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Abstract: A high order One Step Monotony Preserving scheme has been developed to compute the
convective �uxes of the compressible Navier Stokes equations. This �nite-volume solver, based on
the Lax-Wendro� approach, is 7th order both in space and time. A Monotony Preserving criteria
is used to compute the discontinuities with accuracy, without spoiling the solution. Centered
approximations are used to compute the di�usive �uxes of the Navier Stokes equations. In this
article, we evaluate separately the ability of the solver to compute turbulent and shocked �ows by
simulating two test cases. The �rst test case is the 3 dimensional Taylor-Green vortex that allows
to simulate a turbulent energy cascade in the framework of isotropic homogeneous turbulence. It is
used to evaluate the accuracy of the solver to compute continuous turbulent solutions. The second
test case is the steady shock-wave laminar boundary layer interaction. It is used to evaluate the
shock capturing procedure of the solver.

Keywords: High-order Finite-Volume scheme, Monotony-Preserving criteria, Taylor-Green vortex,
Shock-Wave boundary layer interaction.

1 Introduction

Direct Numerical Simulation (DNS) of high Reynolds number compressible �ows involving shock waves is a
challenging task since one must use a numerical scheme that can both represent small scale structures with
the minimum of numerical dissipation, and capture discontinuities with the robustness that is common to
Godunov-type methods without spoiling the accuracy in the vicinity of the discontinuity. In this context,
a high order One-Step Monotonicity-Preserving (OSMP) scheme [1] has been developed by following a
Lax-Wendro� approach. For discontinuity capturing, Monotonicity-Preserving (MP) conditions have been
derived to locally relax the TVD constraints in the vicinity of extrema. We already demonstrated on various
laminar test-cases [1, 2] that this scheme gives very accurate results at a very low-cost in terms of CPU time
since it uses one-step integration, and is therefore very competitive compared to classical high-order methods
of lines. The objective of this work is then to check the ability of the unlimited OS scheme and its limited
version (OSMP) to accurately predict turbulent and shocked �ows.

2 Equations and numerical scheme

We consider here the dimensionless compressible Navier-Stokes equations. For approximating the convective
�uxes, the OS-7 scheme has been used that is 7th order accurate in both time and space [1, 2]. In this
study, by using the limited OSMP-7 scheme [1, 2], we review the in�uence of the Monotonicity-Preserving
constraints on the characteristics of the turbulent �ows. The di�usive terms of the Navier-Stokes equations
are discretized by using a centered approximation. To study the in�uence of the order of accuracy of the
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di�usive �uxes on the solution, second and fourth order accurate approximations are employed and compared
on the test cases.

3 Numerical results

We evaluate separately the ability of the numerical schemes to compute turbulent �ows with accuracy and
to capture shock waves with robustness. Present results are evaluated on two canonical test-cases that
have been considered in the International Workshop on High-Order CFD Method (HiOCFD workshop) to
compare the CFD software performances [3]: namely, the three dimensional Taylor-Green vortex and the
two dimensional steady shock wave laminar boundary layer interaction.
First, the well documented 3-D Taylor-Green vortex is considered at a Reynolds number Re = 1600 in a 3D
periodic domain (Ω) of 2π non-dimensional side length [3, 4]. This problem allows us to evaluate the ability
of the numerical procedure to compute transitional solutions in the basic framework of decaying Isotropic
Homogeneous Turbulence (IHT).
Besides, the ability of the scheme to compute discontinuous solutions have been evaluated by performing
the DNS of the steady shock wave laminar boundary layer interaction over a �at plate, experimentally and
numerically studied by Degrez et al. [5].

3.1 Taylor Green vortex at Re=1600

The Taylor-Green vortex is a simple con�guration allowing to simulate a turbulent energy cascade in the
framework of isotropic homogeneous turbulence. A 3D periodic domain (Ω) of 2π non-dimensional side length
is considered, in which a non dimensional initial �ow �eld, which is an analytic solution of the Navier-Stokes
equations, is given. This initial �ow �eld consists in eight planar vortices. Nonlinear interactions between
these initial vortices creates smaller and smaller scales until kinetic energy dissipation into heat following
the so called Kolmogorov energy cascade.
The �ow is completely characterized by the following set of non dimensional numbers values :

M0 = U0

c0
= 0.1

γ = 1.4

Re0 = ρ0U0L0

µ0
= 1600

Pr0 = µ0Cp0
λ0

= 0.71

(1)

where the reference variables (index 0) are characteristic scales of the �ow at the initial time. U0 is the
greatest value of the �ow speed in the domain. c0 is the speed of sound in the domain, given by the uniform
temperature T0 in the domain. ρ0 is the mean density. L0 is the characteristic size of the domain. µ0 and λ0

are the initial dynamic viscosity and thermal conductivity of the �uid, given by the uniform temperature T0.
Cp0 is the heat capacity at constant pressure of the �uid. The dynamic viscosity is assumed to be constant
and it is evaluated using the value of the Reynols number.
Several uniform grids have been used to study grid convergence (namely, from 323 to 2563).
The integral kinetic energy on the domain (Ω) is calculated at every time step during the simulation as
follows:

Ek =
1

|Ω|

∫
Ω

ρ
v.v

2
dΩ, (2)

where v = {uj} j ∈ [1, 3] is the velocity vector, ρ is the density and |Ω| is the volume of the domain (Ω).
We de�ne the kinetic energy dissipation at every time step as:

ε = −dEk
dt

. (3)

We show that for a compressible �ow and using the Stokes hypothesis, the kinetic energy dissipation can
also be written as:
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ε =
2µ

|Ω|

∫
Ω

Sd : SddΩ− 1

|Ω|

∫
Ω

p∇.vdΩ, (4)

where µ is the dynamic viscosity, Sd is the symmetric part of the strain rate tensor S with Sij = 1
2 ( ∂ui

∂xj
+
∂uj

∂xi
)

where indexes i, j ∈ [1, 3] are related to the space dimensions.
The enstrophy integral on the domain Ω is given by:

ε =
1

|Ω|

∫
Ω

ρ
ω.ω

2
dΩ, (5)

where ω = ∇× v.
For a compressible �ow, the following approximate equality relating the kinetic energy dissipation and the
enstropy stands:

ε ≈ 2
µ

ρ0
ε, (6)

where ρ0 is the mean initial density in the domain.
The time evolution of the kinetic energy, its dissipation and the enstrophy production in the domain are
pivotal quantities representative of the energy cascade between turbulent scales and the turbulent vorticity
production.

Results using the OS scheme Simulations where �rst performed using the unlimited 7th order OS
scheme and a second order spatial discretization for the di�usive terms. The simulations where performed at
a constant CFL number value of 0.5. Figures 1, 2 and 3 show respectively the evolution of the kinetic energy,
its dissipation and the enstrophy with respect to time for the di�erent mesh size used (323, 643, 1283, 2563).
The kinetic energy dissipation is computed using equation (3) by �rst order derivation of the evolution of the
kinetic energy with respect to time. The enstrophy, is computed by equation (5). The vorticity components
are approximated using 4th order Pade scheme [6]. Results are compared to a reference solution obtained
by a dealiased pseudo-spectral spatial discretization together with a three step Runge-Kutta scheme for the
time integration, on a 5123 grid [3].
We observe the convergence of the solution toward the reference solution when the mesh is re�ned. We see
in �gures 1 and 2 that the decrease of the kinetic energy in the domain can be splitted into two dinstinct
zones. In the �rst zone between time 0 and time 9, the kinetic energy dissipation increases until it reaches
a maximum value of almost 0.013 at time 9. This augmentation of kinetic energy dissipation is related to
the transition to turbulence creating smaller and smaller structures through the Kolmogorov energy cascade
until the energy dissipates at di�usive scales. The maximum of kinetic energy dissipation corresponds to an
in�ection point in the history of the kinetic energy. As far as no energy is injected in the domain (Ω) after
the initial time, this maximum dissipation is followed by the second zone where the dissipation decreases as
the �ow relaxes.
The calculation on mesh 323 fails completely in evaluating the time and value of the maximum kinetic energy
dissipation. In fact, the time of the maximum is close to 7 and the value of the maximum dissipation is
largely under-estimated. It leads to an underestimation of the kinetic energy in the domain before time 10
and an overestimation after time 10. The history of the kinetic energy has the same qualitative behavior
on the 643 but it is quantitatively closer to the reference value. The calculation on the 1283 exhibits rather
good approximation of the time of the maximum dissipation. Nevertheless, the maximum dissipation value
is underestimated leading to a slightly overestimation of the kinetic energy after time of 10. The results
using the 2563 are almost converged as they are nearly the same as the reference results. In particular, we
observe that the prediction of the time of maximum dissipation is correct and that the maximum dissipation
value is only slightly under-estimated.
The history of the enstrophy exhibits the same qualitative behavior as the kinetic energy dissipation as they
are approximately proportional (equation (6)). Again, the more we re�ne the mesh, the more the estimation
of the enstrophy is close to the reference value. In particular, the time of maximum enstrophy and its value
are not well predicted when using the 323 and 643 meshes. The prediction is correct for the time of maximum
enstrophy when using the 2563 mesh but its value is underestimated. Nevertheless the results obtained for
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the history of the enstrophy compare well with the results of the HIOCFD workshop [7] [3].
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Figure 1: History of the kinetic energy obtained us-
ing the OS-7 scheme for di�erent mesh sizes (323,
643, 1283, 2563). Present solutions are compared to
the reference solution [3].
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Figure 2: History of the kinetic energy dissipation
obtained using the OS-7 scheme for di�erent mesh
sizes (323, 643, 1283, 2563). Present solutions are
compared to the reference solution [3].
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Figure 3: History of the enstrophy using the OS-
7 scheme for di�erent mesh sizes (323, 643, 1283,
2563). Present solutions are compared to the refer-
ence solution [3].

This grid convergence can be compared with results obtained using other numerical schemes whithin the
HIOCFD workshop framework. Figures 4 and 5 show the grid convergence for the kinetic energy dissipation
and the enstrophy dissipation. We de�ne the L∞ error of a quantity s with respect to the reference solution
sref as:

ErrorL∞(t∈[0;10]) = max(t∈[0;10]) | sk − srefk |, (7)

where sk is the value of s at time tk = k.dt with dt the time step and k ∈ N. The L∞ errors for the kinetic
energy dissipation and the enstrophy dissipation are plotted with respect to the length scale h = 1

N where
N is the number of mesh points in each direction.
Results obtained using the OS-7 scheme compare well with one of the best results obtained by the HIOCFD
workshop participants [7] [3]. The error obtained on the kinetic energy dissipation using the OS-7 scheme
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is almost one order of magnitude smaller than the one obtained using the DG-4 scheme. The DG-4 scheme
needs far more points than the OS-7 scheme to recover the same error levels. The same trend is obtained for
the enstrophy dissipation error, even if the di�erence between the results obtained by the di�erent schemes
are not as huge as for the kinetic enery dissipation.
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Figure 4: Grid convergence for the kinetic energy
dissipation
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Figure 5: Grid convergence for the enstrophy dissi-
pation

E�ect of the MP constraint on the results The same simulations have also been performed using the
shock capturing procedure. The �gure 6 shows the kinetic energy with respect to the time using the OSMP-7
scheme for the di�erent meshes used. The convergence toward the reference solution is still noticeable when
using the shock capturing procedure. The results for the di�erent meshes have the same qualitative behavior
than the results using the OS scheme. The results using 323 and 643 do not predict the correct time of
in�ection point in the history of the kinetic energy. For those meshes, the kinetic energy is badly estimated
during the entire time of the simulation. The kinetic energy is nearly correctly estimated when using the
1283 mesh even if it is slightly overestimated after the time 15. The result using the 2563 mesh is in good
accordance with the reference result.
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Figure 6: History of the kinetic energy obtained us-
ing the OSMP-7 scheme for di�erent mesh size (323,
643, 1283, 2563). Present solutions are compared to
the reference solution [3].
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Figure 7: History of the kinetic energy dissipation
obtained using the OS-7 and OSMP-7 schemes for
the 2563 mesh. Present solutions are compared to
the reference solution [3].
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The comparison between the kinetic energy dissipation evolution computed with and without the MP
procedure on the 2563 mesh is plotted on �gure 7. For nearly converged computations, the results are almost
the same, demonstrating that the MP constraint has a little in�uence when the solution is regular on the
opposite of the TVD constraint that clips the extrema [1][2].
The L∞ errors with respect to the reference obtained with and without the MP procedure are plotted
on �gure 8 and 9. The same level of errors are recovered in both cases. The use of the shock capturing
procedure has a small in�uence on the computation of the enstrophy in the domain. The enstrophy is slightly
underevaluated when using the OSMP-7 scheme (�gure 9).
These results show that the MP constraint can e�ciently be used to simulate regular �ows on su�ciently
re�ned meshes.
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Figure 8: Grid convergence for the kinetic energy
dissipation
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Figure 9: Grid convergence for the enstrophy dissi-
pation

In�uence of the order of accuracy for the discretization of the di�usive terms Simulations
have also been performed using the OSMP-7 scheme coupled with a 4th order centered �nite di�erence
approximation for the di�usive �uxes as far as the high order approximation might have an in�uence on
the dissipation process occuring at small scales. The 4th order approximation have been checked on a
manufactured solution to review the accuracy. 4th order accurate solution is clearly obtained (not shown
here). The history of the kinetic energy is plotted on �gure 10. The results are qualitatively the same
than those using a second order discretization for the di�usive �uxes. In particular, the simulation on the
2563 mesh is in good agreement with the reference results. The history of the kinetic energy dissipation
is compared here after with the results obtained using a 2nd order centered �nite di�erence approximation
for the di�usive �uxes. This comparison suggests that the use of an order higher than second order for the
di�usive �uxes have almost no in�uence on the results for such a converged simulation at relatively high
Reynolds number.
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Figure 10: History of the kinetic energy obtained us-
ing the OSMP-7 scheme and a 4th order discretiza-
tion for the di�usive �uxes on di�erent meshes of
(323, 643, 1283, 2563) size. Present solutions are
compared to the reference solution [3].
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Figure 11: History of the kinetic energy dissipation
obtained using the OSMP-7 on the 2563 mesh. Re-
sults using a second 2nd and a 4th order discretiza-
tion for the di�usive �uxes are compared. Present
solutions are compared to the reference solution [3].

The L∞ error with respect to the reference obtained using 2nd or 4th order discretization of the di�usive
terms is plotted on �gure 12 with respect to the mesh size. The results are almost identical for the 323, the
643 and the 1283. The error is slightly lowered when using the 4th order discretization of the di�usive terms
on the 2563 mesh. As the di�usion processe is occuring at small scale, it is not surprising that discrepancies
are found for �ne meshes able to evaluate the role of the di�usion at small scale. The L∞ errors are nearly
the same in both cases demonstrating that using higher order than 2 for the di�usive �uxes is not mandatory
for such high Reynolds number simulations.
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Figure 12: Grid convergence for the kinetic energy
dissipation.

3.2 Laminar shock boundary layer interaction

We consider the interaction between an incident oblique shock wave impigning a laminar boundary layer
developing over a �at plate. The interaction produces a separation of the �ow and a subsequent recirculation
bubble. This �ow has been experimentally and numerically studied in [5].
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Figure 13: Computational domain with non-dimensional dimensions and boundary conditions. The dashed
line represents the inviscid incident shock position [8].

Sketch of the computational domain is given �gure 13. A uniform �ow is imposed at the inlet using non
re�ecting characteristic based inlet conditions [9]. At a height of y0, the Rankine-Hugoniot relationships are
imposed, so that a shock of angle σ = 38.5◦ is created in the domain that impinges the wall at xsh = 1. No-
slip and adiabatic wall conditions are imposed for y = 0 and x > 0 whereas symmetric boundary condition
is imposed in front of the leading edge of the �at plate. Outlet time dependent boundary conditions are
imposed at the top and at the outlet boundaries regions [9].
The �ow in the region inlet 0 (y < y0) is prescribed by using the non dimensionalized numbers that completely
characterize the �ow:

M0 = U0

c0
= 2.15,

Re0 = ρ0U0xsh

µ0(T0) = 105,

P r0 = µ0Cp0
λ0(T0) = 0.71,

γ = 1.4,

(8)

where c0 is the speed of sound given by the uniform temperature T0 imposed at the boundary region inlet
0. ρ0 is the uniform density imposed at the boundary region inlet 0. xsh is the abscissa at which the shock
should impinge the �at plate in nonviscous �ow ; it is taken as the reference length scale. µ0 and λ0 are the
dynamic viscosity and thermal conductivity of the �uid, given by the uniform temperature T0 at the inlet.
The evolution of the dynamic viscosity and the thermal conductivity with the temperature is given by the
Sutherland's law. Cp0 is the heat capacity at constant pressure of the �uid injected through the region inlet
0.
An example of the mesh employed for the simulation is given in �gure 14. The domain is discretized using a
cartesian mesh with non uniform spacing in both x and y directions. In the longitudinal direction, the mesh
is re�ned in the vicinity of the �at plate leading edge and in the vicinity of the shock wave impact abscissa
xsh. In the vertical direction, the mesh is progressively tightened close to the wall using a hyperbolic tangent
law to obtain a minimum grid spacing at y = 0. The minimum grid spacing is ∆ymin = 10−4.
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Figure 14: Mesh used for the calculation.

Figure 15: Schematic of the �ow �eld [10].

Sketch of the �ow is given �gure 15. The presence of the impinging shock wave imposes a sharp adverse
pressure gradient to the �ow. In the con�guration presently studied, the adverse pressure gradient is strong
enough to enable a separation of the boundary layer (point S on �gure 15) that reattaches further down-
stream (point R on �gure 15) forming a separation bubble. A sonic line appears at the edge of the bubble
(noted (S) on �gure 15). This kind of shock wave boundary layer interaction is called strong interaction,
contrary to a weak shock wave boundary layer interaction where no separation occurs. The �ow being sub-
sonic under the sonic line (S), the pressure rise due to the incident shock (C1) is felt upstream of where the
incident shock would have impacted the wall, explaining the upstream position of the separation point. The
presence of the recirculation bubble induces compression waves that converge to form the re�ected shock
(C2). The incident shock (C1) is transmitted as (C4) through the separation shock (C2) and is re�ected as
expansion waves. At the reattachement point (R), the deviation of the supersonic �ow due to the wall leads
to compression waves that also coalesce to form the so called reattachement shock. In this con�guration, the
viscosity at play in the boundary layer leads to a complete reorganisation of the �ow even in the outer region
where a di�erent system of shock waves is created, with respect to the inviscid shock wave re�exion on a wall.
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Figure 16: Pressure at the wall for a strong shock wave boundary layer interaction [10]

Such a strong interaction is characterized by a characteristic wall pressure distribution as shown on �gure
16 where the wall pressure distribution for a strong shock wave boundary layer interaction is compared with
the distribution for an inviscid shock wave re�ection. The �rst part of the interaction consists in a steep
rise of the pressure associated with the separation followed by a plateau like of pressure characteristic of
separated �ows. The second part of the interaction consists in a second wall pressure rise associated with the
reattachment process, leading to the same pressure as in the inviscid case. The wall pressure distribution is
then an important quantity to assess the accuracy of the simulations.
The extent of the recirculation bubble is driven by the intensity of the incident shock wave, let say the
pressure ratio from each side of the shock, and by the incoming boundary layer velocity pro�le. Indeed, the
stronger the shock, the stronger the adverse pressure gradient leading to the separation of the boundary
layer. Furthermore, the sharper the boundary layer velocity pro�le is, the more the boundary layer resists to
separation caused by the adverse gradient pressure. For instance, a laminar boundary layer is more prone to
separation than a turbulent one when subjected to a steep adverse pressure gradient. The separation bubble
extent then characterizes the interaction studied. The skin friction coe�cient Cf , as de�ned in equation (9),
is then an important quantity to calculate, as it allows to determine the position of the separation (where Cf
becomes negative) and reattachement points (where Cf becomes again positive). The skin friction coe�cient
is de�ned by the following equation :

Cf =
τw

1
2ρ∞U

2
∞
, (9)

where τw = µ
∂u

∂y
|y=0 is the shear stress at the wall.

As previously described, due to the strong shock wave boundary layer interaction studied here, a complex
system of shock waves, compression and expansion waves is formed in the supersonic part of the �ow. The
accuracy of the calculation in this part of the �ow depends greatly on the ability of the numerical scheme to
capture the discontinuities (shock waves) without spoiling the accuraty of the solution in the vicinity of the
discontinuity. In the following, we evaluate the e�ciency of the shock capturing procedure evaluating the
pressure distribution in the supersonic part of the �ow at a height of y=0.1.

Convergence study Figure 17, 18 and 19 show respectively the wall pressure distribution, the skin friction
coe�cient and the pressure distribution at y = 0.1 for di�erent mesh size obtained using the OSMP-7 scheme
and a 2nd order centered �nite di�erence approximation for the di�usive �uxes. The di�erent mesh sizes
considered are 80× 40, 200× 100, 280× 140, 360× 180 and 480× 240. The use of the limited version of the
scheme OSMP-7 is �rst favoured as far as shocked �ow is considered here.
The wall pressure distribution estimated by the numerical scheme is in accordance with the theoretical
considerations previously reminded. Indeed we see on �gure 17 that for each mesh used, the qualitative
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behavior of the wall pressure distribution is correct, consisting in two steep rises of the wall pressure separated
by a plateau like of pressure. The wall pressure values before and after the interaction are the same for each
mesh size used. Nevertheless, the wall pressure distribution inside the interaction is di�erent for every mesh
size and we observe a convergence towards a converged solution. The more the mesh is re�ned, the more
the �rst pressure increase begins earlier and the second pressure rise ends later. The value and the extent
of the plateau like of pressure is nearly the same for every meshes except for the 80 × 40 where the value
of the pressure is clearly under-estimated in the plateau. Moreover, for the 80 × 40 mesh, the second rise
of pressure is largely sharper than for the other meshes. As for the wall pressure distribution, we observe a
grid convergence towards a converged solution for the skin friction coe�cient distribution shown on �gure
18. We observe that, the thinner the mesh, the smaller the abscissa of the separation point and the bigger
the abscissa of the reattachment point exept for the 80×40 mesh that completely fails in estimating the skin
friction distribution. The pressure distribution at y = 0.1 is shown on �gure 19 for the di�erent meshes. For
this vertical coordinate, the pressure distribution is composed of a �rst almost discontinuous compression
corresponding to the incident shock (C1) followed by a continuous compression corresponding to the re�ected
compression waves (C2) that don't coalesce to form a shock in our test case con�guration. This continuous
compression is followed by a sharp decrease of the pressure corresponding to the expanssion waves. It is
followed by a continuous compression due to the compression waves related to the reattachement of the
boundary layer. We see that the mesh re�nement in�uences the ability to compute sharp solutions. Indeed,
we clearly see that non re�ned meshes of 80× 40 and 200× 100 tend to spread the sharp evolutions of the
pressure namely the shock wave and the expansion waves. As for the wall pressure distribution and the
skin friction coe�cient, we observe a convergence of the results towards a converged solution. For the three
quantities considered in �gures 17, 18 and 19, only negligible di�erences exist between the results on the
360× 180 mesh and the 480× 240 mesh. Therefore we conserve the solutions on the 480× 240 mesh to be
the converged ones in the following.
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OSMP-7 scheme and a 2nd order centered �nite dif-
ference approximation for di�erent mesh size
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Figure 18: Skin friction coe�cient distribution using
the OSMP-7 scheme and a 2nd order centered �nite
di�erence approximation for di�erent mesh size
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Figure 19: Pressure distribution at y=0.1 using the
OSMP-7 scheme and a 2nd order centered �nite dif-
ference approximation for di�erent mesh size

E�ect of the MP constraints on the results The e�ect of using the OSMP-7 instead of the OS-7
scheme is highlighted on �gures 20, 21 and 22 on which the results obtained using the OS-7 and OSMP-7 are
plotted for the 480× 240 mesh. As expected, the �gure 22 highlights that the use of the OS-7 scheme leads
to spurious oscillations in the vicinity of the discontinuities (shock waves). These oscillations are almost
cancelled when the shock capturing procedure is activated, namely when the OSMP-7 scheme is used. No
noticeable di�erences are observed for the wall pressure distribution between the results obtained using
the OS-7 and the OSMP-7 schemes. Thus, the spurious pressure oscillations produced around the shock
wave don't in�uence the wall pressure distribution. On the contrary, the skin friction calculated with the
OS-7 scheme di�ers slightly from the skin friction coe�cient calculated using the OSMP-7 scheme in the
recirculation zone, where oscillations are observed for the results using the unlimited scheme. It shows that
the spurious oscillations created in the viscinity of the discontinuities in�uence the solution in the entire
domain.
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Figure 20: Wall pressure distribution for the 480 ×
240 mesh
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Figure 21: Skin friction coe�cient distribution for
the 480× 240 mesh
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Figure 22: Pressure distribution at y=0.1 for the
480× 240 mesh

Results comparison with other numerical and experimental results Previous results are compared
with either experimental or numerical results. The experimental results come from Degrez et al. [5] who
designed the present test case. Degrez et al. also provide numerical results. Two other numerical results have
also been selected to compare with : the DNS of Gross and Fasel using a 9th accurate WENO method based
on the Van Leer (VL) �ux vector splitting scheme [11] and the DNS of Blanchard and Renac performed in
the framework of the HIOCFD workshop using a 6th order discontinuous galerkin scheme [8].
The comparison of the wall pressure distributions is plotted on �gure 23. It is noteworthy that the pressure
levels before and after the interaction are the same for every results. Moreover, the results using the OSMP-7
scheme match nearly perfectly with the results obtained by Blanchard and Renac, even in the interaction
zone. As explained previously, the interaction zone begins as a sharp rise of pressure. The beginning of the
interaction zone is not the same for the numerical and experimental results of Degrez et al.. The interaction
begins earlier for the numerical result. The beginning of the �rst rise of pressure of all the other results are
between the numerical and experimental values of Degrez et al.. The same observation stands for the end of
the interaction, that is predicted earlier for the numerical result with respect to the experimental result of
Degrez et al.. The �rst rise of pressure predicted by the OSMP-7 and by the DNS of Blanchard and Renac
is sharper than the ones calculated by the other autors. Consequently, the plateau like of pressure begins
earlier for these two results with respect to the other results. The plateau like of pressure have nearly the
same extent for all the results, then, the second rise of pressure, due to the reattachement, has more or less
the same qualitative behavior for all the results except for the numerical result of Degrez et al. where the
calculated recompression at the wall is faster.
The skin friction coe�cient obtained are compared on �gure 24. Degrez et al. only provided the separation
and reattachement points experimentally mesured. Again, we observe that the result obtained using the
OSMP-7 scheme is in good accordance with the result of Blanchard and Renac. In particular, the separation
and reattachement points predicted are the almost the same. The skin friction distribution provided by
Gross and Fasel is in good accordance with the one obtained using the OSMP-7 before the interaction
begins. Nevertheless, the beginning of the interaction is located later in the Gross and Fasel's result leading
to a separation point located at an abscissa bigger than the one predicted by the OSMP-7 and by the DNS of
Blanchard and Renac. Moreover, the reattachement point abscissa calculated by Gross and Fasel is greater
than the one predicted in our study. The numerical computation of the skin friction provided by Degrez et
al. does not match the other results before the beginning of the interaction. The separation point predicted
by Degrez et al. is in accordance with the one predicted by Gross and Fasel. Nevertheless, the reattachement
point calculated by Degrez et al. is close to the one computed in our study. The experimental mesurement of
the separation point is in between the separation point calculated in our study and the separation point given
by Gross and Fasel. The experimental reattachement point is the same than the one provided by Gross and
Fasel. The pressure distribution at y = 0.1 obtained in our study is compared with the distribution provided
by Blanchard and Renac on �gure 25. No shock capturing constraint is used in the DNS of Blanchard and
Renac explaining the spurious oscillations in the vicinity of the discontinuities. The slopes of the pressure
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variations and the locations of the shock wave, the expansion waves and the reattachement recompression
are the same in both simulations.
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Figure 23: Wall pressure distribution for di�erent
schemes
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Figure 24: Skin friction coe�cient distribution for
di�erent schemes
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Figure 25: Pressure distribution at y=0.1 for di�er-
ent schemes

In�uence of the order of accuracy for the discretization of the di�usive terms The compari-
son of the results obtained using the OSMP-7 scheme coupled with a 4th order centered �nite di�erence
approximation for the di�usive �uxes are compared with those using a 2nd order centered �nite di�erence
approximation. No di�erences are noticeable between the results, even for quantities calculated close to the
wall where viscosity plays a dominant role. It shows that a 2nd order centered �nite di�erence approximation
for the di�usive �uxes is su�cient to simulate �ows at such high Reynolds number.
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Figure 26: Wall pressure distribution for the 480 ×
240 mesh calculated using either 2nd order or 4th

order approximation for the di�usive �uxes.
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Figure 27: Skin friction coe�cient distribution for
the 480×240 mesh calculated using either 2nd order
or 4th order approximation for the di�usive �uxes.
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Figure 28: Pressure distribution at y=0.1 for the
480× 240 mesh calculated using either 2nd order or
4th order approximation for the di�usive �uxes.

4 Conclusion

The ability of the OSMP-7 scheme to accurately compute high Reynolds compressible �ows has been assessed
for two well documented test-cases coming from the HiOCFD workshop: the Taylor-Green vortex problem
and the laminar shock-wave boundary layer interaction. Results demonstrate the correct accuracy of the
OSMP-7 scheme to predict turbulent features and the great e�ciency of the MP procedure to capture
discontinuity without spoiling the solutions. Moreover, the order of accuracy higher than 2 for approximating
the di�usive �uxes seems to have negligible in�uence on the solution for such relatively high Reynolds
numbers. Following these results, it is with con�dence that we can undertake the simulation of shock wave-
turbulent boundary layer interaction.
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