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Abstract: This article presents constrained numerical optimization of fourth-order L-stable mul-
tistep Runge-Kutta (MRK) methods. The methods are optimized relative to composite objective
functions accounting for accuracy, internal stability, conditioning, and computational cost. Global
stability properties and bounds on the coe�cients are enforced through linear and nonlinear con-
straints. The relative bene�ts of increasing the number of stages versus the number of steps is
discussed, along with comparisons to implicit linear multistep (LM) and implicit Runge-Kutta
(RK) methods. With the chosen objective function, the optimized MRK methods are not ex-
pected to be the most e�cient. However, they do obtain a combination of properties that neither
the LM or RK methods can. Furthermore, when applied to laminar �ow over a circular cylinder,
the optimized L-stable fourth-order two-step four-stage sti�y-accurate singly-diagonally-implicit
multistep Runge-Kutta method SDIMRK[4,2](4,2)L_SA_0 was the most e�cient. This is partly
due to the accuracy being more related to the local truncation error for this case, rather than
the L2-principal error norm for which the methods were optimized. Simulation of van der Pol's
equation also con�rms the order properties of all methods for nonsti� and sti� problems.
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1 Introduction

Sti� initial-value problems (IVPs) arise frequently in computational �uid dynamics (CFD), either from the
underlying physics governing the �ow or through numerical approximations. These IVPs are characterized
by high-frequency parasitic modes, in addition to the relevant driving modes [1]. Parasitic modes are small,
but must remain stable. The numerical methods applied to solve these IVPs must therefore balance accuracy
of the driving modes, the stability of the parasitic modes, and computational cost to be useful and e�cient.

Traditionally, sti� IVPs arising in CFD are solved using either low-order implicit linear multistep (LM)
or higher-order implicit Runge-Kutta (RK) methods. Unconditionally stable LM methods are known to be
robust and e�cient over a single time step. New solution points are created using solution and function values
from previous time steps, as well as a single new implicitly de�ned function value. However, unconditionally
stable LM methods are limited to second-order [2]. As the desired accuracy becomes increasingly stringent,
the number of time steps required to obtain a result can become prohibitive.

Fortunately, unconditionally stable implicit RK methods can be constructed for arbitrary orders of accu-
racy [3]. This can greatly reduce the number of time steps required to achieve a prescribed level of accuracy.
Implicit RK methods construct a new solution point from the solution value at the previous time step, as
well as multiple new implicitly de�ned function values computed at o�-step locations. The o�-step solution
points are called stages. Therefore, over one time step RK methods are more computationally expensive
than LM methods. When the desired level of accuracy is stringent, the reduction in total number of time
steps can outweigh the additional cost per time step.

Another, less common, alternative is to use generalizations of LM and RK methods which combine the
properties of both classes. Many of these methods can be described by the umbrella class of Multistep
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Runge-Kutta (MRK) methods [4]. These methods make use of both multiple steps and multiple stages.
The interest in this article is to be able to achieve high-order accuracy and unconditional stability, while
reducing computational cost per time step. Another advantage of implicit MRK methods is the ability to
achieve higher-stage order than implicit RK methods. This is a particular bene�t for IVPs which exhibit
order reduction, such as di�erential algebraic problems. In this paper, we will focus on the construction and
evaluation of MRK methods which use past solution values only. Methods that make use of past function
values, will be left to a future paper.

The construction of implicit time-marching methods often begins with solving the desired order condi-
tions. Generally, this will only determine a subset of the coe�cients. As the size, order and complexity of the
methods grow, it becomes increasingly di�cult to assign values to these undetermined coe�cients which max-
imize computational e�ciency and satisfy the desired stability criteria. In this article we apply constrained
numerical optimization to the construction of new fourth-order L-stable sti�y-accurate singly-diagonally-
implicit MRK methods. The undetermined coe�cients are optimized relative to objective functions which
account for accuracy, internal stability, conditioning, and computational cost. The desired global stability
properties are enforced with nonlinear constraints. This is similar to the work done for implicit RK methods
[5, 6, 7], extending it to the class of implicit MRK methods. It also broadens the work presented by Boom
[6]. The properties of the novel methods are veri�ed through numerical solution of van der Pol's equation
and laminar �ow over a circular cylinder.

Section 2 gives a short review of implicit MRK methods and their properties. These properties are further
discussed in the description of the optimization procedure presented in Section 3. The novel optimized
implicit MRK methods are presented in Section 4 and compared numerically in Section 5. Conclusions are
presented in Section 6.

2 Multistep Runge-Kutta Methods

A multistep Runge-Kutta (MRK) method applied to the initial-value problem (IVP)

Y ′ = F(Y, t), Y(t0) = y0, t0 ≤ t ≤ tf , (1)

approximates the next solution point as

y[n+1] =

r∑
j=1

vjy
[n−j+1] + h

s∑
j=1

bjF(Yj , t
[n] + h cj), (2)

where h is the time step size, n is the time step index such that y[n] ≈ Y(t[n]) for t[n] = t0 + hn, r is the
number of past solution values used (number of steps), and s is the number of internal stage approximations

Yk =

r∑
j=1

Uk,jy
[n−j+1] + h

s∑
j=1

AkjF(Yj , t
[n] + h cj) for k = 1, . . . , s. (3)

The coe�cients of a particular scheme are de�ned by the matrices A and U , and the vectors b and v. The
internal abscissa vector c is determined from these coe�cients using the �rst stage order condition described
in Section 2.1. Note that this de�nition can easily be extended to systems of di�erential equations using
Kronecker products.

In this article we are interested in singly-diagonally-implicit MRK methods. This places additional
restrictions of the A coe�cient matrix: that it be lower triangular and have a constant diagonal coe�cient.
A lower triangular A coe�cient matrix makes the solution to each internal stage approximation independent
of subsequent stages. Therefore, the stages can be solved sequentially. The restriction on the diagonal
coe�cient steps can improve the e�ciency of Newton-type processes commonly used to solve the resulting
nonlinear system at each stage. In this case, the residual equation for an intermediate stage (3) can be
written as

Rk =
Yk −

∑r
j=1 Uk,jy

[n−j+1]

h
−

k∑
j=1

AkjF(Yj , t
[n] + h cj) = 0. (4)
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and the Jacobian with respect to the given internal stage approximation Yk is

Ak =
∂Rk
∂Yk

=
1

h
I −Akk

∂F(Yk, t
[n] + h ck)

∂Yk
, (5)

where I is the identity matrix. If the diagonal entries of the A coe�cient matrix are equal, then when the

second term in the Jacobian ∂F(Yk,t
[n]+h ck)
∂Yk

varies slowly with respect to the step size h, the Jacobian can
be approximated as constant over one or more time steps. Thus operations on the Jacobian, such as an
LU decomposition or the construction of a preconditioner, can be reused in each stage without signi�cant
reduction in convergence [8, 9].

Another restriction that can be placed on the coe�cients of a given MRK method is known as sti�
accuracy. The algebraic conditions for this restriction are

cs = 1 bT = As,: and vT = Us,:, (6)

implying that y[n+1] = Ys. Sti� accuracy comes from a well-known study of order reduction by Prothero and
Robinson [10]. Order reduction is the phenomenon in the solution of sti� IVPs where high-order implicit
time-marching methods exhibit lower order convergence than predicted by theory. Sti� accuracy does not
eliminate order-reduction but does in�uence both the stability and convergence rate observed. This property
also plays a role in the convergence rates of di�erential algebraic and singular perturbation problems, for
example van der Pol's equation (See e.g. [11] and Section 5).

2.1 Order conditions

A time-marching method is said to be of order p if the local error is:

e = y[1] − Y(t0 + h) = O(hp+1). (7)

Using Butcher series and the following augmented matrices

B =

[
bT

0(r−1)×s

]
and V =

[
bT

I(r−1)×(r−1) 0(r−1)×1

]
. (8)

it can be shown that an MRK method will be of order p if [12]:

O(t) = (V − I)Q(t)−
∑
u⊂t

(
ρ(t)

ρ(u)

)
α(u, t)

α(t)
Q(u) + ρ(t)B

m∏
k=1

Y(tk) = 0, ∀t such that 0 ≤ ρ(t) ≤ p, (9)

where t = [t1, . . . , tm] is a rooted tree of order ρ(t) with m subtrees joined by a single branch to the root.
Note that the empty tree ∅ with ρ(∅) = 0 is assumed to be a subtree of any terminal vertex in a given tree.
The linear map Q(t) : t→ R is equal to [0ρ(t), 1ρ(t), . . . , (r−1)ρ(t)] for MRK methods, α(t) is the number of
monotonic labellings of the tree t starting with the root, α(t, u) is the number of monotonic labellings such

that the subtree u, with the same root as t, is labelled �rst. Here
(�
�

)
represents the binomial coe�cient

and the product
∏

is computed element wise. Finally, the contribution from the stages is

Y(t) = UQ(t) + ρ(t)A

m∏
k=1

Y(tk) (10)

This expression can also be used to de�ne the stage order q of an MRK method:

cρ(t) = UQ(t) + ρ(t)Acρ(t)−1, ∀t such that ρ(t) ≤ q. (11)

These order and stage order conditions are not necessarily easy to solve, but they form a necessary and
su�cient set of conditions for order p and stage order q, respectively.
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Simplifying order conditions: In this article we apply the full order conditions in the derivation and
optimization of new methods. However, the extent to which the methods satisfy the simplifying conditions
of Burrage [13] is presented for reference. These conditions were designed to ease the construction of new
higher-order methods and form a su�cient but not necessary set of requirements for order p. Here we use
the additional freedom a�orded by the full order conditions in the optimization to improve e�ciency and
robustness. In future, the simplifying conditions could be used to initialize coe�cients or as part of an
objective function since they are already implemented in the optimization package described in Section 3.
The simplifying order conditions are summarized in the following theorem from Burrage [14] and simpli�ed
for MRK methods in Hairer and Wanner [11].

Theorem 1. If the coe�cients A, U , b, v, and c of a MRK method satisfy the following conditions:

B(p) : jbT cj−1 + vT Q(τp) = 1, j ∈ [1, p] (12)

C(q) : jAcj−1 + UQ(τ j) = cj , j ∈ [1, q] (13)

DA(ξ) : jbTCj−1U = vT (I −Q(τ j)), j ∈ [1, ξ] (14)

DB(ξ) : jbTCj−1A = bT (I − Cj), j ∈ [1, ξ] (15)

with p ≤ 2q + 2 and p ≤ q + ξ + 1, then the method will be of order p. Note that C and Q are diagonal
matrices formed by the entries of c and Q, respectively, and τ j is a �bushy� tree: trees for which all subtrees
are of order 1.

Note that these conditions reduce to those derived by Butcher [15] when applied to RK methods. The
�rst condition B(p) (12) corresponds to the full order conditions for �bushy� trees τp. The second condition
C(q) (13) is the requirement that the MRK method have minimum stage order q across all stages. Finally,
the combination of the last three simplifying conditions, C(q) (13), DA(ξ) (14) and D(ξ)B (15), imply the
equivalence of certain order conditions based on the order and organization of subtrees, thus reducing the
total number of conditions to be satis�ed.

2.2 Linear Stability

While the governing equations in CFD are most often nonlinear, linear stability is an important necessary
condition. Therefore, this article focuses on linear stability. Nonlinear stability de�nitions can be considered,
such as algebraic stability, but these are left to future work.

A-stability: A time-marching method is said to be A-stable, if it is unconditionally stable for the linear
IVP [2]

Y ′ = λY, Y(t0) = y0, t0 ≤ t ≤ tf , (16)

where λ ∈ C and Re(λ) ≤ 0. Speci�cally, an MRK method will be A-stable if the eigenvalues of the stability
matrix

M(z) = V + zB(I − zA)−1U, (17)

for all z = λh in the left-half complex plane, lie within the unit disk, and any eigenvalue on the unit disk is
simple.

L-stability: An extension of A-stability, which guarantees damping of sti� parasitic modes, is called L-
stability [16]. An MRK method is called L-stable if it is both A-stable and the eigenvalues of the stability
matrix satisfy

λM(z) → 0 as |λ| → ∞. (18)

A sti�y accurate MRK method with non-singular A coe�cient matrix will satisfy the additional condition
(18) for L-stability automatically (by extension of Proposition 3.8 in Section IV.3 of Hairer and Wanner
[11]).
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A(α)-stability: If an MRK method satis�es the A-stability condition in a wedge of the left-half complex
plane de�ned by the angle α with respect to the negative real axis and rooted at the origin, then the method
is said to be A(α)-stable. If the method also provides damping of parasitic modes, λM(z) → 0 as |λ| → ∞,
the method is called L(α)-stable.

Internal A- and L-stability: The stability of the internal stages of MRK methods can be de�ned simi-
larly, called internal A- and L-stability [17]. For this case, we consider the following stability matrices

M(z, i) = Ui,: + zAi,:(I − zA)−1U, for i = 1, . . . , s. (19)

2.3 Local Truncation Error

For the linear di�erential equation (16), the exact solution can be written as

Y(t) = y0e
z = y0

∞∑
j=0

zj

j!
. (20)

Applying a multistep Runge-Kutta method, the solution can be updated using the stability matrix (17)
de�ned above 

y[n+1]

y[n]

...
y[n−r+2]

 = M(z)


y[n]

y[n−1]

...
y[n−r+1]

 . (21)

Each eigenvalue of the stability matrix can be expanded using Taylor series. The eigenvalue which approx-
imates ez is called the principal eigenvalue and de�nes the local truncation error (LTE) with coe�cient
CLTE ∈ R

λM,p = ez +O(hp+1) =

p∑
j=0

zj

j!
+ CLTE(p+ 1)

zp+1

(p+ 1)!
+O(hp+2). (22)

When p is odd the leading error term is dissipative; when p is even it is dispersive. While this is strictly linear
error analysis, these properties can be important for some nonlinear problems as well, such as aeroacoustics.
In this case, accurate propagation of acoustic waves to the far�eld is critical and becomes essentially linear
away from the source.

3 Numerical Optimization

The construction and numerical optimization of MRK methods is carried out using a custom package in
Maple 18. The package is written for the optimization of general linear methods, of which MRK methods
are a subset, and includes analysis of additional features not considered in this article, such as algebraic
stability.

3.1 Design Variables

The skeleton of the method is constructed by selecting the number of steps r, the number of implicit stages
s, and whether to enforce sti� accuracy, then solving the conditions for desired order p and stage order q.
Selection of which coe�cients are solved for �rst can aid the solution process. For example, abscissa values
tend to appear with higher exponents in the order conditions. Therefore, they are solved for last to minimize
computational e�ort and the introduction of multiple solutions.

Where possible, the additional condition for L-stability (limz→∞MA(z) = 0) is solved for at this point
as well. As the number of steps r is increased, this becomes more di�cult due to the order of the resulting
characteristic polynomial. In this article, we circumvent this di�culty by considering only sti�y accurate
methods on the assumption that the A coe�cient matrix remains invertible.

The remaining undetermined coe�cients are used as design variables in the optimization.
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3.2 Objective Function

We are interested in methods which balance accuracy, internal stability, conditioning, and computational
cost. To optimized relative to these objectives, we apply a composite objective function. The �rst part of
the objective function measures numerical accuracy. This is accomplished by using the L2-principal error
norm [18]:

E(p) =

√ ∑
∀t|ρ(t)=p+1

O(t)2, (23)

where O(t) are the order conditions (9). This is the norm of the violation in the conditions one order higher
than the method is designed for.

The internal L-stability of the method forms the second part of the objective function related to the
conditioning of the method. Large values can lead to inaccurate stage solutions and poor computational
convergence. The internal L-stability is considered in the objective function using

S =
∑
i

∑
∀λ R(λM(∞,i)) (24)

The third and fourth parts of the objective function address the conditioning and computational cost
of the method through the spacing of the abscissa values, the magnitude of the diagonal entries in the A
coe�cient matrix, and the eigenvalues of the matrix (I −A)−1:

C1 =

√
([cT 1]− [0 cT ]) ([cT 1]− [0 cT ])

T

s
+

√∑
i

A2
i,i, C2 =

√∑
i

λ2(I−A)−1,i. (25)

Smaller spacing between the abscissa values will help generate better initial iterates for a Newton's method
based solver. Smaller diagonal entries in the A coe�cient matrix will make the system more diagonally-
dominant, further contributing to rapid convergence of a Newton's method based solver. The second function
C2 is another attempt to recover a well-conditioned method.

The �nal composite objective function looks like

J = χ1E(p) + χ2S + χ3C1 + χ4C2 (26)

where the coe�cients χi can be manipulated to create a Parato front comparing the competing objectives.
Only a few variations of the coe�cients χi are chosen in this article. Future work will investigate the trade-
o�s related to a greater number of variations. The objective function is evaluated during the optimization by
�rst substituting the design variables into the coe�cient vectors and matrices, then numerically computing
the di�erent functions. This is in contrast to precomputing symbolic expressions for the functions in terms
of the design variables, then substituting the design variables into these expressions. The approach taken
minimizes the number of large complex symbolic expressions which need to be computed and stored.

The gradient of the objective functions is computed using �nite di�erences with a step size of 10−10. The
step size is chosen to balance accuracy and round-o� error (See e.g. [19]). Note also that the code runs with
double precision. A complex step method [20] is also implemented but is not compatible with the stability
components of the objective function.

Alternative objective functions can easily be implemented based on the characteristics of the IVPs for
which the methods are being constructed. For example the objective function could be the coe�cient of the
local truncation error, or some function of the dissipative and dispersive properties of the method [21].

3.3 Constraints

Linear and nonlinear constraints are applied to enforce global stability criteria and to place a bound of the
coe�cients of the method. A similar approach is taken to the objective function: evaluating the constraints
during the optimization after �rst substituting the design variables into the coe�cient vectors and matrices
and computing the gradient of the constraints with �nite di�erences and a step size of 10−10.
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A-stability: The constraint for A-stability is implemented using the concept of the stability contour applied
to each eigenvalue of the stability matrixM(z). The stability contours are obtained by solving |M(z)−eiθI|
for the associated complex z-coordinates, where i =

√
−1 and θ ∈ [0, π). Observe that the magnitude of

eiθ is unity, thus de�ning the boundary between the stable and unstable regions. We also only solve for
θ ∈ [0, π) since the contours are symmetric about the real axis of the complex z-plane. This region is then
discretized using typically 40 non-equidistant points clustered around the intersection of the contour and the
origin. The real components of the z-coordinates are then solved for and constrained to be greater than or
equal to zero such that the stability contours lie in the right-half complex z-plane. Additional constraints,
λM(z=−1) ≤ 1, are used to ensure that it is the stable region of the contours which lie in the left-half complex
plane.

L-stability: The additional criteria for L-stability, λM(z) → 0 as z →∞, are typically enforced before the
optimization to determine the relationship between additional coe�cients. Alternatively, the condition can
be enforced as a constraint during the optimization.

Coe�cient Bounds: The design variables are bounded during the optimization to ensure a well-condition-
ed method:

±(Aij − Γ) ≤ 0, ±(bi − Γ) ≤ 0, for i, j = 1, . . . , s.
±(Uij − Γ) ≤ 0, ±(vj − Γ) ≤ 0, for i = 1, . . . , s, j = 1, . . . , r.
±(ci − Γ) ≤ 0, for i = 1, . . . , s

(27)

where Γ is the bounding value. A typical bound is 100, though it is rarely active at convergence. The bounds
can vary between individual coe�cients. For example, the abscissa values can be constrained to be within a
time step, in the domain [0, 1].

3.4 Optimization Strategy

The Sequential-Quadratic-Programming (SQP) method of Maple's nonlinear optimization construct is used
to optimize the design variables subject to the constraints. The design space is often multi-modal, having
several local minima; therefore a multi-start procedure is used [22]. Initial values for the design variables are
generated with a Sobol sequence [22, 23, 24] in a predetermined range. Typically 400 initial solutions are
generated in the range [−1, 1]. The various initial conditions are then distributed and optimized in parallel.
It is important to note that since the design space can be multi-modal, the results of the optimizations
can only be interpreted as local minima, rather than a global minimum. Increasing the number of initial
conditions increases the likelihood of �nding the global minimum.

4 Optimized Fourth-Order Implicit Multistep Runge-Kutta Meth-

ods

This section presents a number of novel methods derived using the optimization procedure described in
Section 3. The focus is on L-stable singly-diagonally-implicit MRK methods. In the discussion below, we
only present the properties of the most relevant schemes. In the derivation of some methods, multiple
solutions (skeleton methods) were obtained from the order conditions. Not all solutions yielded competitive
methods based on the characteristics considered in this article. These methods were discarded and are not
presented here. Coe�cients for the most promising new methods can be found in Appendix A.

In this article we use a similar form of identi�cation for the time-marching methods as that used by
Kennedy and Carpenter [25]:

Class[p,(qi)](s,r)X_SA_i

Class The methods classi�cation: implicit linear multistep (ILM), singly-diagonally-implicit Runge-Kutta
(SDIRK) and multistep Runge-Kutta (SDIMRK) mthods

p Order of the method
qi Stage order of the individual stages - if the stage orders are equal for the �rst s − 1 stages, only the

minimum stage order is shown
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s Number of stages
r Number of steps
X Stability property (A,L)

SA Sti�y accurate
i Unique identi�er

One aim of this work was to compare to known methods in the literature. However, very few sti�y
accurate L-stable SDIMRK methods were found. Kerr and Burrage [26] considered such methods with the
inclusion of an explicit �rst stage, Burrage and Chipman [27, 28] methods which are not sti�y accurate by
de�nition. Many other investigations of MRK consider only explicit or fully implicit variants.

E�ciency is de�ned by the ratio between solution accuracy and computational work. The metric of
accuracy de�ned above is the L2-principal error norm (23); however, this does not take into account the
relative computational cost of each method. To measure the relative e�ciency of each diagonally-implicit
method, the relative error norm is introduced [6]:

Erel(p) = E(p)spi , (28)

where si is the number of implicit stages. The number of implicit stages is used here as a surrogate for
computational intensity. In reality there are many factors which can in�uence the e�ciency of a scheme, such
as the spacing between abscissa values, or the magnitude of the diagonal coe�cients. A similar approximation
can be derived for the local truncation error coe�cient:

CLTE/rel(p+ 1) = CLTE(p+ 1)spi . (29)

These approximations are designed to give a �rst order approximation of relative e�ciency; numerical sim-
ulation is required to more fully compare the schemes. This is presented in Section 5.

4.1 Single-stage MRK methods

As a starting point, consider the fourth-order backward di�erence formula (BDF4). This four-step implicit
linear multistep method detailed in Table 1 is entirely de�ned by the fourth-order accuracy conditions.
Relative to other fourth-order multistage methods from the literature, or optimized in this work, BDF4
has a large L2-principal error norm. However, it only requires a single function evaluation per time step.
Therefore, for a �xed computational cost, it can use much smaller time step sizes. Given the order of the
method, the exponential reduction in error obtained by the smaller time step size far outweighs the large
error norm. This makes BDF4 very e�cient.

BDF4 also provides damping of sti� modes, ρ(M(z))→ 0 as z →∞. However, it is does not satisfy the
conditions for A-stability. BDF4 is only L(76.36◦)-stable. The stability angle is relatively large, meaning
that BDF4 could be applied to di�usion-dominated problems; however, it is likely to be problematic for the
majority of CFD simulations. Even the third-order variant BDF3, which has a stability angle of α = 86.03◦,
is not commonly applied in CFD due to the lack of full A-stability [30].

Additional steps can be added to the linear multistep approximation to increase the stability angle of
the method, as shown in Table 1, or to reduce the error norm [31]. However, A-stability cannot be fully
recovered for a fourth-order linear multistep methods, independent of the number of steps [2].

4.2 Two-stage MRK methods

To obtain a fourth-order method with full A- or L-stability, requires at least two implicit stages. The most
e�cient L-stable two-stage MRK methods optimized, SDIMRK[4,3](2,3)L_SA_3 and SDIMRK[4,3](2,4)-
L_SA_2, have very similar error norms to BDF4, as shown in Table 2. On one hand, the amount of
computational work required per time step relative to BDF4 is about double, increasing the relative error
norm of these methods by nearly a factor of ten. On the other hand, the addition of L-stability can help
generate solutions to sti� problems where BDF4 fails. This is shown in for laminar �ow over a circular in
Section 5.

Considering only the two-stage methods, the data shows that increasing from three to four steps improves
the relative spacing of the abscissa values. This can improve the accuracy of initial iterates for a Newton-type
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solver and thus reduce computational cost to some degree. In contrast, no bene�t in the relative error norm
was observed by increasing the number of steps from three to four or �ve.

In general we found that as the number of steps increased, the number of times each local minimum was
found decreased. In other words, it seemed to make the optimization problem more multi-modal. The exact
reason for this is not known. One possibility is the increasing size of the stability matrix, which increases the
complexity of the stability conditions. Another possibility is the number of undetermined coe�cients. We
found that the relative increase in undetermined coe�cients was greater when adding additional steps than
when adding additional stages. Future work should consider improving the conditioning of the optimization
procedure for multistep methods.

4.3 Three and four-stage MRK methods

Consider the three and four-stage MRK methods detailed in Table 3, speci�cally, those which make use of
more than one step (i.e. not RK methods). Numerical optimization is able to reduce the error norm of these
methods by one to two orders of magnitude relative to BDF4 and the two-stage methods discussed previously.
Even with the additional computational cost associated with the increased number of stages, the three-stage
SDIMRK[4,2](3,2)L(89.97◦)_SA and four-stage SDIMRK[4,2](4,2)L_SA_0 methods are expected to be four
and �ve times more e�cient than the two-stage methods, respectively. While still expected to be less e�cient
than BDF4, these methods are L-stable, which can have signi�cant impact in practical simulations.

The two reference 3-step 3-stage methods included in the table are implicit advance step point (IAS)
methods. These methods prescribe a particular abscissa in order to generate a superfuture point, along with
a high-order corrector on the last stage. Relaxing this prescription in the present optimizations enabled a
signi�cant increase in e�ciency.

4.4 Runge-Kutta methods

Finally, we compare the results of the single step Runge-Kutta methods shown in Table 4. The most e�cient
of these methods is the reference method SDIRK[4,1](5)L_SA_ha followed closely by SDIRK[4,1](5)L-
_SA_2, which was optimized with the present approach. The former method was rederived with the
current optimization tool in a previous article [7], but using a di�erent objective function. The trade-o�
between the methods is an exchange of error norm and abscissa spacing. Despite having the greatest number
of stages and thus requiring the greatest computational e�ort per time step, both methods are predicted to
be more e�cient than any other L-stable multistep method considered based on relative error norm.

A general trend we observe in the data using the particular objective de�ned in Section 3 is that adding
additional steps seems to have a negative impact on the error norm. This is in direct opposition to our expec-
tation. The deciding factor in e�ciency then comes in whether or not the the reduction in computational cost
per time step or error norm is more signi�cant. In this case, the best RK method SDIRK[4,1](5)L_SA_ha
should be about 25% more e�cient than best L-stable multistep method SDIMRK[4,2](4,2)L_SA_0. Future
work should investigate di�erent objective functions which may have a di�erent impact on the results.

The potential drawback of the RK methods is lower stage order relative to the multistep methods. In
general, the highest stage order a RK method can obtain is order two, which requires the inclusion of an
explicit �rst stage (not considered in this article). This limits high-order RK methods when applied to
problems which exhibit order reduction. This has been observed, for example, with Reynolds-Averaged
Navier-Stokes simulations [33, 7]. In that case, MRK methods may have an advantage not captured by the
predicted relative e�ciency shown in the tables.

5 Numerical Simulations

Veri�cation of the optimized MRK methods' order properties is presented using numerical simulation of
van der Pol's equation [34]. This is done for both nonsti� and sti� variants. The relative e�ciency of the
methods is then compared using numerical simulation of laminar �ow over a circular cylinder at a Reynolds
number of 1200.
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5.1 Van der Pol's Equation

Van der Pol's equation is a second-order nonlinear ODE:

Y ′′(x)− µ
(
1− Y(x)2

)
Y ′(x) + Y(x) = 0, (30)

which is solved as a rescaled �rst-order singular perturbation problem using Z1(t) = Y ′(x), Z2 = µY ′′(x),
t = x/µ, and letting ε = µ−2: {

Z ′1(t) = Z2(t)
εZ ′2(t) =

(
1−Z1(t)2

)
Z2(t)−Z1(t)

}
, (31)

where ε is called the sti�ness parameter. For large values of ε the problem is nonsti� and the expected order
of convergence is p. As ε is lowered, the convergence theory becomes more closely related to di�erential
algebraic equations (DAEs). Indeed, if ε → 0 we recover an index-1 DAE. Schneider [35] showed that A-
stable general linear methods, of which MRK methods form a subset, applied to a singular perturbation
problem achieve a convergence rate of

Z1(t◦ + nh)− z[n]1 = O(hp) +O(εhq+1), and Z2(t◦ + nh)− z[n]2 = O(hq+1). (32)

Unfortunately, no result is given for the case where the general linear method is sti�y accurate. There
is, however, a result for sti�y-accurate RK methods. In this case, the convergence of the second variable
becomes [36]:

Z2(t◦ + nh)− z[n]2 = O(hpN ) +O(εhqN ). (33)

For this study a relatively large value of ε = 0.1 is chosen for a nonsti� problem and a much smaller value
of ε = 10−5 for a sti� problem. The initial conditions, Z1(0) = 2 and Z2(0) = − 2

3 + 10
81ε−

292
2187ε

2 − 1814
19683ε

3,
are chosen to give a smooth solution [11], and the time domain is set to t = [0, 0.5] to be consistent with the
literature [37, 11].

The primary results are convergence rates based on the discrete L2 norm of the solution error at the end
of each time step:

ez1/2 =

√∑N
i=1(z1/2,i − z1/2,i,ref)2

N
, (34)

where N represents the number of time steps. The reference solution is computed with the ESDIRK[4,2](6)L-
_SA [37] method and a time step 2−17. This is several orders of magnitude smaller than that used to generate
the convergence results presented below. ESDIRK[4,2](6)_SA is also used to compute the �rst r − 1 time
steps in each simulation, as multistep methods are not self-starting. In other words we need a method to
generate the initial vector of values to be passed to the multistep methods. The data shows no indication that
the use of ESDIRK[4,2](6)L_SA has had any impact on the accuracy or convergence rates of the methods
considered.

Table 5 summarizes the convergence rates obtained for simulations of van der Pol's equation using both
the nonsti� and sti� variants. In the nonsti�, case the methods all recover their design order, as listed in
Section 4. In the sti� case, the methods all converge at a minimum at the rate predicted by Schneider's
theory. In some cases higher convergence rates are observed, but never higher than the design order. In
general, the convergence rate will transition from the higher rate of p to the lower rate of q or q + 1 as the
time step size is reduced. Therefore, the higher rate of convergence may be a consequence of some methods
not reaching the region of order reduction before hitting round-o� error. Overall, these simulations verify the
ability of the numerical tool presented in Section 3 to generate methods with prescribed accuracy properties.

5.2 Navier-Stokes Equations

The DIABLO �ow solver solves the compressible Navier-Stokes equations using fourth-order classical �nite-
di�erence summation-by-parts (FD-SBP) operators on structured multi-block grids. Simultaneous approx-
imation terms (SATs) are used to weakly enforce block-interface coupling and boundary conditions. The
viscous �uxes are computed with the application of the �rst derivative twice, and matrix arti�cial dissipation
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Scheme r s p q pz1/pz2

Nonsti� (ε = 0.1) Sti� (ε = 10−5)

ILMM4(4)L(73.36◦)_SA 1 4 4 4 3.9775 / 3.7870 3.9462 / 3.9521

ILMM4(5)A(76.09◦)_SA 1 5 4 4 3.9701 / 3.8492 3.9304 / 3.9363

SDIMRK[4,3](2,3)L_SA_3 2 3 4 3 3.9935 / 3.7199 3.9954 / 4.0191

ESDIMRK[4,3](3,3)A_SA 3 3 4 3 3.9805 / 3.8864 3.9956 / 4.0542

SDIMRK[4,3](2,4)L_SA_2 2 4 4 3 3.9073 / 3.7109 4.1110 / 4.1925

SDIMRK[4,3](2,4)L_SA 2 4 4 3 3.8645 / 3.8774 3.9415 / 3.9198

SDIMRK[4,3](2,5)L(84.99◦)_SA 2 5 4 3 4.0731 / 3.9010 3.9883 / 3.9739

SDIMRK[4,2](3,2)L(89.97◦)_SA 3 2 4 2 3.6255 / 3.8289 4.0362 / 1.9280

SDIMRK[4,2](3,2)L_SA_0 3 2 4 2 3.8822 / 3.8125 4.0511 / 3.0179

SDIMRK[4,2](3,3)L_SA_1 3 3 4 2 4.0894 / 3.8886 4.3645 / 4.5614

SDIMRK[4,2](3,3)L_SA_3 3 3 4 2 4.0523 / 3.9302 4.0060 / 4.7685

SDIMRK[4,2](3,3)L_SA 3 3 4 2 4.0228 / 3.7434 3.9928 / 2.1623

SDIMRK[4,3](3,3)L_SA 3 3 4 3 4.0232 / 3.7684 3.9945 / 3.9943

SDIMRK[4,2](3,4)L(89.97◦)_SA 3 4 4 2 4.0083 / 3.5594 4.0051 / 4.0250

SDIMRK[4,2](4,2)L_SA_0 4 2 4 2 3.9871 / 3.8730 4.0404 / 3.0905

SDIMRK[4,2](4,2)L_SA 4 2 4 2 3.9269 / 4.0203 4.0854 / 2.1085

SDIMRK[4,3](4,3)L_SA 4 3 4 3 4.6547 / 3.9109 4.5039 / 4.6267

SDIMRK[4,(2,1,2,4)](4,3)L_SA_1 4 3 4 2 3.9924 / 3.6547 4.0052 / 1.8524

SDIMRK[4,(2,1,2,4)](4,3)L_SA_0 4 3 4 2 3.5885 / 3.7158 4.0134 / 1.8966

SDIRK[4,1](5)L_SA_ha 5 1 4 1 3.8986 / 3.9261 3.5049 / 2.2324

SDIRK[4,1](5)L_SA_2 5 1 4 1 3.8983 / 3.9252 3.9699 / 2.2383

Table 5: Van der Pol's equation (ε = 0.1 and ε = 10−5): Convergence rates pz1/2 of the solution error
ez1/2 . The convergence rates were computed using a line of best �t through the 3 �nest grid levels computed
before round-o� error.

is used to maintain numerical stability. An inexact Newton-Krylov algorithm is applied to the nonlinear resid-
ual equations using FGMRES to solve the linear system with a parallel approximate-Schur preconditioner.
The convergence of Newton's method is accelerated through the use of restricted preconditioner updates,
and relative tolerance nonlinear subiteration termination, discussed further below. For more information on
the Diablo �ow solver refer to [38, 39].

Delayed preconditioner updates Singly-diagonally-implicit methods are characterized by a constant
diagonal coe�cient. This means that the temporal component of the system Jacobian is constant. In many
cases the spatial component varies slowly with respect to the time step size; therefore we can freeze the
preconditioner over an entire stage or time step without a�ecting the convergence of the system of equations.
This reduces CPU time and thus increases the e�ciency of the solution algorithm. Current results were
obtained by freezing the preconditioner over each time step.

Termination of nonlinear iterations The nonlinear equations are solved to a relative tolerance based on
the value of the residual equations at the beginning of each stage. The idea is that the temporal integration
will introduce a certain level of error and the residual equations need not be converged much below this error.
The relative tolerance used to terminate the nonlinear iterations is fairly step size independent since better
initial iterates will be generated as the step size is reduced. This reduces computational cost and can be
done without any loss in global accuracy. For the comparative simulations presented below, a conservative
relative tolerance of 10−8 was used, requiring between 4 and 8 Newton iterations per stage.

5.2.1 Laminar Flow Around a Circular Cylinder

Two-dimensional laminar vortex shedding in the wake of a circular cylinder is used to assess the relative
e�ciency of the optimized methods in the context of a �ow problem. The Reynolds number of the �ow is
1200, and the frestream Mach number is 0.2. The results are computed on a 28, 000 cell grid with 141 nodes
in the o�wall direction, and 200 in the circumferential direction. The o�wall spacing at the surface is 0.005
times the diameter of the cylinder, and the outer boundary is located 20 diameters from the surface of the
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Figure 1: Computational grid with block boundaries highlighted in red

cylinder. The maximum aspect ratio is about 5.3 near the leading edge. This decreases toward the leeward
side of the cylinder due to the increased circumferential resolution to capture the details of the wake. The
grid is decomposed into 56 equal size blocks, and the solution is computed in parallel. Figure 1 shows the
grid and block decomposition.

For these simulations, a reference solution is computed using the ESDIRK[5,2](6)L_SA method [25] and
a time step size of ∆t = 2−7. The use of a �fth-order method in this case is in lieu of using a much �ner
time step size. The use of a reference solution eliminates the error associated with the spatial discretization,
thus isolating the temporal error. The error is computed as the root-mean-square of the di�erence in lift
and drag coe�cients (CL and CD):

eCL/D
=

√∑N
i=1(CL/D,i − CL/D,i,ref)2

N
(35)

where N is the number of time steps.
The relative e�ciency of the optimized methods is evaluated using a temporal convergence study with

time step sizes ranging from ∆t = 2−7 to ∆t = 23. The same fourth-order ESDIRK[4,2](6)L_SA method
used for van der Pol's equation is applied to compute the �rst r−1 time steps for the multistep methods. The
simulations are run for 80 non-dimensional time units, equal to about 5.7 vortex shedding cycles. Table 6
presents the results of the simulations. Convergence rates are computed using a line through the two smallest
time steps. The total number of linear iterations required to obtain a prescribed error of eCL/D

= 10−6 is also
shown. These values are interpolated from the data. Also shown is the average number of linear iterations
per implicit stage computed from the simulations with the three smallest time steps. The methods are
organised based on number of stages, followed by number of steps, and �nally by predicted relative e�ciency
as detailed in Section 4.

The two linear multistep methods are not shown in the table since they did not converge. This is likely
due to the lack of A-stability discussed previously. Apart from the linear multistep methods, the other
schemes all recovered their design order for lift. The convergence rate for drag is slightly lower than the
predicted values in some cases. This is due to some variations in the drag convergence plots, which occur in
di�erent locations for the di�erent methods. Better results may have been obtained by including one or two
more time levels to obtain a region with smoother convergence.

Each grouping in the table with a particular number of steps and stages follows more or less the predicted
e�ciency ranking listed in Section 4. This holds for both lift and drag, in spite of the lower convergence
rate exhibited by some methods for drag. The one major exception is SDIMRK[4,2](3,3)L_SA_1, which
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CL CD Avg.

Method p Lin its (e = 10−6) p Lin its (e = 10−6) Lin its/si

SDIMRK[4,3](2,3)L_SA_3 3.86 3.80e+05 3.19 3.65e+05 2.76e+01
ESDIMRK[4,3](3,3)A_SA 3.85 4.21e+05 3.07 4.03e+05 2.88e+01

SDIMRK[4,3](2,4)L_SA_2 3.86 3.92e+05 3.15 3.76e+05 2.77e+01
SDIMRK[4,3](2,4)L_SA 3.85 4.22e+05 3.08 4.05e+05 2.76e+01

SDIMRK[4,3](2,5)L(84.99◦)_SA 4.29 3.59e+05 4.15 4.01e+05 2.72e+01

SDIMRK[4,2](3,2)L(89.97◦)_SA 4.08 2.67e+05 3.82 2.59e+05 2.20e+01
SDIMRK[4,2](3,2)L_SA_0 3.70 8.61e+05 2.90 7.87e+05 3.26e+01

SDIMRK[4,2](3,3)L_SA_1 4.61 4.54e+05 3.28 5.21e+05 3.02e+01
SDIMRK[4,2](3,3)L_SA_3 4.02 2.96e+05 3.66 2.82e+05 2.22e+01
SDIMRK[4,2](3,3)L_SA 3.96 3.27e+05 3.58 3.12e+05 2.30e+01
SDIMRK[4,3](3,3)L_SA 3.87 4.41e+05 3.30 4.21e+05 2.46e+01

SDIMRK[4,2](3,4)L(89.97◦)_SA 3.87 5.40e+05 3.28 5.21e+05 2.71e+01

SDIMRK[4,2](4,2)L_SA_0 3.92 2.14e+05 3.62 2.08e+05 2.31e+01
SDIMRK[4,2](4,2)L_SA 4.05 2.85e+05 3.33 3.33e+05 2.92e+01

SDIMRK[4,3](4,3)L_SA 4.15 3.62e+05 3.88 3.81e+05 2.13e+01
SDIMRK[4,(2,1,2,4)](4,3)L_SA_0 4.00 3.95e+05 3.65 3.75e+05 2.23e+01
SDIMRK[4,(2,1,2,4)](4,3)L_SA_1 4.02 3.76e+05 3.67 3.57e+05 2.19e+01

SDIRK[4,1](5)L_SA_ha 3.96 2.62e+05 3.81 2.58e+05 2.41e+01
SDIRK[4,1](5)L_SA_2 3.93 2.63e+05 3.80 2.59e+05 2.40e+01

Table 6: Laminar �ow over a cylinder: Convergence rates are presented, along with the number of linear
iterations required to obtain an error of 10−6. These values are computed for both lift and drag. The average
number of linear iterations required per implicit stage si is also reported.

requires signi�cantly more computational e�ort than expected. This is also re�ected in the number of linear
iterations per implicit stage. A relatively large diagonal coe�cient, which make the solution of the nonlinear
system more di�cult, may be the cause of this deviation. Likewise, other methods with a large diagonal
coe�cient require a greater number of linear iterations per implicit stage. The spacing in abscissa values
also seems to have an a�ect on the number of linear iterations.

While the ranking within each group is consistent with the results in Section 4, the relative magnitudes
are di�erent. In a previous paper [7], we found that the e�ciency for laminar �ow over a circular cylinder
was more closely related to local truncation error, rather than L2-principal error norm. The present results
are consistent this observation. Accounting for the di�erence in number of linear iterations per stage, the
relative e�ciency of the methods is consistent with their relative local truncation error coe�cients shown in
Tables 1 through 4. For other problems, such as turbulent �ow over a NACA0012 at high angle of attack,
L2-principal error norm is much more relevant [7]. For this paper we chose L2-principal error norm as the
objective function since the methods generated will be more robust across a wide range of problems.

A consequence of local truncation error being more relevant to accuracy and e�ciency than the L2-
principal error norm, is that SDIMRK[4,2](4,2)L_SA_0 is the most e�cient scheme for this problem, rather
than the RK methods. In addition, a number of other MRK methods exhibit similar e�ciency to the RK
schemes as well. This highlights the need to be aware of the properties of the IVP in the optimization and
selection of time-marching methods.

6 Conclusions

This article investigated the construction of fourth-order L-stable singly-diagonally-implicit multistep Runge-
Kutta (MRK) methods through the use of constrained numerical optimization. Undetermined coe�cients
remaining after solving the desired order and stage order conditions are optimized relative to an objective
function accounting for accuracy, internal stability, conditioning, and computational cost. The values are
constrained by global stability properties, as well as bounds on the coe�cients. The design space is found
to be multi-modal, with many local minima. Therefore a quasi-random set of initial coe�cients is generated
using a Sobol sequence. These are then optimized in parallel.

The optimized MRK methods were compared to a linear multistep method, BDF4. This method is highly
e�cient but lacks A-stability. This caused the method to fail when applied to the Navier-Stokes problem
considered. With the addition of one stage, L-stable MRK methods could be constructed. The methods
have similar error norms relative to BDF4, but require twice as much computational e�ort per time step.
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In contrast, increasing the number of stages to three or four yielded reductions in the error norm by one
to two order of magnitude. The best optimized MRK method with four stages SDIMRK[4,2](4,2)L_SA_0
is about �ve times more e�cient than the best two-stage method SDIMRK[4,3](2,3)L_SA_3 based on the
relative L2-principal error norm. However, the computational cost associated with those additional stages
still rendered the method about three times less e�cient than BDF4.

Finally, the methods were compared to Runge-Kutta methods. Despite the largest number of implicit
stages, Runge-Kutta methods turned out to be more e�cient than the MRK methods. They were still
signi�cantly less e�cient than BDF4, but about 25% more e�cient than SDIMRK[4,2](4,2)L_SA_0. The
potential drawback of Runge-Kutta methods is low stage order, which can hinder performance when applied
to problems exhibiting order reduction.

In general, it was found that with the selected objective function, adding additional solution points
did not improve the error norm. Often adding additional steps increases the error norm. However, MRK
methods are able to achieve higher-stage order than RK methods, making them an attractive alternative for
sti� problems when order reduction is exhibited. Numerical solution of the Reynolds-averaged Navier-Stokes
equations may be one such case.

Finally, the order properties of the optimized methods were veri�ed for nonsti� and sti� problems with
simulation of van der Pol's equations. Simulation of vortex shedding in the wake of a circular cylinder was
used to evaluate the relative e�ciency of the methods applied to a �ow problem. The e�ciency ranking of
the methods for a given number of steps and stages was consistent with the predictions. The relative spacing
in the abscissa a�ected the average number of linear iterations required per implicit stage. This caused the
one observed deviation in the e�ciency rankings.

The accuracy of the laminar circular cylinder simulation seems to be more related to local truncation
error, rather than the L2-principal error norm used to derived the methods. Therefore, across all methods,
the SDIMRK[4,2](4,2)L_SA_0 method was the most e�cient scheme for this problem. This is in contrast
to the prediction that the RK schemes would be more e�cient. In fact, a few other MRK methods were also
competitive with the reference RK scheme.
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Appendix A Coe�cients of Select Optimized Multistep Runge-

Kutta Methods

SDIMRK[4,2](3,3)L_SA_3

A1,1 = 0.3930651483861363
A1,2 = 0
A1,3 = 0
A2,1 = −0.1148941101316164
A2,2 = 0.3930651483861363
A2,3 = 0
A3,1 = −0.1022321159502416
A3,2 = 1.183892326144308
A3,3 = 0.3930651483861363
b1 = −0.1022321159502416
b2 = 1.183892326144308
b3 = 0.3930651483861363
c1 = 0.6087294999882393
c2 = 0
c3 = 1

SDIMRK[4,2](4,2)L_SA_0

A1,1 = 0.2239933794528776
A1,2 = 0
A1,3 = 0
A1,4 = 0
A2,1 = 0.1202548793023635
A2,2 = 0.2239933794528776
A2,3 = 0
A2,4 = 0
A3,1 = −0.1590542957600293
A3,2 = 0.2856172586005074
A3,3 = 0.2239933794528776
A3,4 = 0
A4,1 = −0.1663155324397809
A4,2 = 1.7497161172111
A4,3 = −0.8306845264823385
A4,4 = 0.2239933794528776
b1 = −0.1663155324397809
b2 = 1.7497161172111
b3 = −0.8306845264823385
b4 = 0.2239933794528776
c1 = 0.271873871931594
c2 = 0.4209985678484048
c3 = 0.4860560383301755
c4 = 1

SDIRK[4,1](5)L_SA_2

A1,1 = 0.2479941945984302
A1,2 = 0
A1,3 = 0
A1,4 = 0
A1,5 = 0
A2,1 = 0.4826169576794777
A2,2 = 0.2479941945984302
A2,3 = 0
A2,4 = 0
A2,5 = 0
A3,1 = 0.3868393010288858
A3,2 = −0.03142363419952957
A3,3 = 0.2479941945984302
A3,4 = 0
A3,5 = 0
A4,1 = 0.2556972207268068
A4,2 = −0.075135939056669
A4,3 = 0.07002613001697444
A4,4 = 0.2479941945984302
A4,5 = 0
A5,1 = 0.9531199645442104
A5,2 = −1.72851897758253
A5,3 = 4.9316558866406
A5,4 = −3.404251068200712
A5,5 = 0.2479941945984302
b1 = 0.9531199645442104
b2 = −1.72851897758253
b3 = 4.9316558866406
b4 = −3.404251068200712
b5 = 0.2479941945984302
c1 = 0.2479941945984302
c2 = 0.7306111522779078
c3 = 0.6034098614277863
c4 = 0.4985816062855425
c5 = 0.9999999999999997
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