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Abstract: A novel hybrid evolutionary multi-objective algorithms (EMOAs) - 
adaptive local search method was applied to multi-objective aerodynamic 
optimization problems for convergence improvement. The directional operator is 
comprised of selection of search direction and a one-dimensional search. 
Probability of the directional operator is adaptively changed based on the relative 
effectiveness of the directional local search operator and evolutionary operators      
such as crossover and mutation. The adaptive directional operator is combined with 
a baseline EMOA, NSGA-II. Multi-objective airfoil design optimization examples 
are defined as drag minimization or lift maximization and L/D maximization in 
cruise and high lift conditions. Results show that the present adaptive local search 
strategy enables significant enhancement of convergence when a local search is 
effective, while minimizing unnecessary computation for cases that a local search 
is not well suited for. Statistical test confirms the superiority of the hybrid method.  
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1.  Introduction 
 
Multi-objective optimization methods are getting more attention than before as single-objective 
optimization methodologies are maturing, and trade-off between conflicting objectives is becoming 
more critical in modern engineering problems of Multi-disciplinary Design Optimization (MDO). 
 Evolutionary algorithms (EAs) are search algorithms based on genetic evolution and natural 
selection. EAs are well suited to Multi-Objective Optimization Problems (MOOPs) because they are 
based on population rather than single solution and therefore are naturally adequate to generate 
distributed solutions on the non-dominated Pareto front.  

A well-known drawback of an EA is its slow convergence to the optimum solution, especially in 
regions near the optimum. This behavior is still true for evolutionary multi-objective algorithms 
(EMOAs) [1-6]. To cope with this problem, hybrid methods combining EMOAs and a local search 
method have been reported.[7-13] The hybrid methods are also referred to as memetic algorithms. [12] 

Local search methods for the hybrid EMOAs can be put into two categories: neighborhood-based 
local searches and directional local searches. Neighborhood-based local search schemes generate 
perturbed solutions around a baseline solution and try to find better solutions than the baseline. The 
directional local search methods conduct a local search along a search direction, which is usually 
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determined by sensitivity information of objective functions with respect to decision variables. So, the 
effectiveness of the gradient-based directional local searches depends on the cost of the calculation of 
the gradient information. Refer to Ref.[13] for a comprehensive review on hybrid methods. 

One of major issues for the hybrid methods is that we do not know a priori if conducting local 
search would be beneficial for a given specific optimization problem; it would be effective for uni-
modal problems or in the last stage of optimization process near the true optimum. However, it might 
be waste of computational budget for multi-modal problems or in the early stages of the evolution 
process, where exploratory search is more needed for a successful optimization. Effective use of 
evolutionary and local directional search operators within available computational budget can be 
implemented by optimum selection of probability for the local search operator, pls, which determines 
the number of individuals going through the local search operator [14]. 

In our previous work [13], we developed a novel hybrid MOEA - adaptive local search method to 
enhance the convergence of MOEAs by combining an efficient directional local search method with a 
baseline MOEA. To manage the computational budget efficiently, we adaptively adjust a probability 
for the local search operator based on the relative effectiveness of the local search with respect to the 
evolutionary operators. The probability is increased if the local search is effective and reduced if the 
local search is not working relatively well compared to evolutionary operators. The adaptive 
probability depends on the performances of evolutionary and local search operators, which are 
affected by property of the problem at hand and convergence stages of evolution processes. The 
proposed algorithm was tested on several analytic test functions with two and three objective 
functions and 10 to 100 decision variables for quantitative evaluation of performances. In the present 
study, the hybrid method in Ref.[13] is applied to multi-objective airfoil design optimization problems 
to show its validity for real engineering applications. Two-objective airfoil design problems are 
defined at subsonic and transonic regimes. One objective is drag minimization or lift maximization 
and the other objective is L/D maximization. For subsonic flow conditions, the XFOIL code was used 
and for transonic flow simulations two-dimensional Reynolds-averaged Navier-Stokes solver was 
adopted. Statistical test is also performed using the Pareto-front solutions from multiple runs of the 
optimization.   

The remainder of this paper is composed as follows: In Section 2, we briefly describe the baseline 
MOEA for the hybrid method. Followed are details of the directional operator in Section 3.The 
adaptive strategy for the hybrid method is summarized in Section 4. Numerical results on multi-
objective airfoil design optimization are presented in Section 5. Finally Section 6 presents concluding 
remarks. 

 

2. Baseline Multi-Objective Evolutionary Algorithms 
 

2.1 Definition of Multi-Objective Optimization Problems 
Multi-objective optimization problems (MOOPs) are defined in their general form as follows: 
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where M, J,and Ndv are the number of objective functions, inequality constraints, and decision 
variables, respectively. xL and xU are the lower and upper bounds of decision variables. In this study, 
objective functions, constraint functions  and decision variables are all real numbers. 

 The dominance relation between solutions of MOOPs is defined by the following two 
conditions:  

 Solution a dominates solution b in minimization problems if 
 1) ( ) ( ) { }Mjallforbfaf jj ,...,1∈≤  
 2) ( ) ( ) { }Mkoneleastatforbfaf kk ,...,1∈<  



In other words, solution a dominates solution b if a is not worse than b in all objectives and a is 
strictly better than b in at least one objective; this is written symbolically as  “ .”  Similarly, if a is 
dominated by b, it is represented as “ .” A solution that is not dominated by any other solutions is 
said to be “non-dominated”; the nondominated solutions form the Pareto optimal set.  

 
2.2 Baseline EMO algorithms 
In this paper, NSGA-II and MOGA were used as baseline EMO algorithms. Since we are interested in 
design problems with real-valued decision variables, we employ real-parameter operators such as the 
simulated binary crossover (SBX) [5] for the crossover and the polynomial mutation [5] as the 
mutation operator for both algorithms. The evolutionary operators are applied to each design variables 
of parents with probability parameters pc and pm for the crossover and mutation operators respectively. 

 
2.2.1 NSGA-II 
NSGA-II (nondominated sorting genetic algorithm II) [2] is used in the first design examples in this 
study as a baseline EMO algorithm because of its popularity and widespread usage in engineering 
MDO applications. NSGA-II is an elitism approach utilizing the fast nondominated sorting. The 
crowded distance sorting is used for diversity preservation. Evolutionary operators such as crossover 
and mutation are conducted to generate Npop children from the parents. Here Npop is the populatin size. 
Npop children and Npop parents are combined to build a set of size 2Npop, which undergoes the reduction 
process. Fig. 1(a) shows the main procedure of NSGA-II. In Fig. 1, P stands for parents set of size 
Npop, Q stands for children set of size Npop, and R = P∪Q is the combined set of parents and children. 
t is for generation number. 

 
2.2.2 MOGA 
In design examples in this study, a baseline EMO algorithm for the hybrid method is a modified 
MOGA (Multiobjective Genetic Algorithm) with a new fitness sharing  [16], which consists of the 
Pareto ranking, a novel fitness sharing method and an elite preservation approach. In MOGA, with 
a population size of Npop, Npop mating solutions are selected from Npop parents by the stochastic 
universal sampling. For an elite preservation, all nondominated solutions are preserved in a separate 
archive and dominated solutions are removed from the archive. The overall procedure for MOGA is 
depicted in Fig.2. 

 

 
Figure 1: Procedure of solution set management for NSGA-II and its hybrid EMOA 
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Figure 2: Procedure of solution set management for MOGA. 

 
 

3. DIRECTIONAL LOCAL SEARCH OPERATOR 
 

For the directional local search in the hybrid EMOA, we define a composite objective function Z, 
which is a sum of normalized objectives, to be minimized by the local search: 

𝑍𝑖 = ∑
𝑓𝑚�𝑥𝑖�

−𝑓𝑚𝑚𝑖𝑚

𝑓𝑚𝑚𝑚𝑥−𝑓𝑚𝑚𝑖𝑚
𝑀
𝑚=1 ,                                                                    (2) 

where fm
max and fm

min are the maximum and minimum objective function values of the mth objective 
function for the current non-dominated solutions in the population, and xi is the design vector for 
solution i. 

In multi-objective problems, a composite or aggregated objective function approach may have 
difficulties in finding solutions on a nonconvex Pareto front [5, pp.55-56]. In general, however, 
directional search methods do not suffer from the nonconvexity issue: If an initial solution lies off the 
nonconvex Pareto front and search direction is properly selected, application of a directional search 
can find a solution on the concave part of the Pareto front.  

The directional local search operator proposed in this study comprises two steps: the determination 
of search direction and the local search along the search direction in order to minimize the composite 
objective function in Eq. (2).  

 
3.1 Determination of search direction 
Gradient calculation of an objective function by using a finite differencing requires Ndv function 
analyses.  Therefore computational cost for the brute-force calculation of function gradient easily 
becomes prohibitively large for design problems with costly objective and/or constraint functions and 
many number of design variables. Therefore, it would be beneficial to determine search directions 
without explicit computation of objective fucntion gradients. In this study, the algorithms suggested in 
Ref.[13] is followed. 

Firstly, we build stencils for each starting solution of the local line search making use of 
information of existing solutions obtained in the optimization procedure. A stencil set S is defined as a 
set of neighbor solutions to be used for approximation of a search direction for an initial solution x0: 
𝑆(x0, 𝑟) = { x | x ∈ 𝑇  𝑎𝑎𝑎  (𝑥0𝑖 − 𝑟 ≤ 𝑥𝑖 ≤ 𝑥0𝑖 + 𝑟, ∀𝑖 = 1, … ,𝑎)  𝑎𝑎𝑎  (x ≺ x0 𝑜𝑟  x ≻ x0)}  (3) 

where T is a set of all individuals occurred in the evolution history. The smaller the radius r is, the 
more accurate the resulting search directions would be. However, it is not guaranteed whether one 
could find sufficient number of solutions within the specified radius to perform the directional search. 
Specifying a radius small enough for accurate search directions and large enough to have at least one 
stencil could be difficult and problem dependent.  

In this study, stencils are selected from existing solutions in zone of dominance of the objective 
space. In other words, solutions that dominate or are dominated by the initial solution point are 
considered to be included in the stencil. The stencil radius r is set as 1.0. Since all the decision 
variables are normalized into a domain of [0, 1] in the present optimization, radius of 1.0 means the 
there is no constrained radius for S. In our previous work [13], we conducted numerical experiments 
with three different values of r: 0.1, 0.3 and 1.0, and found that r = 1.0 gives satisfactory results 



To select a limited number of stencil solutions, we put the latest solutions in the design history into 
S until |S|max is reached. |S|max is set to be the same as the number of decision variables Ndv in this 
study.  

Calculation of a centroid of stencil solutions is performed by a weighted summation of decision 
variable vectors using the following relation: 

.                                                                          (4) 

The weighting factor w0j is defined as the inverse of Euclidean distance in the design space 
between solutions 0 and j in order to emphasize genotypically closer stencil solutions in the weighted 
sum.  

                                                                             (5) 

 When the centroid xc is calculated, the closest solution to the centroid is selected from S, and is 
newly set as xc. Once xc is determined in S, a line search is conducted for Z in the direction 
connecting xc and x0 with a scalar parameter α as depicted in Fig.4. 

 
3.2 Line Search 
Once xm and xl are determined, a new solution xr is selected as xr = xm + (xm - xl), and function 
values are calculated at xr. If the following condition for convexity is satisfied for the three solutions 
as illustrated in Fig. 3, 

𝑍(𝛼𝑚)−𝑍(𝛼𝑙)
𝛼𝑚−𝛼𝑙

< 𝑍(𝛼𝑟)−𝑍(𝛼𝑚)
𝛼𝑟−𝛼𝑚

,                                                      (6)   
the objective function Z is approximated as a quadratic polynomial of α:  

   Z(α) = aα2 + bα + c.                                                                   (7) 
The coefficients a, b, and c in Eq. (7) are calculated by the three function values, and the second 

function call is made for Z(α∗) with the estimated optimum position α∗ = –b/2a. (See Fig.3 (c)) 
If the convexity condition in Eq. (6) is not satisfied, the step size is doubled to find a new xr, and 

the convexity condition is checked again. This procedure is repeated for Nmax times as shown in Fig.4 
(b). In this study, Nmax is set as 1, which means the total computational cost in a line search is at most 
two function calls.  

When the composite function Z shows a convex behavior, the final output of the local search is 
determined as follows: 

𝑍𝑜𝑜𝑜 = 𝑍(𝛼∗)                                                                  (8) 
If the composite objective is not convex in the line search procedure, the computational cost for 

the line search is one function call, and the final output function of the local search is determined as 
the best solution found in the line search procedure: 

𝑍𝑜𝑜𝑜 = min�𝑍(𝛼𝑚),𝑍(𝛼𝑟)�                                                                 (9) 
The improvement made by the local search in terms of Z is measured by the difference between 

initial and final values of Z:  
                                                                         (10) 

Regardless of the value of impls, all the newly computed solutions during the local search are 
added to the combined set of parents and children solutions to undergo the ranking and selection 
process. The local search operator is applied to each of the N parents with a probability of pls. Then 
roughly N× ×pls new solutions are added to the combined 2N solutions to join the reduction process 
for best-N solutions as illustrated in Fig. 1, which shows the procedure of solution set management for 
the hybrid EMOA-local search method. Although Fig.5 is depicted for NSGA-II, the procedure for 
any other baseline EMOA , e.g. MOGA, is very similar. 

A new parameter Cls, the computational cost of a line search, is defined for a later use in an 
adaptive local search strategy as the number of additional function evaluations needed to conduct a 
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line search. In most cases, two evaluations of objective functions are required for each line search. 
Therefore,  in Table 1 is set equal to two, as a reference number of function calls of a line search. 

  
(a) Convex distribution of three points   (b) Concave distribution of three points 

 
(c) Quadratic fitting and optimal point for convex three points 

Figure 3: Line search using a three-point quadratic fitting 
 

 
3.3 Constraint handling in the directional search 
For constrained problems, stencils for gradient calculation are sought among feasible solutions only. 
Also, optimal solutions in the line search procedure are found in the feasible region. If solutions with 
α=1 or α= α∗ are infeasible for a geometric constraint, a nearest boundary of the feasible region is 
found by an iterative procedure. If the flow field for the solution with α=1 does not converge, the 
local line search is stopped. Otherwise, another function call is made for α= α∗. If the flow field for 
the solution with α= α∗ does not converge, Z(α1) is returned as an output of the local search.  

 
 
 

Algorithm eLS 
Input: x0, r 
Output: x0, line search solution set L added to R 
1: Build S(x0, r) 
2: If |S| > 0 Then 
3:    Find a centroid solution xc in S  
4:    Conduct LineSearch_eLS 
5:    R := R ∪ L 
6: Eneif 

(a) Overall procedure of the present local search method 
Algorithm LineSearch_eLS 
Input: x0, xc, Z0, Zc, Nmax 
Output: xopt, line search solution set L 
1: If xc ≺ x0  Then 
2:    xl := x0; xm := xc 
3: Else 
4:     xl := xc; xm := x0  
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5: Endif 
6: xr := xm + (xm - xl) 
7: αl := 0; αm := 1; αr := 2 
8: L := {xr} 
9: j := 1 
10: While j <= Nmax 
11:     xopt = xr 
12:     Check convexity of Z at xl , xm , and xr   
13:     If Z is convex then 
14:        Find an optimal step size α∗  
15:        xopt = xl+ α∗(xm - xl) 
16:        L := L ∪{xopt} 
17:        j := Nmax + 1 
18:     Else 
19:        αr := 3 
20:        xl = xm;  xm = xr; xr = xr + 2(xm - xl) 
21:        L := L ∪{xr} 
22:        j = j + 1 
23:     Endif 
24: End While  

(b) Procedure of LineSearch_eLS   
Figure 4: Present directional local search method eLS

  
 

4. ADAPTATION STRATEGY 
 
4.1 Hybrid EMOA-adaptive local search 
An adaptation strategy for adjusting local search parameters should be applicable to both unimodal 
and multimodal problems without any a priori knowledge on MOPs at hand. For uni-modal prblems, 
a large Pls would be beneficial to get fast convergence to the real Pareto-optimal front. For multi-
modal or severely nonlinear problems, a small or even zero pls would be preferred. Even for a same 
problem, the optimal value of pls would change according to the stage of evolution process; in an 
earlier stage, more global exploration would be preferred than in a later stage of evolution process. 
However, in general we are not aware of which stage the evolution process is in, because the required 
number of generation and population for an evolution to fully converge would be problem dependant.  

In other words, an adaptation algorithm should be able to detect property of MOPs on the fly and 
adjust parameters accordingly. For example, if a directional local search is more effective than genetic 
operators the local search probability should be increased, and vice versa. In this study, and local 
search probability pls was used as adaptation parameter. Adaptation of the parameter is based on local 
and global effectiveness of a local search operator. The local effectiveness is measured by quantitative 
comparison of improvements made by genetic operators and a local search operator. The global 
effectiveness is determined by the ratio of numbers of nondominated solutions by local search and 
genetic search operations.  

 
4.2 Calculation of average improvement by evolutionary operators 
Before we proceed to present a strategy for the adaptive local search, a measure of average 
improvement by genetic operators in terms of the composite objective Z is be defined. For this 
purpose, we compare a mating pair P1, P2 and their two children C1 and C2 regarding the dominancy 
relations and differences in F as illustrated in Fig. 5. The improvement ∆Fij≥0, i, j∈{1,2} is defined as  
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Mutually non-dominating parent and child solutions are not taken into account in the averaging 
process by increasing Nnocount, the number of no-counted solutions by one. After calculating ∆Fij for all 
mating couples of parents and their children in a generation, the average improvement by 
evolutionary operators impevol is calculated by  
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where Nnocount is defined as the number of parent solutions in the mating process of each generation 
that are mutually nondominating with their two children. For example, in Fig. 5, Nnocount is increased 
by one because P1 is neither dominating or being dominated by C1 or C2 and P2 is dominated by C2. 
Also, ∆Z11, ∆Z21, and ∆Z22 are all zero, and ∆Z12 is non-zero from Eq. (11). 

The metric of evolutionary improvement impevol provides a single averaged value of distributed 
improvements in terms of convergence for a population of each generation. The metric impevol 
concerns only convergence aspect of improvement made by evolutionary operators because it is 
meant to be compared with improvement in Z by local search given in Eq. (10). We are not 
considering enhancing diversity or sidestepping by eLS.[13] 

 

 
Figure 5: Calculation of improvement by evolutionary operators.  

 
4.3 local effectiveness of a local search 
Given the measures of convergence improvement by the directional local search operator and 
evolutionary operators, defined in Eqs. (10) and (12), respectively, the local effectiveness of a local 
search operator to evolutionary operators can now be determined. Fig. 6 shows three zones in the 
objective space representing zones of success, failure and nondeterminacy for a local search operator. 
For evaluation of local effectiveness (worthiness) of conducting a local seach, we introduce the 
required improvement in Z, impreq ≡ Cls × impevol, to impose a condition that a local search should 
make (at least) Cls times more improvement than evolutionary operators since it spends Cls times more 
computational cost than evolutionary operators. The center point of the dotted cross in Fig. 6 
represents the initial solution in the objective space, and the other points are possible locations of a 
final solution of a directional local search. If the local search achieves at least the required 
improvement impreq, the local search is defined as successful. If the final solution is dominated by the 
initial solution, the local search defined as a failure. If the local search is not successful and the final 
solution is not dominated by the initial solution, the solution lies in the zone of non-determinacy: we 
cannot tell whether the local search is a success or a failure at this moment. In summary, the success 
and failure of a local search is determined as follows: 

 if  impls ≥ impreq 
a local search is a success; Nsuccess := Nsuccess  +1  

 otherwise 
  if the initial solution dominates the final solution 

a local search is a failure; Nfailure := Nfailure  +1 
endif 

 endif 
The numbers of success (Nsuccess) and failure (Nfailure) are counted for all the local search operation 

conducted in each generation. The difference of numbers of successes and failures, Nsuccess −Nfailure, 
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defines the local effectiveness in a generation and is used as major indicator in our adaptation strategy. 
If Nsuccess −Nfailure > 0, we define the local search in the generation as locally effective. 

 
Figure 6: Schematic representation of three zones for defining the effectiveness of a local search over 
evolutionary operators. 

 
4.4 Global effectiveness of a local search 
Global effectiveness is to make an adaptation more conservative even when the local search is 
seemingly locally effective (Nsuccess > Nfailure). The global effectiveness can be evaluated by checking 
the number of local search solutions in the nondominated solutions, which can be considered as final 
solution outputs of the optimization. The basic idea behind the global effectiveness is that the number 
ratio of local search solutions to evolutionary search solutions in the set of nondominated solutions 
should be higher than the computational cost ratio spent for the local search and evolutionary search. 
If it is not the case, we can tell that the local search is not working properly in a global perspective 
even if it appears locally effective. A constraint for the global effectiveness can be written as  

𝐵𝑙𝑙 ≥ 𝐶�̅�𝑙 × 𝑝𝑙𝑙                                                                          (12) 
where Bls is the ratio of the number of local search solutions to the number of evolutionary search 
solutions contained in the set of nondominated solutions as defined in Table 1. For EMOAs with 
external archive for non-dominated solutions such as MOGA [16], Bls is the defined in the external 
archive. For NSGA-II, Bls is defined for the nondominated solutions before the selection process. 
Another constraint related to the global effectiveness is an upper limit constraint on Bls; It is based on 
empirical observations that at least half of the nondominated solution set needs to be filled with 
solutions by evolutionary operators to prevent genetic shift and premature convergence. Thus, an 
additional constraint is introduced: 

Bls  ≤ 1.0                                                                                    (13) 
The two constraints for the global effectiveness in Eqs. (12) and (13) can be put together as 

follows: 
𝐶�̅�𝑙 × 𝑝𝑙𝑙 ≤ 𝐵𝑙𝑙 ≤ 1.0                                                                        (14) 

 
4.4 Overall Procedure of Hybrid MOGA-adaptive local search approach 
In our previous work [13], the stencil radius r and the local search probability pls were tested as 
adaptation parameters and the results were compared. For many test functions of various properties, it 
was found that keeping r=1 and adjusting pls gave satisfactory results. Therefore, in the present study, 
the local search probability pls is selected as the adaptation parameter. The adaptation method is based 
on local and global effectiveness of a local search at each generation. If the local search is globally 
effective in a generation, an adaptation parameter is increased based on the local effectiveness. 
Otherwise, the extent of application of a local search is reduced because the local search solutions are 
not good enough to remain in the nondominated solution set or the local search is too prevailing. The 
detailed algorithm of the present adaptation strategy is presented in Fig. 7. Performance indices and 
parameters for the adaptive local search strategy are listed in Table 1. The present adaptive strategy 
can be combined with any EMOAs and local search methods. 

The adaptation formula is as follows: 1) If any of the global effectiveness constraints in Eq. (14) is 
violated, pls is reduced by 10%. 2) Otherwise pls is adjusted by: 

pls:= pls + ∆ pls (Nsuccess −Nfailure)                                                         (15) 
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Figure 7:  Algorithm for the adaptive directional local search operator, AdaptiveLocalSearch [13] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Parameters used or defined in the local search        
Nam
e Definition Remarks 

Bls
 number of local search solutions in nondominated soluti

number of evolutionary search solutions in nondominated so
 

Ratio of local search 
solutions in the nondominated 
solutions 

lsB  average of lsB in the whole optimization process  

Cls Cost, or the number of function calls for each local search. In the present study, Cls = 
2 

 Reference number of function calls in a local search set as 2 

impls 
Improvement in the composite objective made by a local 

search 
(Eq.10) 

impev

ol 
Averaged improvement in the composite objective by 
evolutionary operators at each generation (Eq.12) 

impre

q 
impevol × Cls,  

required improvement for 
a local search to be more 

effective then evolutionary 
operators Nls number of local search runs in each generation  

Nmax 
Maximum number of trials for checking local convexity in 

a line search 1 (input) 

pls Local search probability [pls
min, pls

max] 

  1
Cls

  number of function calls by local search
number of function calls by evolutionary search

 

Average of effective local 
search probability based on 
actual function calls by local 
search 

|S|max Maximum size of stencil set S Set as max(100, Ndv) 
(input) 

max
lsp  prespecified maximum value for lsp  0.20 (input) 

lsp∆  increment step for variation of lsp  popN1 (input) 

pls
min minimum value for lsp  popN1 (input) 

pls
max maximum value for lsp  1.0 (input) 

                            
 

5. AIRFOIL DESIGN EXAMPLES 
 
5.1 Design Problems 
For performance comparison of a baseline EMOA and the hybrid EMOA-adaptive local search 
method on multi-objective aerodynamic design optimization problems, here conducted are subsonic 
and transonic airfoil design examples. For subsonic airfoil design problems, the following two cases 
are considered: [17] 

L/D maximization and drag minimization at  
1) a cruise condition (M∞ = 0.417, ΑΟΑ = 0º, Re = 2.5×106) and  
2) a loiter condition (M∞ = 0.1, ΑΟΑ = 6º, Re = 6.5×105.) 
 
For transonic airfoil design problems, also two cases are considered: [18] 
3) L/D maximization and drag minimization at a cruise condition (M∞ = 0.78, ΑΟΑ = 2º, Re = 

7.0×106.) and  
4) Lift maximization at flow condition 1 (M∞ = 0.20, AOA = 10.8º, Re =   5.0×106)  

and L/D maximization at flow condition 2 (M∞ = 0.77, ΑΟΑ = 1.0º, Re = 1.0×107) 

lsC

lsp

opt ls Z Z imp − = 0 



All the above design problems are two-objective problems. And the first three design examples are 
single-point design, and design example 4 is a two-point design. 

We imposed two constraints on all the design problems: one is that the maximum airfoil thickness 
should not be less than 10% chord length, and the other is that the flow behavior should be steady at 
the design condition. The steady flow constraint is assumed to be satisfied if a flow simulation 
converges for a specified convergence criterion. 

The subsonic and transonic design examples are conducted with different flow analysis code, 
shape parameterization, and baseline EMOA, which will be described below. 

 
5.2 Flow Simulation 
For the subsonic airfoil design problems, the XFOIL code [19] was used because of its validated 
accuracy for subsonic airfoils and rapid turnaround time. The XFOIL code combines a panel method 
and an integral boundary layer formulation for simulation of potential and viscous boundary layer 
flow around airfoils. The number of panels on airfoil was selected as 160 after sensitivity study on the 
number of panels around an airfoil.  

 
5.3 Airfoil Shape Parameterization 
For the subsonic airfoil design problems, the airfoil shape is parameterized by the CST method. [20] 
There are sixteen control points used to define an airfoil shape. Eight control points are arranged at 
the upper and lower side of airfoil, respectively.  

For the transonic design problems, a third order B-spline method is adopted for geometric 
parameterization. There are nine control points distributed around an airfoil shape. Two control points 
are fixed at the trailing edge (1, 0) and one control point is fixed at the origin (0, 0), which results in 
twelve design variables: x and y coordinates for six movable control points. [21] Figure 8 depicts B-
spline control points around an airfoil. 

 
 

 
Figure 8: B-spline parameterization of transonic airfoil shape:  

12 design variables are used for the parameterization 
 

5.4 Baseline EMO Algorithms 
In subsonic airfoil designs, NSGA-II is used as a baseline EMOA, to which the adaptive 

directional local search operator is added. The hybrid algorithm of NSGA-II + adaptive local search 
method is denoted as NSGA-II+als. For transonic airfoil design problems, MOGA is adopted as a 
baseline EMOA. The hybrid algorithm will be denoted as MOGA+als. 

For evolutionary operators in both baseline EMOAs, we use the SBX recombination with a 
distribution parameter ηc = 15 and probability of crossover, pc = 1, and the polynomial mutation 
operator with a distribution parameter ηm = 20 and probability of mutation, pm = 1/Ndv. [22] 
Constraints are treated by a Pareto-based constraint handling technique. [23] 

The purpose of using two different baseline EMOAs is not to compare NSGA-II and MOGA, but 
to show that the present adaptive local search method can be combine with general baseline EMOAs. 
Also we want to show that the hybrid method improve performance when the design space is uni-
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modal and does not do any harm to the performance of the baseline EMOA when the design space is 
multi-modal by minimizing the use of the function call budget. 

 
5.5 Performance Index and Statistical Test 
For comparison of quality of Pareto front solutions obtained by the multi-objective algorithms, we use 
the hypervolume indicator, which measures both convergence and diversity of solutions on the Pareto 
front. We used the hyp_ind program contained in performance assessment tools of PISA.[24] The 
hyp_ind calculates the hypervolume difference indicator, IH

−, the difference in hypervolume between 
a reference set and an approximate set under consideration, and therefore the smaller is the better. 

Comparison of performance of stochastic algorithms, statistical test is required for multiple 
independent runs of each algorithm. In this study, the quick turnaround time of XFOIL enabled to run 
optimizations multiple times. So, subsonic airfoil design examples using the XFOIL code was run 31 
times, and statistical test was performed using a program for the Kruskal Wallis test included in PISA 
for conducting a nonparametric test for difference between multiple independent samples. The 
Kruskal Wallis test is adopted with a confidence level of 95% (i.e., p value below 0.05.). 

In case of transonic designs, the computational burden for simulation of two-dimensional Navier-
Stokes code was prohibitive for running 31 optimizations, and thus just two optimizations was run for 
comparison. 

 
5.6 Results of Design Examples 
5.6.1 Design Example 1: Subsonic Cruise Design 
For the baseline EMOA, the population size and number of generation are set to be 96 and 60, 
respectively. Hence the total number of function evaluation is 5,760. For the hybrid method, the 
population size is the same, and the generation number is adjusted so that the total number of 
evaluations is not exceeded. The optimization was run 31 times independently for the algorithms 
under comparison: the NSGA-II and the NSGA-II+als. The multi-objective optimization problem at a 
cruise condition is defined as follows: 

fieldflowsteady
cttoSubject

CMinimize
DLMaximize

d

10.0

/

max ≥
                                                                (16) 

The flow condition is defined as: M∞ = 0.417, ΑΟΑ =   0º, Re = 2.5×106.  
In Fig.9, box plots for hypervolume indicator are depicted. A box plot represents minimum, first 

quartile, third quartile and maximum values of multiple runs. A dot in the box indicates second 
quartile or a median value. A statistical test shows that the performance of NSGA-II+als is better than 
NSGA-II with a p value of 0.02694.   

Figure 10 shows variation of adaptation parameters and pls for an optimization run corresponding 
to third quartile of the box plot for NSGA-II+als. Impevol, the average improvement made by the 
evolutionary operators decreases from O(2) to O(-3) indicating convergence of the evolutionary 
optimization process. In the run, pls increases from 1% up to 16% in the middle of the design history 
because the directional local search is locally effective. After this point, pls decreases to , but the 

constraints of the global effectiveness, ≤  is always satisfied throughout the optimization 
history. It is also noted that the solutions found in the local search are of good quality to survive in the 
reduction process for Best-N solutions, although  gradually decreases along the optimization 
process. 

Pareto fronts for the NSGA-II and NSGA-II+als are depicted in Fig.11. The Pareto front by the 
NSGA-II+als is superior to the results of the baseline algorithm due to the effectiveness of the 
adaptive local search.  

Airfoil shapes and surface pressure distributions are shown in Fig.12 for two extreme solutions and 
one compromising solution on the Pareto front obtained by NSGA-II+als. 
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Figure 9: Box plots of hypervolume indicator for the design example 1 (smaller value is better). 

 

 
Figure 10: History of adaptive local search parameters for design example 1 

 

 
Figure 11: Comparison of Pareto fronts for design example I. Yellow circles indicate two extreme 

and one compromising solutions to be presented in the following figure. 
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Figure 12: Results of the NSGA-II+als run for design example 1 

 
 

5.6.2 Design Example 2: Subsonic Loiter Design 
The same multi-objective optimization problem in Eq.(16) is also used for a loiter design with flow 
conditions for loitering: M∞ = 0.1, ΑΟΑ = 6º, Reynolds number = 6.5×105. 

In Fig.13, box plots for hypervolume indicator of example 2 are depicted. For the multi-objective 
optimization problems, it is show that the performance of NSGA-II+als is almost same as NSGA-II, 
and the p value is 0.3743, which does not satisfy the significance level. 

Figure14 show that variation of adaptation parameters and pls which corresponds to middle point 
of the box plot for NSGA-II+als. Impevol, the average improvement made by the evolutionary 
operators decreases from O(2) to O(-3) indicating convergence of the evolutionary optimization 
process. In this run, pls is hardly perturbed in the design history until the number of function 
evaluation is about 35,000, because the constraint of global effectiveness lsp ≤ lsB  is not satisfied. 

Since  is lower than , it is noted that the local search solutions by the minimum magnitude of 
pls are having difficulties to survive in the reduction process for Best-N solutions. pls is slightly 
perturbed when the number of function evaluation is about 40,000. However, it seems like the local 
search solutions does not make a significant difference in the optimization process, presumably 
because the loitering condition with a relatively high AOA makes the design space multi-modal. 

Pareto fronts for the middle points of the box plots by NSGA-II and the NSGA-II+als are depicted 
in Fig.15. In the present case, Pareto front by the NSGA-II+als is basically supposed to be very 
similar to the result of the NSGA-II algorithm due to fact that the adaptive local search is ineffective.  

Airfoil shapes and surface pressure distributions are compared in Fig.16 for two extreme solutions 
and one compromising solution on the Pareto front of NSGA-II+als. The minimum Cd solution has 
the smallest thickness and camber, while the maximum L/D solution has the largest thickness and 
camber. 
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Figure 13: Box plots of hypervolume indicator for the design example 2 (smaller value is better). 

 

 
Figure 14: History of adaptive local search parameters for design example 2 

 

 
Figure 15: Comparison of Pareto fronts for design example 2. Yellow circles indicate two extreme 

and one compromising solutions to be presented in the following figure 
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Figure 16. Results of the NSGA-II+als for design example 2 

 
 

6.  Conclusions 
 
A novel adaptive hybrid strategy for EMOA and a directional local search method has been applied to 
multi-objective aerodynamic optimization problems. The adaptive strategy adjusts probability for a 
local search operator depending relative effectiveness of evolutionary operators and a local search 
operator considering solution improvement, required computational cost and survival rate of local 
search solutions through the reduction process. Optimization examples are defined for multi-objective 
airfoil design in subsonic and transonic flow regimes with constraint on maximum thickness and flow 
steadiness. Results show that the suggested method successfully improves convergence for cases 
where the local search works well and minimizes waste of computational cost when local search is not 
effective. Statistical test confirms superiority of the hybrid method to the baseline EMOA. The local 
search is found to be effective for cruise designs and ineffective for lift maximization or high angle of 
attack conditions, which are prone to flow separations  
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