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Abstract: Global stability analysis can be applied to study the stability property of 

two- and three-dimensional inhomogeneous flows. However, traditional global 

stability analysis (matrix-form) is based on solving the eigenvalue problem of a 

huge matrix, which makes it inconvenient for users. Several matrix-free or 

Jacobian-free methods have been developed in recent years. These methods are 

usually more effective and convenient than the traditional one. With regard to the 

matrix-free methods, a Global Stability Decomposition (GSD) is developed in the 

present study. The GSD concerns with a series of initial disturbances and their 

companions after a small time interval evolution, namely the couples of 

   0 0i iu t u t t    . GSD produces modes each of which has a single frequency, 

growth rate and mode shape. Combined with high-order accurate CFD tools, GSD 

becomes an effective method in studying global linear instability of arbitrary base 

flows. The relations of GSD to dynamic mode decomposition and matrix-free 

method are also discussed. 
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1     Introduction 
 

Flow instability studies can provide basic knowledge on many flow phenomena, such as flow 

separation and laminar-turbulent transition. Linear instability studies have been popular in fluid 

mechanics since the advent of classic Linear Stability Theory (LST), which mainly concerns with 

sinusoidal waves propagating in parallel or ‘locally’ parallel flows. For flows which are not strictly 

parallel but only vary slowly in streamwise direction, the methods by solving the Parabolized Stability 

Equations (PSE) are proven more accurate than the classic LST. However, for flow with multiple 

inhomogeneous spatial directions, neither classic LST nor PSE can produce accurate results. 

Global stability theory[1][2] can be used to study the development of small-amplitude 

perturbations superposed upon steady or time-periodic flows, which may be inhomogeneous in two 

(Bi-Global) or three (Tri-Global) spatial directions. Global stability analysis generally needs to solve 

the eigenvalue problem of a huge non-symmetric sparse matrix, which makes the situation especially 

difficult for three-dimensional inhomogeneous flows. This puts forward the so-called ‘matrix-free’ 

methods [3]. Most ‘matrix-free’ methods convert the eigenvalue problem of a huge sparse matrix to 

the eigenvalue problem of a small matrix by some kinds of iteration methods, such as Arnoldi 



 2 

iteration. No matter which kinds of methods are used, the global stability theory contains spatial 

discretization, which is nontrivial and has much influence on getting physically relevant results 

(global unstable modes). Thus high-order numerical methods with appropriate boundary conditions 

are necessary. Both the classic and the global linear instability analysis are concerned with a base 

flow. High-quality base flow is necessary because it provides the spatial variable coefficients of the 

underlying partial derivative eigenvalue/initial-value problem, and the results (modes) show the 

instability property of the base flow. Thanks to the rapid development of computational fluid 

dynamics (CFD), many CFD codes and software are available for computing base flows; some CFD 

tools are even high-order accurate. Beside base flow computation, can we also use these high-order 

accurate CFD tools in global stability analysis? Readers may find an answer from this study. 

This paper proposes a mode decomposition method to find the global modes of least stable or 

most unstable temporal ones for arbitrary steady flows. This method can be used in combination with 

various high-order accurate CFD tools. Its relations to Dynamic Mode Decomposition (DMD)[4][5] 

and matrix-free method [6] are also given. 

 

2     Global stability decomposition 
 

Suppose an infinitely small disturbance u  is added to a base condition 0
u  which generally satisfies 

some kinds of governing equations like Navier-Stokes equations. The evolution of the disturbance can 

be expressed by the following equation 

'd dt u Au ,                                                                      (1) 

where A  is the Jacobian matrix. A direct global stability analysis method is to solve the eigenvalue 

problem of A A AAφ φ , where A  and A
φ  are the eigenvalue and eigenvector of A . However it is 

not easy to construct the matrix A , and the size of A  is usually huge. Instead, we propose to march 

Eq. (1) by a small time  interval t , 

0 0 0
( t) exp( t) ( ) ( )t t t     u A u Bu ,                                            (2) 

where exp( t)B A . The eigenvalues and eigenvectors of A  and B  have the following relations 

ln( ) / ,A B A Bt   φ φ .                                                           (3) 

The least stable or most unstable mode of A  usually corresponds to an inner eigenvalue with the 

largest real part. By applying Eq. (2), this most unstable mode of A  becomes the one of B  with 

largest absolute value, which is much easier to compute by iteration algorithms. We suggest  to solve 

the eigenvalues of B  by orthogonal projection methods [7]. 

For a given series of initial small disturbances 1 0 2 0 0( ), ( ), , ( )mt t t  u u u , and i j
k u u  if i j  

for any value of k , they form a subspace, 1 0 2 0 0{ ( ), ( ), , ( )}mspan t t t  u u u , and its matrix form 

1 0 2 0 0[ ( ), ( ), , ( )]m mt t t  U u u u . We can generate the orthogonal basis i
v  of the subspace, and get 

the orthogonal matrix 

 1 2
, , ,m mV v v v ,                                                                 (4) 

where , 1i j
   v v  only for i j ; otherwise , 0

i j
   v v . We can use Gram-Schmidt method to 

generate m
V . Actually, it can also be obtained by the standard QR decomposition,  

m
U QR .                                                                            (5) 

Then m
V Q . Projecting B  into the subspace by orthogonal projection, we can get 

H

m m
V BV  whose 

eigen solutions are good approximation to parts of the eigen solutions of B . Multiplying 
H

m m
V BV  by 

1
R and R  from the left and right side, respectively, we get an m m small matrix S , 
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1 1 1H H H

m m m

  
  S R V BV R R Q BQR R Q BU .                                     (6) 

S  is several orders smaller than B . The eigenvalues and eigenvectors have the following relations 

,B S B m S m S   φ V Rφ U φ .                                                   (7) 

However, B  is not easy to construct neither. Fortunately, B  is not necessary when we use Eq. (6) to 

compute the small matrix S . Instead, we can use mBU , which can be found from Eq. (2) as below 

   1 2 1 0 2 0 0
, , , ( t), ( t), , ( t)m m mt t t            BU Bu Bu Bu u u u .                 (8) 

0( t)i t  u  can be acquired by other methods, such as high accurate CFD methods or high fidelity 

experiments (e.g. PIV for fluid flows).  

To summarize, the algorithm for solving the eigenvalue problem of the linear stability system (1) 

is as following: 

Step 1: Set a series of initial disturbances mU . 

Step 2: Time march t  to get  1 0 2 0 0
( t), ( t), , ( t)m mt t t        BU u u u  by a high-

order accurate CFD tool. 

Step3: Construct a small matrix S  by Eq. (6) where the Q  and R  matrices can be computed by 

a QR decomposition of mU . 

Step 4: Compute the eigenvalues and eigenvectors of S . 

Step 5: Get the approximated eigenvalues and eigenvectors of A by Eq. (7) together with Eq. (3) 

 

This procedure can be regarded as mode decomposition of a series of disturbance pairs of 

0 0( ) ( t)i it t   u u , and the modes can denote the global stability properties of the base flow. We 

call this procedure as Global Stability Decomposition (GSD). 

 

3     Initial disturbances and relations to other methods 
 

3.1    Initial disturbances 
 

The proposed GSD needs a series of initial small disturbances, 1 0 2 0 0( ), ( ), , ( )mt t t  u u u , then march 

t  to get 1 0 2 0 0( t), ( t), , ( t)mt t t       u u u  by high-order accurate CFD tools. The first 

requirement when setting the initial disturbances is that any two initial disturbances are not parallel to 

each other. This requirement is easy to satisfy in CFD. From the view of nonparallel, orthogonal 

disturbances may be the best choice. From the view of getting physical-based modes, or to speed up 

the convergence rate, physical-based disturbances (such as acoustic waves, vortex waves, and 

Tollmien-Schlichting waves) may also be good choices. In this study, we tested orthogonal 

disturbances and random disturbances, and both can bring us reasonable global stability solutions. 

There is much freedom to set the initial disturbances, and future work is still necessary to investigate 

which kind of initial disturbances is the best. 

The amplitude of the initial disturbance shall be small enough to validate the linear hypothesis, 

but still several orders larger than the system error (including round-off errors) of the CFD tools. Our 

suggestion is 10-8-10-3 of the base-flow values combined with double precision arithmetic. 

 

3.2    Relations to DMD 
 

DMD provides a means to decompose snapshots of flows into modes, with each mode having a single 

frequency and growth/decay rate. In DMD, one assumes a linear relationship between the snapshots 
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with  
j

i j DMD i
 x B x .                                                                          (9) 

Suppose  1 1 2
, , ,

m

m
  X x x x , and  1

2 2 3 1
, , ,

m

m




  X x x x , then   

1

2 1

m m

DMD


X B X .                                                                     (10) 

The real part of an eigenvalue of DMD
B  represents the growth/decay rate, whereas the image part 

indicates the frequency for the corresponding eigenvector (DMD mode) of DMD
B . 

In the present GSD, the initial disturbances can be generated by Arnoldi procedure, which means 

we only need to set one initial disturbance, and the others can be computed by  

1 0 1 0 1 0
( ) ( t) ( )

i

i
t t i t


     u u B u .                                                  (11) 

Actually, we can use high-order accurate CFD methods to time-march ti  from the first initial 

disturbance 1 0( )tu  to get 1 0( )i t
u . Then, a series of initial disturbances and their corresponding 

disturbances after t  can be rewritten in a matrix form as 
1 1

1 0 1 0 1 0
[ ( ), ( ), , ( )]

m

m
t t t

  U u B u B u  and 1 2

1 0 1 0 1 0
( ), ( ), , ( )

m
m t t t     BU B u B u B u .         (12) 

In this case, GSD is equivalent to DMD by setting 1

m

m
X U , and naturally  

1 1 2

2 11 0 1 0 1 0
( ), ( ), , ( )

m mm
t t t


     X BXB u B u B u .                               (13) 

Then, we can find that DMD, if applied to analyze global instabilities of a steady base flow, is a 

special case of GSD where the initial disturbances are generated by Arnoldi procedure. 

 

3.3    Relations to matrix-free method 

 
The matrix-free (or Jacobian-free) method is a time-stepping approach for the approximate solution of 

global modes. Gómez et al. [6] gave an excellent example to demonstrate the powerfulness of the 

method. Our method is similar to the Jabobian-free method given in [6] and the references therein in 

three aspects: First, both of the methods do not need to construct an explicit Jacobian matrix; Second, 

both need to use a CFD tool; Third, both produce the approximate solution of the exact global modes. 

However, the present GSD is different from the matrix-free method in two aspects: First, there is 

more freedom in the present method when setting the initial disturbances, which makes it more 

convenient to use; Second, it is not necessary in GSD to use the Frèchet derivative to compute      , 

instead, the GSD directly use a series of  0i tu  and the numerical result  0i t t  u  to form a small 

matrix by Eq. (6) in combination with QR decomposition.  

 

4     Validation cases 
 
Three testing cases, i.e., one-dimensional incompressible Poiseuille flow, two-dimensional square 

cylinder and circular cylinder wake flows, are investigated to validate the proposed GSD method. 

 

4.1    One-dimensional Poiseuille flow  
 

The CFD solver used for this study is Diablo, which is an open source software developed by Bewley 

[8]. For Poiseuille flow, the solver uses Fourier series with 2/3 dealiasing rule for the streamwise and 

spanwise directions, and second-order central difference for the wall-normal direction. During the 

simulation, the mass flow rate is kept constant. The Reynolds number based on the centerline velocity 

and half channel height h is Re = 10000. To capture small disturbances in wall-normal direction, 129 

points are used in this direction, with a hyper-tangential stretching parameter of 1.75 to make the 
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near-wall region better resolved. The domains size and grid points are [2 ,2 , ]h h h  and [4,129,2]  in 

streamwise, wall-normal and spanwise directions, respectively. Refer to [9], the constructed flow 

system resolves only two wall-parallel modes, i.e., streamwise and spanwise wave number 

( , ) (0,0)    and ( , ) (1,0)   . The base flow is the analytic parabolic profile, i.e., 
2

1U y  .  

We first add small amplitude random disturbances to the base flow. Because random 

disturbances cannot satisfy the governing equations of fluid flows, there must be a self-modulation 

period. After a short time of self-modulation process, the disturbance is supposed to satisfy the 

governing equation, and the disturbance is then normalized as a unit vector 1
ξ . The first initial 

disturbance is given as  1 0 1
t  u ξ , where   is the amplitude of disturbances. We can get 

 1 0
t t  u  by the CFD solver. Applying the Gram-Schmidt orthogonalization method to 1

ξ  and 

 1 0
t t  u , we can get a unit vector 2

ξ , which is orthogonal to 1
ξ . Setting  2 0 2

t  u ξ , we can 

get  2 0
t t  u  by the CFD tool. Continue with the Gram-Schmidt orthogonalization method, we 

can get a unit vector 3
ξ , which is orthogonal to the previous existing vectors 1 2{ , }ξ ξ . We continue 

this procedure until the convergence of leading N eigenvalues. Usually, N can be a small number, e.g. 

2, which means we only focus on the primary and secondary eigenvalues. For the amplitude of 

disturbances, we have tested 
4 5 6

10 ,10 , and 10   
 , and GSD results show that the amplitudes have 

little influence on the converged eigenvalues.  

Figure 1 compares the eigen spectra between GSD and OS [9] (the method of directly solving the 

Orr-Sommerfeld equation). For the case of Re = 10000, there are two branches of eigenvalues, i.e., the 

left branch and right branch in Figure 1. There is one eigen mode with a positive growth rate 

(unstable) on the left branch. All the other eigenvalues have negative real part (stable). The first 10 

eigenvalues computed by GSD is in good agreement with the results in [9]. However, for the 

eigenvalues with small real parts, noticeable difference appears between the results of GSD and OS. 

The main reason for this discrepancy may be that the amplitudes of these modes are very small as 

they damp very fast, which means that these modes can be contaminated by CFD errors. Figure 2 

compare the mode shape. For the primary mode and secondary mode, the GSD mode shapes are 

almost identical to the OS results [9]. Generally, the most important modes are the most unstable ones 

and least stable ones. GSD can accurately compute these modes. This case indicates that GSD is 

capable of studying one-dimensional stability problems, and the result is consistent with that of 

traditional temporal LST. 

 
Figure 1 Leading eigenvalues from present GSD compared with OS result [9] for Re=10000 

and ( , ) (1,0)   . 
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Figure 2 Mode shapes at Re = 10000 and ( , ) (1,0)   , shown by v̂ . Left: The most 

unstable mode (The leading mode on the left branch in Figure 1); Right: The least 

stable mode (The leading mode on the right branch in Figure 1). Symbols are from 

OS calculation [9], and lines are from present GSD. 

 

4.2    Global unstable modes in the wake of a square cylinder 
 

The second validation case is the flow over a square cylinder. One advantage of the present GSD is 

that the CFD tools can be changed without much adaption of the GSD code. In this section and the 

following section, we use an in-house high-order compressible flow code as the CFD solver. Details 

about the in-house code can be found in Ref. [11]-[16].  

The flow conditions are similar to the one studied by Ohmichi & Suzuki [17]. The Mach number is 

0.2, and five Reynolds numbers, i.e., 40, 60, 80, 100, and 120 (based on the length of the square side 

d ) are studied. The outflow boundary is located at 150d  downstream of the square to minimize the 

boundary effect. In order to get a steady base flow, the flow is forced to be symmetric along the 

symmetry line, i.e., 0
| 0
y

v

 . Whereas the symmetry condition is switched off when computing the 

evolution of disturbances. The base flow for Re=120 is shown in Figure 3. 

 
Figure 3 Base flow for square cylinder at Re=120. Left: pressure; Right: streamwise 

velocity. 

 

The initial disturbances are given by the same method as in the previous subsection, which start 

from random disturbances and Gram-Schmidt method is applied to generate a sequence of orthogonal 

disturbances. There are a primary wake (PW) mode and a secondary wake (SW) mode. The PW mode 

becomes unstable as the Reynolds number approximately greater than 45, and the SW mode becomes 

unstable as the Reynolds number approximately greater than 96 [17]. The growth rates of the PW and 

SW modes are given in Figure 4. When considering the PW mode, our result is in good agreement 

with that in Ref. [17]. However, when considering the SW mode, the agreement with Ref. [17] is less 

satisfactory, especially at high Reynolds numbers. The small discrepancy between the present results 

and those in Ref. [17] may attribute to the difference in boundary treatment. Theofilis [1] pointed out 

that inflow and outflow boundary conditions for open flows needs further studying, especially for 



 7 

flows involving (hydrodynamic or aeroacoustic) wave propagation. The outflow and far field 

boundary conditions in the present computing are closed by supposing Riemann invariants, which are 

widely used in engineering CFD. This boundary closure is robust for steady flows. However, for wave 

propagation, it may cause serious reflections and fake oscillations in the vicinity of boundaries. 

Ohmichi & Suzuki [17] tested three kinds of boundary treatments, and all the treatments are more 

suitable for wave propagation than ours. The SW mode is more difficult to compute as it extends very 

long in the wake, which makes it more likely to be affected by outflow boundary conditions. Both PW 

mode and SW mode at Re = 120 are shown in Figure 5, which also shows the result of Ohmichi & 

Suzuki [17] for comparison, and a qualitative agreement is achieved.  

 
Figure 4 Growth rates of the global stability modes in the wake of a square cylinder. 

OS2016 denotes the results computed by Ohmichi & Suzuki [17].  

 

        

 
Figure 5 Shapes of the PW (left) and SW (right) modes (shown by the real part of 

streamwise velocity). Upper:  Results of Ohmichi & Suzuki [17]. Lower: Present 

result. 

 

4.3    Global unstable modes in the wake of a circular cylinder  
 

The wake stability property of a smooth circular cylinder is similar to that of the previous square 

cylinder. Both cylinders have a PW mode and a SW mode. For wake flow behind a circular cylinder 

with Reynolds number greater than 46.9, the PW mode shall be unstable [18]. When the Reynolds 

number is greater than 110.8, the SW mode shall also be unstable [18]. If the Reynolds number is less 

than 180, the flow may still remain two-dimensional, but Karman vortex shedding is expected to 

appear. Beyond Reynolds number 180, more complicated phenomena may be observed in the wake, 
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such as spanwise undulation and laminar-turbulent transition. 

Two sets of grids are used, i.e., Grid I and Grid II as shown in Figure 6. The outflow boundary of 

Grid I is at x = 30 (in reference to cylinder center and non-dimensionlized by the cylinder diameter). 

The grids from x = 20 to x = 30 are stretched for the purpose of reducing boundary reflection. Thus 

the effective domain is cut off at x=20. The domain of Grid II is larger than Grid I, with outflow 

boundary at x = 60, and the effective domain cut off at x = 40. Numerical tests shows that Grid I is too 

small, which makes the computed results slightly oscillatory. Grid II is large enough for the 

convergence of the primary and secondary eigenvalues. The results below are based on Grid II. 

  
Figure 6 Grids for circular cylinder wake flow. Left: Grid I; Right: Grid II. 

 

The flows with Reynolds numbers 100 and 150 are tested. The selective frequency damping 

(SFD) method [20] is applied when computing the base flow. The SFD method helps us in getting 

steady base flows, while the symmetry conditions used in the previous subsection fails when 

Reynolds number is 150. The base flows are shown in Figure 7. It is obvious that the separation 

bubble stretches its length as Reynolds number increases from 100 to 150. Barkley also shows the 

base flow for Reynolds number 100 (Figure 1c of Ref. [19]). Our result is identical to Barkley’s 

result. 

 

  
Figure 7 Base flows of circular cylinder. Upper: Re=100; Lower: Re=150. Left: 

z v x u y       ; Right: Streamwise velocity. 

 

Three methods are used to produce initial disturbances for GSD. The first one is the same as the 

previous, namely starting with random disturbances, then continuing by the Gram-Schmidt method. 

The second method also starts with random disturbances, but the sequence of initial disturbances is 
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given by    1 0 0i iu t u t t

    , which makes it equivalent to Arnoldi procedure. The second method 

is very simple, as users only need to record disturbance snapshots, i.e.,  1 0
u t ,  1 0

u t t   , ..., 

 1 0
u t m t   , and perform GSD by setting 

     

     

1 0 1 0 1 0

1 0 1 0 1 0

[ , , , (m 1) ],

[ , 2 , , m ].

m

m

u t u t t u t t

u t t u t t u t t

       


        

U

BU
                    (14)

 

This procedure makes GSD similar to DMD. The third method to produce initial disturbances is the 

simplest one, i.e., no disturbance is added to the base flow and disturbances appear by themselves, 

because unstable modes can grow from the system errors (such as round-off errors) of CFD tools. The 

only thing we need to do in the third method is to switch off the SFD after a steady base-flow state is 

obtained. Without the SFD, unstable disturbances grow from small amplitude (about 
12

10


) 

exponentially. We start to record the disturbance snapshots when their amplitude is greater than 
8

10


. 

These snapshots are put into Eq. (14) for the use of GSD. It shall be noted that second method may 

lead to unphysical modes, while the third method is only suitable for unstable modes, because stable 

modes cannot grow by themselves. Our test also shows that the three methods shows different 

convergence speeds. However, we have not done detailed investigation on convergence speed 

presently. 

The vorticity of the PW mode at Reynolds 100 is shown in Figure 8, which also shows Barkley’s 

result [19]. The streamwise velocity of the PW and SW modes at Reynolds 150 is shown in Figure 9, 

which also shows the result of Verma & Mittal [18]. Figures 8 and 9 show that, except a phase shift, 

our results are consistent with that of Ref. [19] and [18]. The phase shift is caused by the fact that 

eigenvectors can be arbitrarily translated and stretched. Figure 9 indicate that the SW mode extends 

further downstream compared to the PW mode, e.g. the SW mode is still visible in the domain of x > 

120 (240 in Figure 9d). Although present computational domain is only effective for x ≤ 40, GSD can 

still produce comparable results to that of Ref. [18], which indicate that another advantage of GSD is 

to produce good results on a relatively small computational domain. 

 

 
Figure 8 Vorticity of PW mode at Re = 100. left: Present result; Right: Barkley’s result [19]. 

 
 

  
(a) PW mode, present result.  

(b) PW mode, Verma & Mittal’s result [18]. 
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(c) SW mode, present result. 

 
(d) SW mode, Verma & Mittal’s result [18] 

  

Figure 9  Streamwise velocity of PW and SW modes at Re = 150. Reference lengths are 

cylinder diameter for present results and cylinder radius for Verma & Mittal’s 

results, respectively. 

 

The growth rate and frequency of the PW and SW modes are shown in Figure 10. Several results 

from literature are also shown in Figure 10. Our result is most close to Verma & Mittal’s result [18]. 

The largest difference between present result and that of Ref. [18] exist in the SW mode at Re = 150. 

Present growth rate is 9.7% lower, and present frequency is 3.2% higher, when comparing to that of 

Ref. [18].  

We can find that there is some difference among the results shown in Figure 10. This phenomenon 

indicates the difficulty in getting accurate global stability modes. From the literature, we know that 

the accuracy of global stability analysis is affected by at least the following factors: accuracy of base 

flows, accuracy of spatial discretization methods, boundary treatments, convergence degree of 

eigenvalues (if an iteration method is used), and computational domains. 

 

 

Figure 10 Growth rate and frequency of the PW and SW modes of the circular cylinder 

wake flow. 

 

5     Conclusion and Future Work 
 
A Global Stability Decomposition (GSD) method is proposed for the study of global linear stability 

of arbitrarily inhomogeneous flows. GSD can effectively decompose the leading eigen modes from a 
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series of disturbance pairs, 0 0( ) ( )i it t t   u u , and each mode has a single frequency, 

growth/decay rate and mode shape. The disturbances 0( )i tu  can be given by many methods (such as 

Gram-Schmidt procedure), provided that i j
k u u  for any i j . The 0

( )
i

t t  u  can be computed 

by any high-order CFD tools for user’s convenience. GSD is similar to DMD if the disturbances are 

generated by Arnoldi method. Another advantage of GSD is that it can produce accurate global 

unstable modes on relatively small computational domains. Thus, GSD is user friendly and useful.  

The results of three test cases show that GSD is capable of studying global linear stability of 

complex base flows. The three test cases are one-dimensional Poiseuille flow, the wake of a square 

cylinder and the wake of a circular cylinder. The computed GSD results are in consistence with the 

results of global linear stability analysis in literature.  

Future work on setting initial disturbances and their influence on convergence speed is needed. 

Work on setting suitable t  is also needed. It is expected that improved GSD can become an 

effective and accurate method in studying global linear instability of complex two- and three-

dimensional incompressible and compressible (even hypersonic) flows in the near future. 
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