.

3 Results

3.1 Performance comparison
The CIQN algorithm performance was compared against the Aitken (atk) and the Broyden (brd) algorithms.
The three relaxation families were tested relaxing the Dirichlet variable (displacement, “d”) and the Neumann
variable (force, “f”). Also, for the CIQN algorithm, test were made using 5 and 20 previously saved iterations.
Figure 2 shows (a) a scheme of a test case, (b) result for t = 0.3[s] and (c) the iterations required to converge
the problem in a candle plot. In almost all the cases, the CIQN algorithm performed better than the Aitken
or the Broyden algorithms.
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Figure 2: (a) Scheme of the problem solved. (b) Solution at t = 0.3[s]. (c) Candle bar for the coupling
iteration for each relaxation scheme.

in this case, both solid problems are indirectly coupled by the fluid, on which the complexity of the
n-field coupling lies. As both interfaces have very different dynamics, the Broyden and CIQN surpass the
Aitken algorithm. Both, CIQN and Broyden performs about 60% better than the Aitken. As the Aitken
algorithm enforces the Jacobian to be a scalar for all the nodes in the contact surface, it has to increase the
iteration number to reach convergence. The difference between Broyden scheme and CIQN scheme is not
that notable. Despite CIQN requires 4% more iterations, each iteration is computed 19% faster, probably
due to the smaller dispersion between iterations in the CIQN algorithm.

3.2 Fluid-electro-mechanical model of the heart
The geometry used in this example is a modified version of the Zygote Solid 3D heart [36]. This model
represents the 50th percentile U.S. 21-year-old Caucasian male. The anatomical description of the heart is
completed with a fibre field distribution for the ventricular tissue. In this model, we use a rule-based fibre
distribution created with the algorithm described in [37] that is designed with the observations made in [38].
The solid domain mesh has ∼ 2.5M tetrahedra and 500k nodes. The fluid domain mesh has ∼ 2M tetrahedra
and 300k nodes. In both cases, element sizes vary from 100− 500[µm], fitting bigger elements in electrically
inactive regions. At the wet surface, both meshes’ nodes are coincident.

For the electrophysiology problem both ventricular endocardial surfaces are depolarized synchronously,
except otherwise stated. For the solid mechanics problem, we propose to use a sliding boundary condition for
the pericardial region. This condition restricts the normal displacements uini = 0, while allows tangential
displacements uiti. Except otherwise specified, the rest of the outer heart and vessels surface is let free
(σijnj = 0). Finally, artery walls are fixed at the end of both the pulmonary trunk and artery arch. For the
fluid mechanics problem, we impose open boundary condition on the outflows and no slip velocity condition
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ui = 0 on the wet surfaces, where we also enforce continuity of unknowns for the FSI coupling. Results
are shown in figure 3, for the fluid-electro-mechanical model solved in the human heart. Q-criterion level
surfaces show that the main fluid features occur in the outflow vessels rather than in the intracavitary space
as expected. Despite the relatively large endocardial displacements, there are small intraventricular velocities
due to the relatively large size of the cavities. On the contrary, the small transversal area in the outflows
increase the blood velocity in the vessels.

(a) (b) (c)

Figure 3: Simulation of a heart. In all the images, a long axis slice of the myocardium is seen, representing the
electrical depolarization. (a) streamlines coloured with velocity magnitude. (b) Q-criterion with isosurfaces
at 5000[s−1] coloured by velocity magnitude. (c) Q-criterion with isosurfaces at 50[s−1] coloured by velocity
magnitude.

4 Conclusions
In this work we present an HPC FSI algorithm aimed to tackle the two main problems present in biomechan-
ics: added mass and n-field coupling. These two features are already presented in the original IQN algorithm,
being the novelty of this work the HPC implementation. The QR decomposition is fused inside the IQN
method to obtain only matrix-vector products and reduce computational and memory consumption. Al-
though this, the algorithm can be improved preconditioning the matrix used for the IQN algorithm to avoid
quasi-zero pivots. Also, moving from a Gauss-Seidel scheme (block-serial) to a Jacobi scheme (block-parallel)
would reduce even more computational cost and increase the computational efficiency of the algorithm.

This algorithm is used to build a fluid-electro-mechanical model of the human heart. With it, the
intracavitary fluid dynamics can be deeply explored. A simple CFD analysis shown that velocities in the
outflow tracts are ten times larger compared against the ventricular cavities. A Q-criterion analysis shows
that, although vortex are larger in the aorta, the intracavitary patters are more complex.

This work is a step forward building an fluid-electro-mechanical model of the heart. This model allows
to obtain a more complete description of the phenomenon which provides a deeper insight in both, the solid
and fluid behaviors.
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