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Abstract: Recently, a two-stage fourth-order (S2O4) gas-kinetic scheme (GKS) has been proposed
for two-dimensional compressible Euler and Navier-Stokes equations on structured mesh [1]. In
comparison with early one-step third-order (S1O3) GKS [2], the S2O4 GKS not only presents better
accuracy and robustness, but also shows higher efficiency. The complexity of the algorithm has
been greatly reduced. In this paper, further extension has been done to explore the potential of the
S2O4 GKS framework. Firstly, the S2O4 GKS is naturally extended to calculate three-dimensional
flow. Based on the three-dimensional WENO reconstruction and flux evaluation at Gaussian
quadrature points, the high-order accuracy in space is fully achieved. The 3D S2O4 scheme has
the preferred advantages as the 2D method, such as accuracy and efficiency for the complex flow
computation. Secondly, a fourth-order compact gas-kinetic scheme (GKS) is developed for the two-
dimensional flow on structured mesh. The scheme achieves compactness due to the availability of
the time accurate evolution solution at cell interfaces under GKS framework. The Hermite WENO
(HWENO) reconstruction is adopted to get higher-order spatial flow distributions with compact
stencils. In comparison with compact fourth-order DG method, the current scheme uses only two
stages instead of four within each time step for the fourth-order temporal accuracy, and the CFL
number used here can be on the order of 0.5 instead of 0.11 for the DG method. Similarly, based on
HWENO type reconstruction, a two-stage third-order compact GKS for unstructured triangular
mesh is also constructed. Preliminary results for inviscid flow with strong shocks are shown.

Keywords: Gas-Kinetic Scheme, Two-Stage Fourth-Order Temporal Discretization, WENO,
Hermite WENO, Unstructured Mesh.

1 Introduction

The gas-kinetic schemes (GKS) target on solving Euler and Navier-Stokes equations under finite volume
framework [3]. Its flux is based on a time-dependent evolution solution of the kinetic model equation,
such as the Bhatnagar-Gross-Krook (BGK) model [4]. High order gas kinetic schemes (HGKS) have been
developed systematically in the past decades [5]. In comparison with traditional Riemann solver based
high-order CFD methods, the distinguishable points of HGKS include the following: (i) The time evolving
gas distribution function provides a multiple scale flow physics from the kinetic particle transport to the
hydrodynamic wave propagation, which bridges the evolution from the upwind flux vector splitting to the
central difference Lax-Wendroff type discretization. (ii) Both inviscid and viscous fluxes are obtained from
the moments of a single gas distribution function. (iii) The GKS is intrinsically a multi-dimensional scheme
[6], where both normal and tangential derivatives of flow variables around a cell interface participate the
time evolution process of the gas distribution function. (iv) The time dependent gas distribution function
along a cell interface provides a time evolution solution rather than a constant state in the Riemann solver,
and this time dependent solution at a cell interface can be used to construct compact scheme. With the
spatial and temporal coupled gas distribution function, a one-step 3rd-order scheme has been constructed
[5]. Recently, with the multi-derivative multi-stage technique, a family of HGKS can be obtained [7]. Based
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on the same 5th-order WENO reconstruction, the performance of HGKS shows advantages in terms of
efficiency, accuracy, and robustness compared with traditional Riemann solver based high order schemes.
Especially, HGKS can capture complicated flow structures i.e., shear instabilities, significantly better than
than the schemes based on the Riemann solver due to the multi-dimensional property in GKS. Among the
multi-derivative multi-stage GKS, the two-stage fourth-order GKS [1] seems to be an optimized choice in
practical use, which is both efficient and accurate, and is as robust as 2nd-order scheme.

In this study, we present the recent progress in the GKS research. With the implementation of three-
dimensional WENO reconstruction, two-stage fourth-order GKS is extended to three dimensional flows. In
comparison with the early third-order three-dimensional scheme [8], the current fourth-order scheme reduces
the complexity of the gas-kinetic solver greatly, and improves the robustness of scheme. Numerical results
show that the current scheme has the same reliability and applicability as the well-developed second-order
scheme, but is much more accurate and effective in capturing complicated flow structures. The current scheme
provides state-of-art solutions from a higher-order scheme for simulations from the low-speed turbulence to
the hypersonic flow. A two-stage fourth-order compact scheme has been developed as well. To achieve its
compactness, a compact reconstruction based on the cell averaged and cell interface values is applied [9].
Besides updating the conservative flow variables inside each control volume, the time accurate solution from
the GKS at a cell interface can be used as well. Inspired by the Hermite WENO (HWENO) reconstruction
[10] and compact fourth-order GRP scheme [11], the HWENO reconstruction is implemented for the current
compact GKS method. For engineering applications, the construction of higher-order numerical schemes on
unstructured meshes becomes extremely demanding. After the successful validation of the compact GKS
with HWENO reconstruction on structured mesh, a compact third-order GKS on unstructured mesh is
presented as well.

This paper is organized as follows. A brief review for the finite volume GKS is given in Section 2.
The formulation for the two-stage fourth-order time-accurate discretization is introduced in Section 3. The
extensions of S2O4 GKS are listed in Section 4. We present the key procedures on implementing three
dimensional S2O4 GKS in section 4.1. The construction of compact scheme is given in Section 4.2-4.4.
Section 5 includes numerical examples to validate the current algorithms. The last section is the conclusion.

2 BGK equation and finite volume scheme

The second order GKS in finite volume framework is briefly summarized under two-dimensional case in this
section. Systematic construction of GKS for 1-D to 3-D cases could be found in [12].

The 2-D BGK equation [4] can be written as

ft + ufx + vfy =
g − f
τ

, (1)

where u = (u, v) is the particle velocity, f is the gas distribution function, g is the 2-D Maxwellian distribu-
tion, and τ is the collision time. The collision term satisfies the compatibility condition∫

g − f
τ

ψdΞ = 0, (2)

where ψ = (1, u, v,
1

2
(u2 + v2 + ξ2))T , the internal variables ξ2 equals to ξ2 = ξ2

1 + ... + ξ2
K , dΞ =

dudvddξ1...dξK , K is the internal degrees of freedom, and the specific heat ratio γ = (K + 4)/(K + 2)
for two-dimensional flows. In the continuum region, the gas distribution function can be expanded as

f = g − τDug + τDu(τDu)g − τDu[τDu(τDu)g] + ...,

where Du =
∂

∂t
+u ·∇. Based on the Chapman-Enskog expansion, the macroscopic equations can be derived

[3]. With the zeroth-order truncation

f = g,
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the Euler equations can ba obtained. With the first-order truncation

f = g − τ(ugx + vgy + gt),

the Navier-Stokes equations can ba obtained. With the higher order truncations, the Burnett and super-
Burnett equations can be derived. Thus, in the gas-kinetic scheme, the Euler and Navier-Stokes solutions
can be obtained according to the Chapman-Enskog expansion without solving the macroscopic equations.

Taking moments of Eq.(1) and integrating over the control volume Vij = xi×yj with xi = [xi−∆x/2, xi+
∆x/2], yj = [yj −∆y/2, yj + ∆y/2], the semi-discretized finite volume scheme can be written as

dQij
dt

=
1

|Vij |

[ ∫
yj

(Fi−1/2,j − Fi+1/2,j)dy +

∫
xi

(Gi,j−1/2 −Gi,j+1/2)dx
]
, (3)

where Q = (ρ, ρU, ρV, ρE)T are the conservative flow variables, Qij is the cell averaged value over control
volume Vij and |Vij | = ∆x∆y. For the two-dimensional computation, the Gaussian quadrature for the
numerical fluxes is used to achieve the accuracy in space, and the numerical fluxes in x-direction is given as
an example ∫

yj

Fi+1/2,jdy = ∆y

M∑
m=1

ωmF (xi+1/2,jm , t),

xi+1/2,m = (xi+1/2, yjm). yjm ,m = 1, ...,M are the Gauss quadrature points for yj and ωm are quadrature
weights. M = 2 is used in this paper to achieve up to fourth-order spatial accuracy. Based on the spatial
reconstruction, which will be presented in the Section 4, the reconstructed point value and the spatial
derivatives at each Gauss quadrature points can be obtained and the numerical fluxes F (xi+1/2,jm , t) can
be provided by the flow solvers. In the gas-kinetic scheme, the numerical fluxes at the Gaussian quadrature
point can be obtained by taking moments of the gas distribution function

F (xi+1/2,jm , t) =

∫
ψuf(xi+1/2,jm , t,u, ξ)dudvdξ, (4)

where f(xi+1/2,jm , t,u, ξ) is provided by the integral solution of BGK equation Eq.(1) at the cell interface

f(xi+1/2,jm , t,u, ξ) =
1

τ

∫ t

0

g(x′, t′,u, ξ)e−(t−t′)/τdt′ + e−t/τf0(−ut, ξ), (5)

where xi+1/2,jm is the location of cell interface, xi+1/2 = x′+u(t− t′), yjm = y′+v(t− t′) is the trajectory of
particles, f0 is the initial gas distribution and g is the corresponding equilibrium state. The 2-D second-order
gas-kinetic solver [3] can be expressed as

f(xi+1/2,jm,kn , t,u, ξ) =(1− e−t/τ )g0 + ((t+ τ)e−t/τ − τ)(a1u+ a2v)g0 + (t− τ + τe−t/τ )Āg0

+e−t/τgr[1− (τ + t)(a1ru+ a2rv)− τAr)]H(u)

+e−t/τgl[1− (τ + t)(a1lu+ a2lv)− τAl)](1−H(u)). (6)

With the second-order gas-kinetic solver Eq.(6), the second-order accuracy in time can be achieved by one
step integration. In the one-stage gas evolution model, the third-order and fourth-order gas-kinetic solver
has been developed as well. The formulation of one-stage gas-kinetic solvers, which can be found in [2],
become very complicated, especially for the multidimensional computations [8]. Its complicated formulation
in the one stage scheme has become a barrier for its further development to fourth- and fifth-orders.

3 Fourth-order temporal discretization

Recently, a two-stage fourth-order time-accurate discretization was developed for Lax-Wendroff flow solvers,
particularly applied for hyperbolic equations with the generalized Riemann problem (GRP) solver [13] and
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gas-kinetic scheme [1]. Such method provides a reliable framework to develop a fourth-order with a second-
order time accurate flux function, i.e., Eq.(6). Consider the following time-dependent equation

∂q

∂t
= L(q), (7)

with the initial condition at tn, i.e.,

q(t = tn) = qn,

where L is an operator for spatial derivative of flux. The time derivatives are obtained using the Cauchy-
Kovalevskaya method,

∂qn

∂t
= L(qn),

∂

∂t
L(qn) =

∂

∂q
L(qn)L(qn).

Introducing an intermediate state at t∗ = tn + ∆t/2,

q∗ = qn +
1

2
∆tL(qn) +

1

8
∆t2

∂

∂t
L(qn), (8)

the corresponding time derivatives are obtained as well for the intermediate stage state,

∂q∗

∂t
= L(q∗),

∂

∂t
L(q∗) =

∂

∂q
L(q∗)L(q∗).

Then, the state q can be updated with the following formula,

qn+1 = qn + ∆tL(qn) +
1

6
∆t2

( ∂
∂t
L(qn) + 2

∂

∂t
L(q∗)

)
. (9)

It can be proved that for hyperbolic equations the above time stepping method (Eq.(8) and Eq.(9)) provides
a fourth-order time accurate solution for q(t) at t = tn + ∆t. More details of the analysis can be found in
[13].

Introduce the following time dependent function

L(Qij) =
1

|Vij |

[ ∫
yj

(Fi−1/2,j − Fi+1/2,j)dy +

∫
xi

(Gi,j−1/2 −Gi,j+1/2)dx
]
,

Eq.(13) can be rewritten as

dQij
dt

= L(Qij).

Then the semi-discretized finite volume scheme becomes a particular case of the general ODE system. The
two-stage method in Eq.(8) and Eq.(9) can be extended directly for Eq.(13). For the gas-kinetic scheme, the
gas evolution is a relaxation process from kinetic to hydrodynamic scale through the exponential function,
and the corresponding flux is a complicated function of time. In order to obtain the time derivatives of the
flux function at tn and t∗ = tn + ∆t/2 with the correct physics, the flux function should be approximated as
a linear function of time within a time interval. According to the numerical fluxes at the Gauss quadrature
points in Eq.(4), the following notation is introduced

Fi+1/2,j,(Q
n, t) =

M∑
m=1

ωmF (xi+1/2,jm , t),

and

Fi+1/2,j(Q
n, δ) =

∫ tn+δ

tn

Fi+1/2,j(Q
n, t)dt,
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where F (xi+1/2,jm , t) is obtained according to Eq.(4). In the time interval [tn, tn + ∆t], the flux is expanded
as the following linear form

Fi+1/2,j(Q
n, t) = Fni+1/2,j + ∂tF

n
i+1/2,j(t− tn).

The coefficients Fi+1/2,j(Q
n, tn) and ∂tFi+1/2,j(Q

n, tn) can be determined as follows,

Fi+1/2,j(Q
n, tn)∆t+

1

2
∂tFi+1/2,j(Q

n, tn)∆t2 = Fi+1/2,j,k(Qn,∆t),

1

2
Fi+1/2,j(Q

n, tn)∆t+
1

8
∂tFi+1/2,j(Q

n, tn)∆t2 = Fi+1/2,j(Q
n,∆t/2).

By solving the linear system, we have

Fi+1/2,j(Q
n, tn) = (4Fi+1/2,j(Q

n,∆t/2)− Fi+1/2,j(Q
n,∆t))/∆t,

∂tFi+1/2,j(Q
n, tn) = 4(Fi+1/2,j(Q

n,∆t)− 2Fi+1/2,j(Q
n,∆t/2))/∆t2.

Similarly, the numerical fluxes Gni,j+1/2 in the y-direction can be obtained as well. With the numerical fluxes

and temporal derivatives, L(Qnij) and Lt(Qnij) can be given as follows

L(Qnij) =
1

∆x
(Fi+1/2,j(Q

n, tn)− Fi−1/2,j(Q
n, tn))

+
1

∆y
(Gi,j+1/2(Qn, tn)−Gi,j−1/2(Qn, tn)), (10)

Lt(Qnij) =
1

∆x
(∂tFi+1/2,j(Q

n, tn)− ∂tFi−1/2,j(Q
n, tn))

+
1

∆y
(∂tGi,j+1/2(Qn, tn)− ∂tGi,j−1/2(Qn, tn)). (11)

According to Eq.(8), Q∗ij at t∗ can be updated. With the similar procedure, the numerical fluxes and
temporal derivatives at the intermediate stage can be constructed and Lt(Q∗ij) is given by

Lt(Q∗ij) =
1

∆x
(∂tFi+1/2,j(Q

∗, t∗)− ∂tFi−1/2,j(Q
∗, t∗))

+
1

∆y
(∂tGi,j+1/2(Q∗, t∗)− ∂tGi,j−1/2(Q∗, t∗)). (12)

According to Eq.(10), Eq.(11), and Eq.(12), Qn+1
ij at tn+1 can be updated by Eq.(9).

4 Spatial reconstruction

Before introducing the reconstruction procedure, let’s denote Q as cell averaged, Q̂ as line averaged, and
Q as pointwise values. And we denote Q̃ as surface averaged values in 3-D case. Here Ql,r represent the
reconstructed quantities on the left and right sides, which correspond to the non-equilibrium initial part in
GKS framework. Then, Qe is the reconstructed equilibrium state.

4.1 Extension to three dimensional simulation

The construction of three-dimensional gas distribution function is straightforward based on the three dimen-
sional BGK equation. The details could be found in [12, 8]. Within the control volume Vijk = xi × yj × zk
with xi = [xi−∆x/2, xi+∆x/2], yj = [yj−∆y/2, yj+∆y/2], zk = [zk−∆z/2, zk+∆z/2], the semi-discretized
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finite volume scheme can be written as

dQijk
dt

=
1

|Vijk|

[ ∫
yj×zk

(Fi−1/2,j,k − Fi+1/2,j,k)dydz

+

∫
xi×zk

(Gi,j−1/2,k −Gi,j+1/2,k)dxdz

+

∫
xi×yj

(Hi,j,k−1/2 −Hi,j,k+1/2)dxdy
]
, (13)

where Q = (ρ, ρU, ρV, ρW, ρE)T are the conservative flow variables, Qijk is the cell averaged value over
control volume Vijk and |Vijk| = ∆x∆y∆z.

The above time evolution solution is based on the high-order initial reconstruction for macroscopic flow
variables and WENO reconstruction [14, 15] is adopted for the spatial reconstruction. For the three di-
mensional computation, the reconstruction procedure for the cell interface xi+1/2,j,k is given as an example.
The point value Ql, Qr and Q0 and first-order derivatives at the Gauss quadrature points (xi+1/2, yjm , zkn),
m,n = 1, ..., 2 need to be constructed. The detailed procedure is given as follows

1. According to one dimensional reconstruction, the surface averaged reconstructed values

(Q̃l)j−`1,k−`2 , (Q̃
r)j−`1,k−`2 , (Q̃

e)j−`1,k−`2 ,

and surface averaged spatial derivatives

(∂xQ̃
l)j−`1,k−`2 , (∂xQ̃

r)j−`1,k−`2 , (∂xQ̃
e)j−`1,k−`2 ,

can be constructed, where `1, `2 = −2, ..., 2.

2. With the one-dimensional WENO reconstruction in the horizontal direction, the line averaged value

(Q̂l)jm,k−`2 , (Q̂
r)jm,k−`2 , (Q̂

e)jm,k−`2 ,

and the line averaged spatial derivatives

(∂xQ̂
l)jm,k−`2 ,(∂xQ̂

r)jm,k−`2 , (∂xQ̂
e)jm,k−`2 ,

(∂yQ̂
l)jm,k−`2 ,(∂yQ̂

r)jm,k−`2 , (∂yQ̂
e)jm,k−`2

over the interval [zk−`2 −∆z/2, zk−`2 + ∆z/2] with y = yjm can be given.

3. With one-dimensional WENO reconstruction in the vertical direction, the point value

(Ql)jm,kn , (Q
r)jm,kn , (Q

e)jm,kn ,

and spatial derivatives

(∂xQ
l)jm,kn ,(∂xQ

r)jm,kn , (∂xQ
e)jm,kn ,

(∂yQ
l)jm,kn ,(∂yQ

r)jm,kn , (∂yQ
e)jm,kn ,

(∂zQ
l)jm,kn ,(∂zQ

r)jm,kn , (∂zQ
e)jm,kn ,

can be fully given at the Gaussian quadrature points (xi+1/2, yjm , zkn).

4. With the reconstructed point value and spatial derivatives at each Gaussian quadrature point (xi+1/2, yjm , zkn),
the corresponding numerical fluxes can be obtained by Eq.(4) and Eq.(6).

In the computation, without special statement, the fifth-order WENO-JS reconstruction [14] is adopted for
the flow with discontinuities and the linear scheme is used for the smooth flows to reduce the dissipation.
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4.2 Slope reconstruction inside each control volume

Different from the Riemann problem with a constant state at a cell interface, a time evolution solution is
provided by the gas-kinetic scheme. Taking moments of the time-dependent gas distribution function, the
pointwise values at a cell interface can be obtained

Qi+1/2,j`(t) =

∫
ψf(xi+1/2, yj` , t, u, v, ξ)dudvdξ. (14)

With the pointwise values at a cell interface, the cell averaged spatial derivatives for all flow variables are
provided by the Green-Gauss theorem

Qx =
1

∆S

∮
Γ

Qdy =
1

∆S

K∑
k=0

2∑
m=1

Qk,m cosαkLk,

Qy = − 1

∆S

∮
Γ

Qdx = − 1

∆S

K∑
k=0

2∑
m=1

Qk,m cosβkLk,

(15)

where k is the index of edges of each cells, K = 3 for triangular and K = 4 for quadrangle, cosαk is angle
of tangential direction of each edges with y positive direction, cosβk is angle of tangential direction of each
edges with x positive direction, and Lk is the length of each edges. As a particular example, Eq.(15) for
one-dimensional flow reduces to

(Qx)i =
1

∆x

∫
Ii

∂Q

∂x
dx =

1

∆x
(Qi+1/2 −Qi−1/2),

and Eq.(15) for two-dimensional flow on structured meshes reduces to

(Qx)i,j =
1

∆x

2∑
m=1

(Qi+1/2,jm −Qi−1/2,jm),

(Qy)i,j =
1

∆y

2∑
m=1

(Qim,j+1/2 −Qim,j−1/2).

In order to utilize the pointwise values at cell interface in the spatial reconstruction, the temporal accuracy
needs to be kept. Similar to the proposition for the two-stage temporal discretization, we have the following
proposition for the time dependent gas distribution function at a cell interface

Proposition: With the introduction of an intermediate state at t∗ = tn +A∆t,

f∗ = fn +A∆tfnt +
1

2
A2∆t2fntt, (16)

the state fn+1 is updated with the following formula

fn+1 = fn + ∆t(B0f
n
t +B1f

∗
t ) +

1

2
∆t2

(
C0f

n
tt + C1f

∗
tt

)
, (17)

and the solution fn+1 at (t = tn + ∆t) has fourth-order accuracy with the following coefficients

A =
1

2
, B0 = 1, B1 = 0, C0 =

1

3
, C1 =

2

3
. (18)

The proposition can be proved using the expansion

fn+1 = fn + ∆tfnt +
∆t2

2
fntt +

∆t3

6
fnttt +

∆t4

24
fntttt +O(∆t5).
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According to the definition of the intermediate state, the above expansion becomes

fn+1 − fn = ∆t(B0 +B1)fnt +
∆t2

2
(C0 + C1 + 2B1A)fntt

+
∆t3

2
(B1A

2 + C1A)fnttt +
∆t4

4
C1A

2fntttt +O(∆t5).

To have a fourth-order accuracy for the interface value at tn+1, the coefficients are uniquely determined by
Eq.(18).

In order to utilize the two-stage fourth-order temporal discretization for the gas distribution function,
the third-order gas-kinetic solver is needed [2, 16]. To construct the first and second order derivatives of the
gas distribution function, the distribution function in Eq.(5) is approximated by the quadratic function

f(t) = f(xi+1/2, yj` , t, u, v, ξ) = fn + fnt (t− tn) +
1

2
fntt(t− tn)2.

According to the gas-distribution function at t = 0,∆t/2, and ∆t

fn = f(0),

fn +
1

2
fnt ∆t+

1

8
fntt∆t

2 = f(∆t/2),

fn + fnt ∆t+ fntt∆t
2 = f(∆t),

the coefficients fn, fnt and fntt can be determined

fn = f(0),

fnt = (4f(∆t/2)− 3f(0)− f(∆t))/∆t,

fntt = 4(f(∆t) + f(0)− 2f(∆t/2))/∆t2.

Thus, f∗ and fn+1 are fully determined at the cell interface. Therefore, the macroscopic variables Qn+1
i+1/2 at

a cell interface can be obtained by taking moments of fn+1 and the cell interface values can be used for the
reconstruction at the beginning of next time step.

4.3 HWENO Reconstruction on structured mesh

For the one-dimensional reconstruction, three sub-stencils for cell Ii are selected

S0 = {Ii−1, Ii}, S1 = {Ii, Ii+1}, S2 = {Ii−1, Ii, Ii+1}.

The Hermite quadratic reconstruction polynomials wi(x) corresponding to the substencil Si, i = 0, 1, 2 are
constructed according to the following conditions

1

∆x

∫
Ii−j

q0(x)dV = Qi−j , j = 0, 1,
1

∆x

∫
Ii−1

q′0(x)dV = (Qx)i−1,

1

∆x

∫
Ii+j

q1(x)dV = Qi+j , j = 0, 1,
1

∆x

∫
Ii+1

q′1(x)dV = (Qx)i+1,

1

∆x

∫
Ii+j

q2(x)dV = Qi+j , j = −1, 0, 1.
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and the pointwise value at the cell interface xi+1/2 can be given in terms of the cell averages value and the
averaged spatial derivative as follows

q0(xi+1/2) = −7

6
Qi−1 +

13

6
Qi +

2∆x

3
(Qx)i−1,

q1(xi+1/2) =
1

6
Qi +

5

6
Qi +

∆x

3
(Qx)i+1,

q2(xi+1/2) = −1

6
Qi−1 +

5

6
Qi +

1

3
Qi+1.

On the bigger stencil T = {S0, S1, S2}, a fourth-degree reconstruction polynomial Q(x) are constructed
according to the following conditions

1

∆x

∫
Ii+j

Q(x)dV = Qi+j , j = −1, 0, 1,

1

∆x

∫
Ii+j

Q′(x)dV = (Qx)i+j . j = −1, 1,

and the point value at the cell interface xi+1/2 can be written as

Q(xi+1/2) = − 23

120
Qi−1 +

19

30
Qi +

67

120
Qi+1 −∆x(

3

40
(Qx)i−1 +

7

40
(Qx)i+1).

Similar to the classical WENO reconstruction, the linear weights γk, k = 0, 1, 2 can be found such that

Q(xi+1/2) =

2∑
k=0

γkqk(xi+1/2),

where γ0 =
9

80
, γ1 =

21

40
, γ2 =

29

80
. To deal with the discontinuity, the normalized nonlinear weight is

introduced as follows

ωk =
ωk∑
p ωp

,

where the non-normalized nonlinear weights ωi. The non-normalized weights ωi is defined as follows

ωk =
γk

(βk + ε)2
,

where βk are the smoothness indicators. Thus, the reconstructed left interface value Qli+1/2 can be written
as

Qli+1/2 =

2∑
k=0

ωkqk(xi+1/2).

Similarly, the reconstructed left interface value Qri+1/2 can be constructed as well. More details of one-

dimensional HWENO scheme can be found in [10]. With the reconstructed Qli+1/2 and Qri+1/2 at both sides
of a cell interface xi+1/2, the macroscopic variables Qei+1/2 and the corresponding equilibrium state g0 can

be determined according to the compatibility condition [3]. To fully determine the slopes of the equilibrium
state across the cell interface, the conservative variables across the cell interface are expanded as

Qe(x) = Qei+1/2 + S1(x− xi+1/2) +
1

2
S2(x− xi+1/2)2 +

1

6
S3(x− xi+1/2)3 +

1

24
S4(x− xi+1/2)4.
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With the following conditions, ∫
Ii+k

Qe(x) = Qi+k, k = −1, ..., 2,

the derivatives are given by

(Qex)i+1/2 = S1 =
[
− 1

12
(Qi+2 −Qi−1) +

5

4
(Qi+1 −Qi)

]
/∆x,

(Qexx)i+1/2 = S2 =
[
− 1

8
(Qi+2 +Qi−1) +

31

8
(Qi+1 +Qi)−

15

2
Qei+1/2

]
/∆x2.

(19)

Thus, the reconstruction for the initial data and the equilibrium part are fully given in the one-dimensional
case.

For the two-dimensional reconstruction, the HWENO reconstruction can be extended by the strategy of
direction by direction reconstruction. For the fourth-order scheme, two Gaussian points in each interface are
needed for numerical flux integration. Our target is to construct

Ql, Qlx, Q
l
y, Q

l
xx, Q

l
yy, Q

l
xy,

Qr, Qrx, Q
r
y, Q

r
xx, Q

r
yy, Q

r
xy,

Qe, Qex, Q
e
y, Q

e
xx, Q

e
yy, Q

e
xy,

at each Gaussian point. To obtain these quantities, four line averaged slopes (Q̂x)i,jl , (Q̂x)il,j are additionally
evaluated, where l = 1, 2 represents the location Gaussian quadrature points in the corresponding direction.
The reconstruction procedure for the Gaussian point (i− 1/2, j1) is summarized as follows

1. To obtain the line average values, i.e. Q̂i,jl , we perform HWENO reconstruction in tangential direction
by using Qi,j−1, Qi,j , Qi,j+1, and (Qy)i,j−1, (Qy)i,j+1.

2. With the reconstructed line average values Q̂i−1,j1 , Q̂i,j1 , Q̂i+1,j1 and (Q̂x)i−1,j1 , (Q̂x)i+1,j1 , the one-
dimensional HWENO method is used, and Qri−1/2,j1

, Qli+1/2,j1
are obtained. (Qrx)i−1/2,j1 , (Q

l
x)i+1/2,j1

and (Qrxx)i−1/2,j1 , (Qlxx)i+1/2,j1 are constructed with the same derivative reconstruction method in [2].

3. The variables Qei−1/2,j1
at each Gaussian point can be obtained according to Qli−1/2,j1

, Qri−1/2,j1
and

the compatibility condition. (Qex)i−1/2,j1 ,(Qexx)i−1/2,j1 are calculated by Eq. (19).

4. For the tangential derivatives (Qry)i−1/2,j1 , (Q
r
yy)i−1/2,j1 , a WENO-type reconstruction is adopted by

using Qri−1/2,(j−1)2
, Qri−1/2,j1

, Qri−1/2,j2
, Qri−1/2,(j+1)1

. The derivatives (Qrxy)i−1/2,j1 could be obtained
in the same way with corresponding Qrx.

5. A smooth third-order polynomial can be constructed byQei−1/2,(j−1)2
, Qei−1/2,j1

, Qei−1/2,j2
, Qei−1/2,(j+1)1

for the equilibrium part, and the tangential derivatives (Qey)i−1/2,j1 , (Q
e
yy)i−1/2,j1 are obtained. Simi-

larly, (Qexy)i−1/2,j1 can be determined by the corresponding Qex.

Similar procedure can be performed to obtain all needed values at each Gaussian point.

4.4 HWENO Reconstruction on unstructured mesh

In this section, the HWENO Reconstruction will be extended to the unstructured mesh. A compact stencil
for 2-D triangular mesh includes the targeted cell and its three neighboring cells. We indicate them as cell
0, 1, 2, 3 respectively. As a starting point of HWENO type reconstruction, a linear reconstruction will be
presented. For a piecewise smooth function Q(x, y) over cell Ωi, a polynomial P r(x, y) with degree r can be
constructed to approximate Q(x, y) as follows

P r(x, y) = Q(x, y) +O(∆xr+1,∆yr+1).

10



In order to achieve the third-order accuracy and satisfy conservative property, the following quadratic poly-
nomial on the cell Ωi0 is constructed

P 2(x, y) = Qi0 +

5∑
k=1

akp
k(x, y), (20)

where Qi0 is the cell average value of Q(x, y) over cell Ωi0 and pk(x, y), k = 1, ..., 5 are basis functions, which
are given as follows 

p1(x, y) = x− 1

|Ωi0 |

∫∫
Ωi0

xdxdy,

p2(x, y) = y − 1

|Ωi0 |

∫∫
Ωi0

ydxdy,

p3(x, y) = x2 − 1

|Ωi0 |

∫∫
Ωi0

x2dxdy,

p4(x, y) = y2 − 1

|Ωi0 |

∫∫
Ωi0

y2dxdy,

p5(x, y) = xy − 1

|Ωi0 |

∫∫
Ωi0

xydxdy.

(21)

In order to obtain the high-order polynomial, the big stencil is chosen as

1. Cell average values Q for cell 0, 1, 2, 3,

2. Cell average x gradients Qx for cell 1, 2, 3,

3. Cell average y gradients Qy for cell 1, 2, 3.

The point value of P 2(x, y) at the Gaussian quadrature point (xG, yG) can be written as a linear combination
of the cell averaged values

P 2(xG, yG) =

3∑
j=0

ηjQj +

3∑
k=1

ηl(Qx)k +

3∑
k=1

ηl(Qy)l. (22)

To avoid the singularity of the least square matrix, the effective technique in [17] has been adopted.
Similar with the existing WENO or HWENO reconstruction [18, 19], nine sub-stencils Sj , j = 1, ..., 9 are

selected from the large stencil

P 1
1 on S1 = {i0, i1, i2}, P 1

2 on S2 = {i0, i2, i3}, P 1
3 on S3 = {i0, i1, i3},

P 1
4 on S4 = {i0, i1, i1,x}, P 1

5 on S4 = {i0, i2, i2,x}, P 1
6 on S6 = {i0, i3, i3,x},

P 1
7 on S4 = {i0, i1, i1,y}, P 1

8 on S4 = {i0, i2, i2,y}, P 1
9 on S6 = {i0, i3, i3,y}.

Nine linear polynomials can be fully determined. Similarly, the point value of P 1
j at the Gaussian quadrature

point (xG, yG) can be written as a linear combination of the cell averaged quantities. For the linear scheme,
the linear combination of P 1

j

R(x, y) =

9∑
j=1

γjP
1
j (x, y),

satisfies
R(xG, yG) = P 2(xG, yG), (23)

where (xG, yG) is the Gaussian quadrature point, and γj is the linear weights only depending on the local
geometry of mesh. Similar with the analysis in [18], the linear system for Eq.(23) contains 10 linear equations,
and generally the system is under-determined with Rank = 8. P 1

j (x, y) and P 2(x, y) reproduce the linear

11



function exactly and Eq.(23) is valid for W (x, y) = 1, W (x, y) = x, and W (x, y) = y under the following
identical constraint

9∑
j=1

γj = 1.

The coefficients γj are uniquely determined by a least square method. With the linear weights and the
smooth indicator, the non-linear weights can be constructed. In order to improve the stability of the scheme,
the optimization approach for the very large linear weights and the smooth indicator for the non-linear
weight are used, and details can be found in [17].

Once the conservative variables at each gauss-points are constructed, a quadratic polynomial could be
reconstructed using the cell average values W0 on cell 0 and all the values of the gauss-points along the
three edges of cell 0, Q(xGi

, yGi
), i = 1, 2..., 6, in a least square sense. The derivatives for non-equilibrium

parts could be obtained by the reconstructed quadratic polynomial. The slopes for equilibrium part are
constructed by simple averages of the ones of non-equilibrium part, which seems effective in current inviscid
test cases.

5 Numerical results

5.1 Numerical results of compact scheme on structured meshes

5.1.1 Accuracy tests

The advection of density perturbation is tested, and the initial condition is given as follows

ρ(x) = 1 + 0.2 sin(πx), U(x) = 1, p(x) = 1, x ∈ [0, 2].

The periodic boundary condition is adopted, and the analytic solution is

ρ(x, t) = 1 + 0.2 sin(π(x− t)), U(x, t) = 1, p(x, t) = 1.

In the computation, a uniform mesh with N points is used. The time step ∆t = 0.2∆x is fixed. For the
HWENO compact GKS, the L1 and L2 errors and order of accuracy at t = 2 are shown in Table.1. With
the mesh refinement, the expected order of accuracy is obtained as well.

mesh L1 error convergence order L2 error convergence order
10 2.666501e-04 2.094924e-04
20 1.082129e-05 4.6228 8.693374e-06 4.5908
40 5.530320e-07 4.2904 4.967487e-07 4.1293
80 3.251087e-08 4.0884 2.940079e-08 4.0786
160 1.971503e-09 4.0436 1.769347e-09 4.0546
320 1.210960e-10 4.0250 1.081183e-10 4.0325
640 7.497834e-12 4.0135 6.675859e-12 4.0175

Table 1: Advection of density perturbation: accuracy test for HWENO compact GKS method under smooth
reconstruction.

5.1.2 One-dimensional Riemann problem

In this case, the Titarev-Toro problem is tested, in which the very high frequency wave interacts with a
shock. The initial condition is given as follows

(ρ, U, p) =

{
(1.515695, 0.523346, 1.805), −5 < x ≤ −4.5,

(1 + 0.1 sin(20πx), 0, 1), −4.5 < x < 5.

12



The computational domain is [−5, 5]. The non-reflecting boundary condition is imposed on left end, and
the fixed wave profile is given on the right end. Both compact GKS with HWENO and non-compact GKS
with fifth-order WENO are tested for these two cases. The computed density profiles, local enlargements,
and the exact solutions for the Titarev-Toro problem with 1000 mesh points at t = 5 are shown in Fig.1,
respectively. Titarev-Toro problem is sensitive to reconstruction scheme [15]. Instead of WENO-JS used
above for non-linear weights, the WENO-Z weights can keep the same order of accuracy in extreme points.
Combining the HWENO-Z reconstruction with the compact GKS, the result is shown in Fig.2, which can
be compared with the solution from the GRP method [11].
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Figure 1: Titarev-Toro problem: the density distributions and local enlargement at t = 5 with 1000 cells.
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Figure 2: Titarev-Toro problem: the results by using HWENO-Z reconstruction.

5.1.3 Double Mach reflection problem

This problem was extensively studied by Woodward and Colella for the inviscid flow. The computational
domain is [0, 4]×[0, 1], and a solid wall lies at the bottom of the computational domain starting from x = 1/6.
Initially a right-moving Mach 10 shock is positioned at (x, y) = (1/6, 0), and makes a 60◦ angle with the
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x-axis. The initial pre-shock and post-shock conditions are

(ρ, U, V, p) = (8, 4.125
√

3,−4.125, 116.5),

(ρ, U, V, p) = (1.4, 0, 0, 1).

The reflecting boundary condition is used at the wall, while for the rest of bottom boundary, the exact
post-shock condition is imposed. At the top boundary, the flow variables are set to follow the motion of the
Mach 10 shock. The density distributions and local enlargement with 1920 × 480 uniform mesh points at
t = 0.2 with HWENO reconstructions are shown in Fig.3. The robustness of the compact GKS is validated,
and the flow structure around the slip line from the triple Mach point is resolved better by the compact
scheme.
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Figure 3: Double Mach reflection: local enlargement of density contours from compact and non-compact
GKS with HWENO and WENO reconstructions and 1920× 480 mesh points.
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5.1.4 A Viscous Shock Tube

This problem was introduced to test the performances of different schemes for viscous flows [20]. In this
case, an ideal gas is at rest in a two-dimensional unit box [0, 1] × [0, 1]. A membrane located at x = 0.5
separates two different states of the gas and the dimensionless initial states are

(ρ, U, p) =

{
(120, 0, 120/γ), 0 < x < 0.5,

(1.2, 0, 1.2/γ), 0.5 < x < 1,

where γ = 1.4 and Prandtl number Pr = 0.73.

Scheme AUSMPW+ [20] M-AUSMPW+ [20] WENO-GKS HWENO-GKS
Height 0.163 0.168 0.171 0.173

Table 2: Viscous shock tube problem: comparison of the primary vortex heights among different schemes
with 500× 250 uniform mesh points for Re = 200 case.
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Figure 4: Viscous shock tube problem: density contours with 500 × 250 uniform mesh points at t = 1 for
Re = 200 case.
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Figure 5: Viscous shock tube problem: density profiles along the lower wall at t = 1 for Re = 200 case.

The membrane is removed at time zero and wave interaction occurs. A shock wave, followed by a contact
discontinuity, moves to the right with Mach number Ma = 2.37 and reflects at the right end wall. After the
reflection, it interacts with the contact discontinuity. The contact discontinuity and shock wave interact with
the horizontal wall and create a thin boundary layer during their propagation. The solution will develop
complex two-dimensional shock/shear/boundary-layer interactions. This case is tested in the computational
domain [0, 1] × [0, 0.5], a symmetric boundary condition is used on the top boundary x ∈ [0, 1], y = 0.5.
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Non-slip boundary condition, and adiabatic condition for temperature are imposed at solid wall. Firstly,
the Reynolds number Re = 200 case is tested. For this case with Re = 200, the density distributions with
500 × 250 uniform mesh points at t = 1.0 from compact GKS with HWENO reconstruction is shown in
Fig.4. The density profiles along the lower wall for this case are presented in Fig.5. As a comparison, the
results from WENO reconstruction with 1000× 500 uniform mesh points is given as well, which agrees well
with the density profiles provided by compact GKS with HWENO method and 500× 250 mesh points. As
shown in Table.2, the height of primary vortex predicted by the current compact scheme agrees well with
the reference data [20].

Figure 6: Viscous shock tube problem: density contours with1000 × 500 and 2000 × 1000 uniform mesh
points at t = 1 for Re = 1000.
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Figure 7: Viscous shock tube problem: density profiles along the lower surface at t = 1 for Re = 1000 case.

Secondly, the Re = 1000 case is computed with different girds. As shown in Fig.6, the vortex shedding
could be observed clearly at the wedge-shaped area with 1000 × 500 and 2000 × 1000 mesh points. The
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density distribution along the wall at t = 1.0 is plotted in Fig.7 as well. In comparison with the reference
result of S2O4 GKS [1], the density distribution along the wall agree well with traditional non-compact
WENO GKS.

5.2 Numerical results of compact scheme on unstructured meshes

5.2.1 Sod Problem

The standard Sod test case is used to test the mesh adaptability of the proposed scheme. The initial condition
for the Sod problem is given by

(ρ, u, p) =

{
(1, 0, 1), 0 < x < 0.5,

(0.125, 0, 0.1), 0.5 ≤ x < 1.

The computational domain is [0, 1] × [0, 0.5], and the mesh size is h = 1/100. Non-reflection boundary
condition is adopted at the left and right boundaries of the computational domain, and periodic boundary
condition is adopted at the bottom and up boundaries of the computational domain. The uniform, regular
and irregular meshes are tested by the current scheme, which are given in Fig.8. The numerical results for
the Sod problem at t = 0.2 are presented in Fig.9. Through the 3-D view of density distributions, we can see
that the one-dimensional solution could be kept well by the current scheme, even when the mesh orientation
is quite random.
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Figure 8: Sod problem: different meshes with cell size 1/100. From left to right: uniform, regular and
ir-regular mesh.
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Figure 10: Double Mach reflection problem: triangular mesh sample with h = 1/20.
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Figure 11: Double Mach reflection problem: density distributions on non-uniform meshes by compact 3rd
GKS at t = 0.2 with h = 1/160, h = 1/320. Right: Location Enlargement.

5.2.2 Double Mach reflection problem

The double Mach reflection problem is used to test again for the performance of compact GKS on triangular
mesh. A mesh sample is shown in Fig.10. The initial shock wave is imposed at x = 0 and parallel to
y-axis with Mach number 10. The HWENO reconstruction can sustain the strong discontinues near shock
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in this case. No extra low order limiter is needed. The density distributions with mesh size h = 1/160 and
h = 1/320 at t = 0.2 are shown in Fig.11. The current scheme resolves the flow structure under the triple
Mach stem nicely. The shear instabilities could be seen clearly under the fine mesh.

5.3 Numerical results for three-dimensional flows

5.3.1 Compressible homogeneous turbulence

The method is applied as a direct numerical simulations (DNS) method for the compressible decaying
isotropic homogeneous turbulence. The flow is computed within a square box defined as −π ≤ x, y, z ≤ π,
and the periodic boundary conditions are used in all directions for all flow variables [21]. In the computation,
the domain is discretized with a uniform Cartesian mesh cells N3. A divergence-free random initial velocity
field u0 is generated for a given spectrum with a specified root mean square u′

u′ =<
u · u

3
>1/2,

where < ... > is a volume average over the whole computational domain. The specified spectrum for velocity
is given by

E(k) = A0k
4 exp(−2k2/k2

0),

where k is the wave number, k0 is the wave number at spectrum peaks, A is a constant chosen to get
a specified initial kinetic energy. The initial volume averaged turbulent kinetic energy K0 and the initial
large-eddy-turnover time τ is given by

K0 =
3A0

64

√
2πk5

0, τ =

√
32

A0
(2π)1/4k

−7/2
0 .

The Taylor microscale Reynolds number Reλ and turbulence Mach number Mat are given as

Reλ =
< ρ > u′λ

< µ >
=

(2π)1/4

4

ρ0

µ0

√
2A0k

3/2
0 , Mat =

√
3u′

< cs >
=

√
3u′√
γT0

,

where λ is Taylor microscale

λ2 =
(u′)2

< (∂1u1)2 >
.

The dynamic viscosity is determined by

µ = µ0

( T
T0

)0.76
,

where µ0 and T0 can be determined from Reλ and Mat with initialized u′ and ρ0 = 1. The time history of
the kinetic energy, root-mean-square of density fluctuation and skewness factor for velocity slope are defined
as

K(t) =
1

2
< ρu · u >, ρrms(t) =

√
< (ρ− ρ)2 >, Su(t) =

∑
i

< (∂iui)
3 >

< (∂iui)2 >3/2
.

In the computation, A0 = 1.3 × 10−4, k0 = 8, Reλ = 72 and Mat = 0.5, and the uniform meshes with 643,
963 and 1283 cells are used. The iso-surfaces of Q criterion colored by velocity magnitude and the pressure
distribution with z = −π at time t/τ = 1 are given in Fig.12. The time history of normalized kinetic energy
K(t)/K0, normalized root-mean-square of density fluctuation ρrms(t)/Ma2

t and skewness factor Su(t) with
respect to t/τ are given in Fig.13. The numerical results agree well with the reference data. With fixed
initial Reλ = 72, the cases with Mat = 0.2, 0.5, 0.6 are tested, and the time histories of normalized kinetic
energy K(t)/K0 are given in Fig.13 as well. With the increase of Mat, the dynamic viscosity increases, and
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Figure 12: Compressible homogeneous turbulence. Left: iso-surfaces of Q criterion colored by velocity
magnitude at time t/τ = 2 with 1283 cells; right: the pressure distribution with z = −π at time t/τ = 1.
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Figure 13: Compressible homogeneous turbulence: the time history of K(t)/K0 (a), ρrms(t)/Ma2
t (b) and

Su(t) and time history of K(t)/K0 (c) with Maλ = 0.2, 0.5 and 0.6 with respect to t/τ (d).
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the kinetic energy gets dissipated more rapidly.
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Figure 14: Taylor-Green Vortex problem: kinetic energy Ek and dissipation rate −dk/dt with fourth-order
scheme for Re = 1600.
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Figure 15: Taylor-Green Vortex problem: kinetic energy Ek and dissipation rate −dk/dt with fourth-order
scheme for Re = 280.

5.3.2 Taylor-Green Vortex

This problem is aimed at testing the performance of high-order methods on the direct numerical simulation of
a three-dimensional periodic and transitional flow defined by a simple initial condition, i.e., the Taylor-Green
vortex [22]. With a uniform temperature field, the initial flow field is given by

u =V0 sin(
x

L
) cos(

y

L
) cos(

z

L
),

v =− V0 cos(
x

L
) sin(

y

L
) cos(

z

L
),

w =0,

p =p0 +
ρ0V

2
0

16
(cos(

2x

L
) + cos(

2y

L
))(cos(

2z

L
) + 2).

The fluid is then a perfect gas with γ = 1.4 and the Prandtl number is Pr = 0.71. Numerical simulations are
conducted with two Reynolds numbers Re = 1600 and 280. The flow is computed within a periodic square
box defined as −πL ≤ x, y, z ≤ πL. The characteristic convective time tc = L/V0. In the computation,
L = 1, V0 = 1, ρ0 = 1, and the Mach number takes M0 = V0/c0 = 0.1, where c0 is the sound speed.
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a b

Figure 16: Taylor-Green Vortex problem: iso-surfaces of Q criterion colored by velocity magnitude at time
t = 10 for Re = 280 (a) and Re = 1600 (b).

The volume-averaged kinetic energy can be computed from the flow as it evolves in time, which is
expressed as

Ek =
1

ρ0Ω

∫
Ω

1

2
ρu · udΩ,

where Ω is the volume of the computational domain, and the dissipation rate of the kinetic energy is given
by

εk = −dEk
dt

.

The numerical results of the current scheme with 128 × 128 × 128 mesh points for the normalized volume-
averaged kinetic energy and dissipation rate with Reynolds numbers Re = 1600 and 280 are presented in
Fig.14 and Fig.15, which agree well with the data in [22]. The iso-surfaces of Q criterions colored by velocity
magnitude at t = 10 are shown in Fig.16 for different Reynolds number. The evolution of flow structure is
evident, starting from large vortices and decaying into more complex structures. Different from many other
higher-order methods, the current scheme has no internal degrees of freedom to be updated within each cell.

6 Conclusion

In the paper, the two-stage fourth-order gas-kinetic scheme is extended to simulate three-dimensional flows,
and a compact gas-kinetic scheme based on the HWENO reconstruction is also developed. The new advances
in GKS inherit the advantages of original method, which are efficient, accurate, and robust in comparison
with all currently existing higher-order schemes. The three-dimensional S2O4 GKS presents very accurate
viscous flow solutions due to its multi-dimensionality in the flux evaluation at a cell interface, where the
gradients in both normal and tangential directions of all flow variables participate in the gas evolution. This
property is very promising for GKS to simulate complex flows, such as turbulence and acoustics with shock
interactions. Accurate results are obtained as well by the current compact fourth-order GKS with high
efficiency. Only 2-stages are used for the fourth-order accuracy in time due to the use of both flux and its
time derivative, and the time step used here in almost all calculations are on the order of CFL number 0.5.
On the contrary, the popular compact 4th-order DG method with the same HWENO limiter [23] needs four
stages within each time step to get a 4th-order temporal accuracy, and the time step for the DG method
is on the order of CFL number 0.11 from the stability consideration. This distinguishable feature is solely
from the updated slopes in GKS through the explicit time evolution solution of flow variables at the cell
interfaces, and the updated slope is based on the evolution solution at the cell interface, instead of updating
the slopes (weak solution) directly inside each cell in the HWENO DG method. Here, the slope in GKS
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is obtained through the Gauss’s theorem at the beginning of the new time step. The HWENO is fully
implemented without using any additional trouble cell detection and limiting technique. As a result, the
4th-order compact GKS has the same robustness as the 2nd-order shock capturing scheme. On unstructured
mesh, combining two-stage time stepping method and HWENO reconstruction, a third-order spatial and
temporal accurate compact GKS can be constructed. The proposed scheme shows good mesh adaptivity
even for a highly irregular mesh through a carefully designed optimized linear weights.
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