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Abstract: A parallel monolithic �uid-structure interaction (FSI) algorithm presented in [Eken and
Sahin, A parallel monolithic algorithm for the numerical simulation of large scale �uid structure
interaction problems. International Journal for Numerical Methods in Fluids, 80:687-714, (2016)]
has been used to investigate the deformation of red blood cells (RBCs) in small capillaries, where
cell deformability has signi�cant e�ects on blood rheology. The method employs the divergence-free
side-centered unstructured �nite volume method based on Arbitrary Lagrangian-Eulerian (ALE)
formulation for the �uid domain and the classical Galerkin �nite element formulation for the Saint
Venant-Kirchho� material in a Lagrangian frame for the solid domain. The compatible kinematic
boundary condition is utilized at the �uid-solid interface in order to conserve the mass of cytoplas-
mic �uid within the red cell membrane at machine precision. The resulting large scale algebraic
equations are solved in a fully coupled manner using a new matrix factorization similar to that
of the projection method and the parallel algebraic multigrid solver BoomerAMG provided by
the HYPRE library is used for the blocks corresponding to the scaled discrete Laplacian and the
diagonal blocks of the elasticity equation. The numerical simulations initially indicate a complex
shape deformation in which biconcave discoid shape changes to a parachute-like shape and then
the parachute-like cell shape undergoes a cupcake shaped buckling instability for a relatively small
capillarity diameter (10µm). The instability forms thin rib-like features and the red cell deforma-
tion is not axisymmetric but three-dimensional. The azimuthal wavenumber of the instability is
also relatively high and it is computationally challenging to resolve.
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1 Introduction

Red blood cells, also called erythrocytes, can be de�ned as nucleus-free deformable liquid capsules enclosed
by a biological membrane that is nearly incompressible and exhibits a viscoelastic response to shearing and
bending deformation. The mechanical properties of red cells strongly in�uence the rheological behavior of
blood and introduce non-Newtonian e�ects. A number of human diseases such as hypertension, malaria,
sickle cell anemia and diabetes mellitus leads to change in the mechanical properties of red blood cells and
reduction in deformability, which increase in microvascular �ow resistance and a decrease in cellular oxygen
delivery.

The numerical studies to determine the red cell behaviors in various �ow situations have been based
on lubrication theory [1], boundary integral method [2], immersed boundary method [3], lattice Boltzmann
method [4], etc. In contrast to the above studies, there are very limited works on the �uid-structure interac-
tion (FSI) of red blood cells based on body conformal meshes with a �nite membrane thickness. To the best
of our knowledge, only Klöppel and Wall [5] employed the �uid-structure interaction (FSI) algorithm with
�nite thickness solid shell elements in three-dimensions for the red cell membrane and investigated the me-
chanical behavior of human red blood cell �lled with a Newtonian �uid in optical tweezers. The reason is that
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the classical partitioned (segregated) approaches can not satisfy the incompressibility constraint of the �uid
during standard alternating FSI iterations when the �uid domain is entirely enclosed by all Dirichlet bound-
ary conditions as pointed out by [6]. There is also problem with the high aspect ratio of solid shell elements
employed within relatively thin lipid bilayer (5nm). In the present approach, the �uid domain is discretized
using the stable side-centered unstructured �nite volume method based on Arbitrary Lagrangian-Eulerian
(ALE) formulation, meanwhile the solid domain is discretized with the classical Galerkin �nite element
formulation for the Saint Venant-Kirchho� material in a Lagrangian frame [7, 8]. The method employs
conformal hexahedral elements at the �uid-solid interface in order to accurately resolve sharp gradients. In
addition, the local and global geometric conservation laws (DGCL) [9] are satis�ed at discrete level and the
compatible kinematic boundary condition is applied at the �uid-solid interface [8] in order to conserve the
cytoplasmic �uid mass at machine precision. In the current paper, the resulting large-scale algebraic linear
systems are solved in a fully coupled (monolithic) manner using the FGMRES(m) Krylov iterative method
[10] preconditioned with a matrix factorization similar to that of the projection method [11] for the whole
system and the parallel algebraic multigrid solver BoomerAMG provided by the HYPRE library [12], which
we access through the PETSc library [13], is used for the scaled discrete Laplacian and and diagonal blocks
of the elasticity equation. The present new block preconditioner may be considered as the extension of
the classical projection method [11] to FSI problems. The numerical calculations reveal that the biconcave
discoid shape initially changes to a parachute-like shape and then the parachute shaped red cell membrane
undergoes a cupcake shaped buckling instability for a relatively small capillarity diameter, which has not
been observed in the literature. The instability forms thin rib-like features and the red cell deformation is
not axisymmetric but three-dimensional. The azimuthal wavenumber of the instability is also relatively high
and it is computationally challenging to resolve.

2 Problem Statement

2.1 Fluid Equations

The integral form of incompressible Navier-Stokes equations can be written in the Cartesian coordinate
system in dimensional form. The momentum and the continuity equations can be written as;

ρf
∂

∂t

∫
Ω

udV + ρf

∮
∂Ω

[n · (u− ẋ)]udS =

∮
∂Ω

σfndS (1)

−
∮
∂Ω

n · udS = 0 (2)

In these equations V is control volume, S is the control volume surface area, n is the outward normal vector,
ρf is the �uid constant density, u is the local �uid velocity vector, ẋ is the grid velocity and σf is the �uid
stress tensor. The constitutive relation for the �uid stress tensor is given for an incompressible Newtonian
�uid by

σf = −pI + µf (∇u +∇u>) (3)

where p is the �uid pressure and µf is the �uid dynamic viscosity.

2.2 Solid Equation

Balance of linear momentum in the Lagrangian framework where the material derivative becomes a partial
derivative with respect to time governs the structural behavior.

ρs
∂2d

∂t2
= ∇σs (4)

where ρs is the the spatial density, d is the displacement vector, σs is the Cauchy stress tensor de�ned using
the following constitutive law for the St. Venant-Kirchho� material:

S = JF−1σsF
−> (5)
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F = (I +∇d) (6)

E =
1

2
(F>F− I) (7)

S = λstrace(E)I + 2µsE (8)

Π = FS (9)

where S is the second Piola-Kirchho� stress tensor, F is the deformation gradient tensor, J = det(F) is
the deformation gradient determinant, E is the Green-Lagrange strain tensor, Π is the non-symmetric �rst
Piola-Kirchho� stress tensor and λs and µs are the material Lame's constants. Then the initial equation
can be written as

ρ0
∂2d

∂t2
= ∇0 ·Π> (10)

where ρ0 is the solid material density per unit undeformed volume and ∇0 states the gradient in Lagrangian
coordinates.

2.3 Interface Condition Equations

Interface condition requires two main conditions, which are the kinematic and the dynamic continuity across
the �uid-structure interface at all times. The kinematic boundary condition on the �uid-structure interface
is driven by continuity of the velocity.

u = ḋ (11)

where u is local �uid velocity vector and ḋ is time derivative of structure displacement vector. The dynamic
condition holds for surface traction at the common �uid-structure interaction boundary.

σsns = −σfnf (12)

where σs is the Cauchy stress tensor of the solid and σf is the stress tensor in the case of an incompressible
Newtonian �uid.

3 Numerical Results

The outer surface geometry of the red blood cell is de�ned with the following equation [14, 15] and the
geometry of red blood cell is given in Figure 1.

T (r) = ±
√

1− (r/R0)2
[
C0 + C1(r/R0)2 + C2(r/R0)4

]
(13)

In here, T (r) is the thickness of RBC in the x−direction as a function of the distance r =
√
y2 + z2 and

R0 is the initial radius of RBC. The geometric parameters are taken to be R0 = 3.9µm, C0 = 0.81µm,
C1 = 7.83µm and C2 = −4.39µm. The minimum thickness is T1 = 0.81µm and the maximum thickness is
T2 = 2.4µm. The diameter of the red blood cell is D = 7.8µm. The thickness of the red cell membrane is
approximately 40 − 50nm [16, 17] and the internal surface of the red blood cell is formed with an inward
thickness of h = 0.05m (50nm). The physical parameters of the red blood cell and �uid plasma are tabulated
in Table 1. The calculations are carried out on three di�erent meshes: coarse mesh M1, medium mesh M2,

Table 1: Physical parameters for red blood cell (pg : picogram).

Density, ρf [pg/µm3] 1.025
Fluid Dynamic Viscosity, µf [pg/µmµs] 1.1

Maximum in�ow velocity, Umax [µm/µs] 0.01
Density, ρs [pg/µm3] 1.098

Structure Poison Ratio, νs − 0.45
Elasticity Module, E [pg/µmµs2] 4.4
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Figure 1: Geometry of red blood cell.

and �ne mesh M3. The successive meshes are generated with DISTENE MeshGems-Hexa algorithm in three-
dimensions based on the octree method by halving the mesh size function. The details of the computational
meshes are provided in Table 2. The number of solid layers indicates the number of quadrilateral elements
in the normal direction for the solid membrane. The maximum aspect ratio of solid quadrilateral elements is
set to 20. ∆hmin and ∆hmax represent the minimum and maximum mesh sizes, respectively. The capillary
tube spans between ±70µm, where the red cell is initially located at the origin. The boundary conditions are
set to no-slip boundary conditions on the solid walls, the Dirichlet (parabolic pro�le) velocity at the inlet and
the natural (traction-free) boundary condition at the outlet. The maximum velocity for the paraboloid inlet
pro�le is set to 0.01µm/µs. The calculations are started from the rest and the time step is set to 100µs. In
the present numerical simulation, it is rather di�cult to resolve the relatively thin lipid bilayer (5nm), which
mainly contributes the membrane shear modulus. Therefore the elasticity module in Table 1 is reduced by
a factor of 10 in order to achieve the same overall membrane shear module (µsh = 7.586× 10−6N/m). The
non-dimensional capillary number (Ca = µfUmax/µsh) is obtained to be 0.145 based on the shear modulus
µs, the maximum inlet velocity Umax, the plasma dynamic viscosity µf , and the membrane thickness h. The
computed contours of u−velocity component on z = 0 plane and the velocity pro�le around the red cell are
provided in Figure 2-a at t = 60ms. The blunt velocity pro�le around the red cell is clearly apparent. The
three-dimensional views of the time variations of the red cell deformation and its movement at several di�erent
time levels are provided in Figure 2-b. The numerical simulations indicate a complex shape deformation
in which the biconcave discoid shape changes to a parachute-like shape and then then parachute-like shape
undergoes a cupcake shaped buckling instability in three-dimensions due to the compressive elastic tension
forces along the red cell membrane surface. To the best of our knowledge, the present cupcake shaped buckling
instability in small capillary tubes has not been noticed in three-dimensional simulations in the literature
(see, for example, [18, 19]). One possibility may be the lack of su�cient initial random disturbances, which
leads to a buckling instability due to the ampli�cation of these random disturbances. This is particularly
important for spectral type approaches as in [19]. The second possibility is that [20] law applied to the
spherical capsule buckling produces a wider stability interval than the neo-Hooken law due to its strain
hardening nature [21]. The present Saint Venant-Kirchho� constitutive law does not show strain hardening
property in the case of the compression of a body to zero volume, where the stress approaches zero instead
of in�nity. The third possibility is that the present bending sti�ness value is relatively lower compared

Table 2: Computational meshes used for simulation of red blood cell for a channel height of 10.0µm.
Solid Node Element

Mesh layers ∆hmin ∆hmax number number DOF

M1 4 0.25 1 61,592 57,233 668,461
M2 8 0.125 0.5 419,216 402,391 4,406,485
M3 16 0.0625 0.25 2,836,912 2,786,273 29,090,781
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[a]

[b]

Figure 2: Red blood cell positions/deformations with computed u−velocity component contours on z = 0
plane at t = 60ms [a] and red cell deformations at several di�erent time levels for a single red blood cell for
a capillary tube diameter of 10µm on mesh M3.

to the values used in the classical membrane models. Another possibility is that the wavenumber in the
azimuthal direction may increase signi�cantly with the decrease in the membrane thickness and the required
mesh resolution may be underestimated in this direction [22]. The spatial convergence of the cupcake shaped
membrane buckling instability is provided in Figure 3 for a capillary tube diameter of 10µm on meshes M1 to
M3. The simulation on mesh M3 leads to a relatively large FSI simulation with 29,090,781 DOF. The buckling
instability forms thin rib-like features and the deformation is not axisymmetric but three-dimensional. The
spherical �uid-�lled capsule deformed in axisymmetric elongational �ow also indicates the similar buckling
instability [21]. However, the buckling on the red cell membrane leads to relatively more complex instability
due to its initial biconcave discoid shape compared to that of the oblate spheroidal capsule [23]. The present
wavenumber of the buckling instability is even higher during the initial formation of the buckling with more
uniform distribution and the rib-like features tend to merge with the increased deformation, forming larger
structures as seen in Figure 4. Therefore, the post-buckling behavior of the red cell membrane is highly
unstable and non-linear, which is in accord with the observations related to the spherical capsules [22].

[a] [b] [c]

Figure 3: Mesh convergence of cupcake shaped membrane buckling instability on mesh M1 [a], mesh M2 [b]
and mesh M3 [c] for a capillary tube diameter of 10µm at t = 60ms.
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[a] [b] [c]

Figure 4: Time evolution of cupcake shaped membrane buckling instability on mesh M3 at t = 20ms [a],
t = 40ms [b] and t = 60ms [c] for a capillary tube diameter of 10µm.

4 Conclusion

The parallel fully coupled (monolithic) �uid-structure interaction approach [7, 8] has been applied to investi-
gate the deformation of red blood cells in small capillaries. A special attention is given to conserve the mass
of the cytoplasmic �uid within the red cell. The calculations show a complex shape deformation in which
the biconcave discoid shape changes to a parachute-like shape, which is in accord with the early results in
the literature. In addition, the red cells in small capillaries undergo a cupcake shaped buckling instability
forming thin rib-like features in three-dimensions due to the compressive elastic tension forces along the
membrane surface and the resulting red cell geometry is no longer axisymmetric but three-dimensional. The
wavenumber of the instability in the azimuthal direction is also relatively high and it is computationally
challenging to resolve. To our best knowledge, the cupcake shaped buckling instability in small capillaries
has not been noted in the literature. Although the simplest type of hyperelastic material model is used in
the current simulations, the present buckling instability should be con�rmed using more realistic solid red
cell membrane models as in the work of [5].
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