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Abstract:  Time-dependent Reynolds-averaged Navier-Stokes simulations have been 
carried out for a NACA 0012 airfoil and a flexible UH-60A rotor undergoing dynamic 
stall.  The OVERFLOW computational fluid dynamics (CFD) code is used to explore 
the use of near-body adaptive mesh refinement (NB-AMR) for the first time on a 
flexible helicopter rotor in forward flight.  Emphasis is placed on understanding the 
temporal and spatial convergence of the solutions, their numerical efficiency and 
stability, and establishing a grid-converged solution.  Some of the remaining 
differences between CFD and flight-test measurements are discussed.  Time-dependent 
flow visualization is used to provide an improved understanding of the physical 
mechanisms involved with two-dimensional and three-dimensional dynamic stall, and 
the NB-AMR process.   

1. Introduction 
Helicopters perform many useful civil and military functions by virtue of their ability to take off and 

land vertically without a runway or hover in place.  Some examples include military or remote location 
deployment, medical or emergency evacuation, combating forest fires, police surveillance, and heavy-lift 
construction.  However, helicopter aerodynamics is often more complex than a fixed-wing aircraft 
because the main rotor is very flexible and must perform several functions, e.g., generate the necessary 
forces and moments needed to keep the vehicle aloft, provide a propulsive force for forward flight and 
balance all moments needed for trimmed level flight.  Rotorcraft flow simulation is therefore inherently 
time-dependent and multi-disciplinary, combining computational fluid dynamics (CFD), computational 
structural dynamics (CSD), and a trim algorithm to establish the blade-root motions for level flight.   

A condition known as blade vortex interaction (BVI) may also occur when the tip vortex of one blade 
interacts with the other rotor blades, producing unsteady airloads, noise and vibrations.  Moreover, 
dynamic stall is a dangerous condition that occurs when a rotor reaches its thrust limit due to blade stall.  
This condition often produces large blade torsion and control system loads and limits the flight speed of 
the helicopter [1].  The time-dependent Reynolds-averaged Navier-Stokes (RANS) equations are solved 
using the OVERFLOW [2-3] CFD code for an isolated, flexible UH-60A rotor in forward flight, see Figs. 
1-2.  The flight condition examined in this paper involves both BVI and dynamic stall. 

Chaderjian et .al [4-5] showed that hover performance and blade loading was not a strong function of 
resolving the blade-tip vortices in the rotor wake, as it was previously thought.  Rather, it was more 
important to resolve the vortex formation at the blade tip using a combination of fine surface meshes and 
high-order spatial accuracy, at least 5th-order spatial accuracy, and maintaining a physically realistic 
turbulent eddy viscosity in the rotor wake using a detached eddy simulation (DES) turbulent length scale.  
Moreover, Chaderjian [6] recently showed that rotor performance for the UH-60A rotor in forward flight 
also did not depend significantly on resolving the tip vortices in the rotor wake, even for more challenging 
BVI and dynamic stall cases.  So, engineering resolution of the rotor wake is sufficient for predicting 
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rotor airloads, i.e., ∆S= 10% ctip, where ∆S is the Cartesian grid spacing in the rotor wake and ctip is the 
blade-tip chord length.  In these studies, OVERFLOW’s off-body adaptive mesh refinement (OB-AMR) 
was used to resolve the rotor wake using ∆S= 10%, 5%, and 2.5% ctip.  However, Lim et al. [7] and Jia et 
al. [8] showed that ∆S= 5% ctip is needed for accurate acoustic prediction in strong BVI cases.  Using ∆S= 
10% ctip can result in an underprediction of acoustic levels by 5dB, a significant difference.   

   
Although the prediction of dynamic stall for the UH-60A rotor (flight counter C9017) is generally 

good [6], there are some deficiencies in the predicted normal force and pitching moment coefficients, Cn 
and Cm, respectively.  This occurs surprisingly along the outer blade stations near azimuth angles of 
y=90º and 180º (see Fig. 16) where the flow is attached but experiencing BVI.  On the other hand, Cn and 
Cm are better captured in the dynamic stall region where 225º≤y≤360.  An important question remains:  
What is the cause of this discrepancy?  It seems unlikely that the turbulence model is the primary source 
for these differences since the forces and moments are well captured in the dynamic stall region.  Other 
potential causes are inadequate grid resolution on the rotor blades, uncertainty in the aeroelastic blade 
properties, or possibly the flight-test measurements themselves.  For example, anomalous behavior of 
certain pressure taps is occasionally apparent on the advancing side, but not the retreating side [9].   

The goal of this paper is to examine the effects of rotor-blade grid refinement on the predicted rotor 
airloads for dynamic stall flight counter C9017.  This is the first time OVERFLOW’s near-body adaptive 
mesh refinement (NB-AMR) is used on a flexible rotor blade in forward flight.  Establishing a grid-
resolved solution will help eliminate one potential cause for the discrepancies of the predicted forces and 
moments.  Convergence, stability and efficiency of the numerical approach will also be examined and 
time-dependent flow visualization will be used to better understand the fluid physics of dynamic stall.   

The following sections include a discussion of the flight-test data, numerical approach, results and 
discussion, and concluding remarks.   

2. Flight-Test Data 
NASA and the US Army, as a part of the UH-60A Airloads program, maintain an extensive flight-test 

database [10] for the Blackhawk helicopter (Figs. 1-2) in level trimmed flight and executing transient 
maneuvers.  The UH-60A blade properties are listed in Table 1, while Table 2 lists two flight conditions 
discussed in this paper.  The dynamic stall case, flight counter C9017, is the primary subject of this paper.  
The advance ratio, μ, is a key parameter in forward flight and is the ratio of the freestream speed (V∞) to 
the blade-tip speed (VTip), or equivalently freestream Mach number (M∞) and blade-tip Mach number 
(MTip), respectively.  The blade-tip Reynolds number (ReTip), rotor shaft angle (αs), sideslip angle (β), and 
thrust coefficient (CT) are also given in Table 2.  

 
Figure 1 Sikorsky UH-60A Blackhawk heli-
copter on apron.  Note flexible blades. 

 
Figure 2 Sikorsky UH-60A Blackhawk heli-
copter in flight.   
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The UH-60A airloads database provides aerodynamic pressures, structural loads, control positions, 

and rotor forces and moments at 9 radial locations shown in Fig. 3.  A static trim tab is deflected to ensure 
that each blade flies in a similar manner with minimal vibration.  These deflections are unique to each 
Blackhawk helicopter, and the CFD simulations assume zero deflection.   

 
Acquiring in-flight measurements on a moving and deforming rotor blade is very challenging, and 

this database does have some unresolved discrepancies.  For example, the measured rotor thrust was 
determined from the helicopter’s gross weight and estimates of the loads on the fuselage and tail rotor.  
Measured pitch and roll moments at the hub were determined from a bending moment gauge located on 
the upper rotor shaft.  But an integration of the measured blade pressures sometimes compared poorly 
with the measured thrust and moments.  For example, Potsdam et al. [11] point out that the integrated 
thrust for flight counter C8534 was 10% higher than the measured thrust.  Moreover, the integrated hub 
moment was 50% larger with an 80-deg phase difference compared to the measured pitching moment.  
Some of these discrepancies have been attributed to the discovery of bad pressure taps, with the greatest 
effect on the pitching moments.  It is therefore common practice to subtract out the mean forces and 

Table 1 UH-60A rotor parameters. 

Parameter Value 
Number of Blades 4 

Radius, R 26.83 ft 
 Tip Chord, ctip 20.76 in 

Equivalent Blade Twist -18 deg 
Blade Tip Sweep 20 deg aft 

Geometric Solidity, s 0.0826 
Airfoils    SC1095/SC1094R8      

Thickness 9.5% chord 
Nominal Rotor Speed 258 rpm 
Nominal Tip Speed 725 ft/sec 

 
Table 2  Selected flight counter flow conditions. 

Flight Counter M∞ MTip µ ReTip αs, deg β, deg CT 

C8534 (High Speed) 0.236 0.642 0.368 6.86x106 -7.31 1.28 0.00651 
C9017 (Dynamic Stall)* 0.158 0.666 0.237 4.62x106 -0.15 -1.58 0.0110 

  * Flow condition studied in this paper. 

 
Figure 3 UH-60A flight-test measurement stations [10].   



 
 
4 

moments over a rotor revolution for validating CFD results with this flight-test data.  That is the practice 
adopted in this paper. 

3. Numerical Approach 
The OVERFLOW CFD code is used to solve the time-dependent Reynolds-averaged Navier-Stokes 
equations for an isolated UH-60A rotor in forward flight.  This CFD code has a variety of implicit and 
relaxation algorithms that utilize upwind and central spatial differencing.  Both single and dual time 
integration options are available.  Curvilinear and Cartesian overset grids are used to treat complex 
geometries and the surrounding flow domain.  A variety of zero, one, and two-equation turbulence models 
are available to solve the RANS equations.  For more complex flows, transition trip lines and models, and 
detached eddy simulation (DES) are useful options.  A more complete description of the OVERFLOW 
CFD code and its user’s manual can be found in Refs. [2-3].  Some of the key aspects used in the present 
computations are described below. 

3.1 Overset Grids  
The current time-accurate approach consists of an inertial coordinate system where overset body-
conforming O-grids rotate through a fixed Cartesian background grid system.  Figure 4a-b shows the 
near-body (NB) grids that are used to resolve the flow in the vicinity of the rotor blades.  Each rotor blade 
consists of 4 grids: one inboard cap grid, two main body grids, and one outboard cap grid.  The two cap 
grids resolve the inboard blade root and outboard blade tip.  The main blade O-grid is split into upper and 
lower grids since the NB-AMR algorithm does not allow for periodic grids.  Three NB grids are also used 
to resolve the flow on a simplified rotor hub, see Fig. 4c.  The hub rotates with the rotor blades, however, 
the linkages between the hub and the blades are very complex and neglected.   

Surface grid resolution on the rotor blades is clustered in the chordwise direction near the airfoil 
leading and trailing edges to accurately resolve high pressure gradients.  The spanwise resolution along 
the rotor blade is nearly uniform, but clustered near the blade tip to accurately resolve the formation of the 
tip vortices.  The viscous grid spacing near the rotor-blade surface ensures that y+< 1 over most of the 
blade.  These fine blade grids represent a best attempt to resolve the flow without NB-AMR. All 
curvilinear body grids have a stretching ratio of less than 10% in all three coordinate directions.  This 
reduces the algorithm truncation error associated with 2nd-order accurate grid transformation metrics.  

An off-body (OB) Cartesian grid system, also shown in Fig. 4c, is designed to resolve the off-body 
vortex wake and extend the computational domain to the far field.  The grid transformation metrics are 
constant due to uniform Cartesian grid spacing.  Solutions are obtained by using a uniform Cartesian grid 
spacing of D=5%ctip on the first set of Level one (L1) grids that completely surround the rotor.  Additional 
“brick grids” are automatically added to the L1 grids to rapidly extend the computational domain to the far 
field, which for the present computations is 5 rotor radii (R) from the blades.  These brick grids are 
referred to as Levels 2, 3, …, each of which is a factor of 2 coarser in every direction than the previous 
grid level.  Table 3 summarizes grid size statistics for the baseline NB grids before any AMR.   
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3.2 Numerical Algorithm 
The Navier-Stokes equations in strong conservation-law form are given by 
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where Q=[r,  ru,  rv,  rw, e]T is the vector of conserved variables, i.e., density, momentum and total 
energy; F, G, and H are the inviscid flux vectors; and  Fv, Gv, and Hv are the viscous flux vectors.  An 
implicit approximate factorization scheme in delta form is used to solve Eq. (1) in generalized curvilinear 
coordinates, and is given by 

 1𝐼 + ℎ𝜕5𝐴7891𝐼 + ℎ𝜕:𝐵<891𝐼 + ℎ𝜕=𝐶789Δ𝑄<8 = −ℎ𝑅8,D (2) 

Where 

𝑅8,D =
3𝑄F𝑘 − 4𝑄F𝑛 + 𝑄F𝑛−1

2𝛥𝑡
+ (𝐹O − 𝐹O𝑣)𝜉𝑘 + (𝐺F − 𝐺F𝑣)𝜂𝑘 + (𝐻U − 𝐻U𝑣)𝜁𝑘 

and 

 
a) Inboard NB rotor blade grids.          b) Outboard NB rotor blade grids. 

 
c) Cartesian OB grid system. 

Figure 4  UH-60A rotor-blade overset grid system. 

Table 3  Summary of UH-60A baseline overset grid size. 

Grid Type Number of Grids Surface Grid Points Volume Grid Points 
Rotor Blade 4 117,763 11.8 million 
Rotor Hub 3 28,875   2.5 million 

4-Bladed Rotor with Hub 19 499,927 49.7 million 
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ℎ =
2𝛥𝑡𝛥𝜏

2𝛥𝑡 + 3𝛥𝜏 

In these equations, 𝑄< = 𝑄/𝐽, where J is the coordinate transformation Jacobian.  The superscript k is the 
sub-iteration index, while the superscript n is the time-step index.  The physical and pseudo (relaxation) 
time steps are ∆t and ∆t, respectively.  Finally, ∆𝑄<8 = 𝑄<8[\ − 𝑄<8, where sub-iteration convergence 
implies that , which is 2nd-order accurate in time.   

Equation 2 is solved using the Pulliam-Chaussee [12] diagonal algorithm.  A baseline time step of 
Dt=¼° rotation with 100 sub-iterations is used.  This nominally exceeds a 2.5-order L2-norm sub-iteration 
drop between time steps.  The application of NB-AMR may require smaller time steps to maintain a 
reasonable number of sub-iterations.  Throughout this sub-iteration process the Navier-Stokes algorithm 
becomes fully implicit and the approximate factorization and time linearization errors are sufficiently 
removed.   

Central differencing is used for all spatial operators throughout this paper.  For example, the 
convective terms use 6th-order central differences with a 5th-order artificial dissipation term to damp out 
high-frequency errors.  This results in a 5th-order accurate discretization on the uniform Cartesian OB 
grids.  However, all viscous terms are evaluated with 2nd-order accurate central differences.  The grid 
metrics on the curvilinear NB grids are also 2nd-order 
accurate in space.  This discretization is referred to as 5th-
order spatial differencing throughout this paper.  
Although the algorithm is still formally 2nd-order accurate 
in space, computed results show that this differencing 
scheme has lower diffusion and dispersion errors, and an 
improved flow field resolution than a 3rd-order approach.  
Table 4 summarizes the convective central difference 
operators available in OVERFLOW.  Further details are 
described by Pulliam [13].  

3.3 Adaptive Mesh Refinement 
An AMR capability is available in OVERFLOW to 
dynamically resolve flow features with finer meshes 
within the off-body Cartesian grids, Fig. 4c, and within the 
curvilinear near-body grids, Fig. 4a-b.  A brief description 
of the procedure is now provided.   

OB-AMR begins with a baseline Cartesian Level-1 
grid that surrounds the rotor with resolution ∆S.   The 
rotor wake can be further refined with AMR through 
successively finer overlapping grids.  Each level of 
refinement decreases the local Cartesian grid spacing by a 
factor of one half in each coordinate direction, i.e., the 
refinement is isotropic in space.  Thus, a two-level OB-
AMR refinement would identify the vortex-wake 
structures and overlay the surrounding Level-1 Cartesian 
grid spacing (∆S) with two more Cartesian grids with grid 
spacing ½ ∆S and ¼ ∆S.  An example for a rotor in hover 
is shown in Fig. 5.  The local grid size grows by 8X for 

Q̂k → Q̂n+1

Table 4  Convective central difference operators. 

Cartesian Wake 
Grid Accuracy 

Difference 
Stencil 

Artificial 
Dissipation 

   

   

   

   

   

 

O(ΔX 2 ) δ X
(2)

  (ΔX
3)δ

X4

O(ΔX 3) δ X
(4 )

  (ΔX
3)δ

X4

O(ΔX 4 ) δ X
(4 )

  (ΔX
5 )δ

X6

O(ΔX 5 ) δ X
(6)

  (ΔX
5 )δ

X6

O(ΔX 6 ) δ X
(6)

  (ΔX
7 )δ

X8

 
Figure 5 Example of OVERFLOW two-level 
dynamic AMR grid system for a rotor in hover 
[4-5]. Vortices colored by vorticity magnitude, 
OB-AMR grid spacing ∆S=10% ctip, ∆S/2, ∆S/4. 
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each level of refinement.  This approach is more efficient than selecting a single larger Cartesian region of 
grid spacing ¼ ∆S to resolve the entire rotor wake.  Overlapping grids of different resolution transfer data 
between grids with tri-linear interpolation.  The AMR process can be limited so that only regions of 
interest are refined rather than continuing indefinitely throughout the entire flow field.   

A somewhat different OB-AMR strategy is employed in this paper that eliminates interpolation errors 
within the resolved rotor wake for dynamic stall case C9017.   This is accomplished by only using Level-
1 grids to automatically capture and resolve the rotor wake region (see Fig. 6).  Level-1 grids share the 
same grid spacing, ∆S, and therefore have coincident grid points when they overlap with each other.  Data 
is therefore transferred between these Level-1 wake grids by direct injection, i.e., no interpolation is 
required. Tri-linear interpolation is only needed when dissimilar grids overlap with each other.   

 
The AMR process depends on a sensor function, SF, and user-specified parameters that determine 

where to refine, coarsen, or leave the grid resolution unchanged.  References [4-6] used a vorticity 
magnitude sensor function for OB-AMR.  With this approach, once a threshold is reached, grid 
refinement is carried out to the fullest amount specified.  So, a two-level refinement will refine the local 
mesh to ∆S/4, or a three-level refinement to ∆S/8, etc.   

Another approach, and the one used in this paper, uses a 2nd-order undivided difference.  The term 
“undivided” refers to the difference not being divided by the appropriate grid cell size term, i.e., ∆x for 
the first-difference, ∆x2 for the second difference, etc.  In the context of computing SF as a general sensor 
function for adaption, it is (a) normalize by a reference quantity Qref, (b) square it to create a non-negative 
value, (c) take the maximum over all elements of Q, and (d) take the maximum over all coordinate 
directions:  

 𝑆𝐹 = max
abc,8,d

e max
"	components

no"pqr's"p["ptr
s	"uvw

x
s
yz (3) 

This function is non-dimensional, independent of grid units, and becomes smaller as the grid is refined 
(where Q is smooth), all desirable properties for a sensor function for solution adaption. Further, it is 
simple to compute and the computation can be fully parallelized.  Equation 3 therefore refines the local 
mesh in regions of high solution curvature.  The AMR process is carried out in such a manner so that all 
adjacent overlapping grids differ by no more than 2x the grid spacing, see Fig. 11.  Further details of the 
OB-AMR process are described by Buning and Pulliam [14].   

 
Figure 6.  Side view of vortex wake resolved with OB-AMR Level-1 grids (vorticity 
magnitude gray scale).  Flight counter C9017, ∆S=5% ctip, 3700 grids, 210 million grid points. 

V∞ 
Level 1 

Level 2 
Level 3 

OB-AMR 
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The NB-AMR is carried out is a similar manner as the OB-AMR.  However, the NB-AMR operates on 
curvilinear grids, which look Cartesian in computational (or index) space.  Parametric cubic interpolation 
is used to transfer data between grids of different resolution.  This approach preserves smooth geometry, 
avoiding faceting of the surface that would occur with linear interpolation.  Further details of the NB-
AMR process are described by Buning and Pulliam [15].   

3.4 Turbulence Model 
The rotor simulations presented in this study use the one-equation Spalart-Allmaras (SA) turbulence 
model [16].  Some of the model’s key features are now described. 

The SA model uses the Boussinesq approximation to relate the Reynolds stresses to a kinematic 
turbulent eddy viscosity and the mean strain-rate tensor.  The turbulent eddy viscosity (TEV) is given by 

  
The SA transport equation for the variable , is given by  

   (4) 

where D/Dt is the material time derivative.  The right hand side consists of production, dissipation and 
diffusion source terms.  The constants Cb1, Cb2, Cw1, k, s, and functions fv1, fv2, fw, are described by Spalart 
and Allmaras [16], and Ω is the magnitude of vorticity.  The damping function, fv1, reduces nt near a solid 
wall, i.e., the laminar sublayer.  The turbulent length scale, d, is defined as the distance to the nearest 
wall.   

Rotor blade-tip vortices are a dominant structure in the turbulent rotor wake.  They are initially 
formed at the rotor tip by the roll-up of the blade trailing edge shear layers.  Figure 7 is a laser light sheet 
flow visualization of a fully formed tip vortex reported by Ramasamy et al. [17].  He identified three 
vortical regions.  The outer region 3 can be characterized by a turbulent flow whose mean velocity field is 
similar to a potential vortex.  Region 2 is an intermediate state that contains turbulent eddies of varying 
size. The inner-most region 1 can be characterized as stratified layers having few or small eddies with 
little interaction between fluid layers, due to high streamwise curvature.  This inner-core region has a 
near-linear velocity profile and very low fluid strain.  

 
Regions of high streamline curvature reduce 

the fluctuating velocity components and hence the 
turbulent production.  Shur et al. [18] introduced a 
SA rotation and/or streamline curvature (SARC) 
correction for rotating and curved flows. The 
SARC correction not only improves the boundary 
layer profiles for highly curved flows, but also 
helps reduce the TEV in the tip vortex cores.  The 
SARC correction is used for all SA turbulent 
simulations in this paper.   

An additional degree of realism can be 
obtained by the use of large eddy simulation 
(LES).  In LES the largest turbulent eddies are 
resolved using a small grid spacing, ∆, and the 
subgrid-scale (SGS) eddies are modeled.  
Smagorinsky [19] first postulated a SGS model 
for the Reynold’s stresses based on the following 
expressions 

 ν t = ν fν1
 ν

 

D ν
Dt

= Cb1 ν Ω+
ν

k2d 2
fν 2

⎛
⎝⎜

⎞
⎠⎟

Production
  

−Cw1 fw
ν
d

⎛
⎝⎜

⎞
⎠⎟
2

Dissipation
  

+ 1
σ

∇ i ν + ν( )∇ ν( ) +Cb2 ∇ ν( )2⎡⎣ ⎤⎦
Diffusion

  

 
Figure 7 Laser light sheet flow visualization of a fully 
developed blade-tip vortex, Ramasamy et al. [17]. 
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  (5) 

where Sij is the strain-rate tensor, nt is the Smagorinsky eddy viscosity given by 

  
 (6) 

and Cs is the Smagorinsky coefficient.  In this expression, ∆=(∆x·∆y·∆z)1/3, i.e., the geometric mean of the 
grid cell spacing.  Use of LES to wall resolve the turbulent boundary layers on the rotor blades and hub 
could easily result in trillions of grid points.  This is beyond the scope of modern supercomputers for rotor 
flow fields at flight Reynolds numbers.  However, Spalart et al. [20] suggested detached eddy simulation 
(DES) as a more practical alternative.   

DES can be viewed as a blending of the SA-RANS turbulence model in boundary layers with coarse-
mesh LES in regions of separated flow, or where the largest eddies are to be grid resolved.  This hybrid 
RANS/LES approach is accomplished by replacing the distance to the nearest surface (d) by  
   (7) 
where ∆=max(∆x, ∆y, ∆z), and CDES=0.65.  In this way the SA-RANS model becomes the SGS model.  
Moreover, it is easy to show that when production balances dissipation in Eq. 4, and when �̅� is used as the 
length scale, then nt simplifies to a Smagorinsky-type model.  So, the SA-DES model behaves like an 
LES-type model when the grid support is sufficiently small. 

The SA-DES approach can be viewed in two ways.  From a numerical point of view, it reduces the 
TEV in the rotor wake to more realistic values.  This is an important result as it has been shown [4-5] that 
a RANS length scale can result in very large TEV in the case of a hovering rotor.  This non-physical TEV 
can work its way up the vortex wake and infiltrate the rotor blade boundary layers, causing a rapid 
increase in blade drag and rotor torque.  The result is an artificially low prediction of hover performance.  
From a physical point of view, the SA-DES approach can be viewed as resolving the largest turbulent 
eddies outside the boundary layer.  This results in a more realistic numerical simulation of the turbulent 
hover performance.  

This simple and elegant approach effectively reduces the TEV to more realistic values outside the 
boundary layer.  However, as the mesh is refined, e.g., with NB-AMR, LES mode may be prematurely 
activated, causing a stress depletion and non-physical flow separation.  Spalart et al. [21] introduced a 
correction called delayed detached eddy simulation (DDES).  This shielding function prevents the 
inadvertent use of LES mode too close to the rotor blade surface.  This hybrid RANS/LES model is used 
for three-dimensional flows in this paper and referred to as SA-DDES. 

3.5 Blade Motions 
The helicopter rotor blades undergo a periodic motion applied where the hub is linked to the rotor blades.  
Three angles, are defined as the pitch, flap, and lag angles, respectively.  The pilot commands 
the pitch angle while the flap and lag angles are reactions at the hub/blade linkage.  These angles are 
supplied to the CFD simulation by the trim algorithm, and defined by a Fourier series 

 }
𝜃
𝛽
𝜁
� = }

𝜃∘ + 𝜃\� cos𝜓 + 𝜃\� sin𝜓 +⋯
𝛽∘ + 𝛽\� cos𝜓 +𝛽\� sin𝜓 + ⋯
𝜁∘ + 𝜁\� cos𝜓 +𝜁\� sin𝜓 + ⋯

� (8) 

Normally the series is truncated after the first harmonic unless there is a need for higher harmonic blade 
control.  The collective, , is the mean pitch angle that controls the thrust.  The  angles are 
the lateral cyclic and longitudinal cyclic, with a period of one/revolution.  They control the rotor tip path 
plane, i.e., the tilt of the thrust vector.  Similar definitions apply to the flap angle, , and lag angle, .  
The actual motion of a point on a rotor blade surface is the sum of the supplied motions at the blade root, 
Eq. 8, plus any aeroelastic deformations.   

τ ij = 2ν tSij ,  Sij =
1
2

∂ui
∂x j

+ ∂u
∂xi

⎛

⎝⎜
⎞

⎠⎟

ν t = CsΔ( )2 SijSij

d = min d,CDESΔ( )

θ ,  β,  and ζ

 θ! θ1c  and θ1s

 β!  ς !



 
 

10 

3.6 CFD/CSD Loose Coupling 
The UH-60A rotor blade is very flexible and responds to CFD airloads and blade motions.  Moreover, the 
time-varying blade angles supplied at the blade root must be iteratively determined to obtain the required 
thrust and hub moments for trimmed level flight.  The CFD and CSD interaction is modeled by loosely 
coupling (LC) the OVERFLOW CFD code with the helicopter comprehensive analysis code, CAMRAD 
II [22].  As the name implies, helicopter comprehensive analysis codes provide a comprehensive 
engineering analysis for rotorcraft design, e.g., aerodynamics, structures, flight trim algorithm, flutter 
analysis, aeroacoustic analysis, etc.   

CAMRAD II is widely used in the helicopter industry and 
models a flexible rotor blade using nonlinear finite elements.  It has 
its own simplified aerodynamic model that uses blade element 
theory, two-dimensional airfoil tables, and vortex wake models. A 
complete helicopter solution for trimmed flight can be obtained in 
less than one minute using a single CPU.   

High fidelity time-periodic solutions for the UH-60A rotor 
system are obtained by loosely coupling OVERFLOW with 
CAMRAD II (see Fig. 8).  This coupling is done in a time-periodic 
manner, as specified by the user.  The coupling period is some 
fraction of the number of rotor blades.  In the case of the four-
bladed UH-60A rotor, coupling periods of ¼, ½, and 1 revolution 
are typical.  The lower coupling periods often provide faster LC 
convergence, provided the process is stable. A coupling period of 
¼ revolution is used in this study.   

A LC iteration involves OVERFLOW providing CAMRAD II 
with Navier-Stokes rotor blade loads.  Then CAMRAD II provides 
OVERFLOW with a new set of blade deformations and blade 
angles applied at the blade root.  If the forces, moments and 
supplied angles are converged to the trim flight condition, then the 
LC is complete, otherwise another LC iteration is performed.   

OVERFLOW airloads are transferred to CAMRAD II according to the expression 

   (9) 

where (F,M) corresponds to rotor blade sectional forces and moments at the 1/4-chord location.  
Superscript lc is the LC step, subscript “CAero” refers to CAMRAD II aerodynamics model, and 
subscript “Total” refers to the total airloads applied to the deforming rotor blades within the CAMRAD II 
code.  Note that as the LC process converges,  
  (10) 

In other words, in the limit the total airloads applied to the flexible rotor blades within CAMRAD II are 
the OVERFLOW Navier-Stokes airloads.  This process tends to converge rapidly, often within 5 rotor 
revolutions from impulsive start using ¼-rev LC steps.  

The CAMRAD II trim algorithm provides the blade root angles for steady trimmed flight by solving a 
nonlinear system of equations using the Newton-Raphson method.  These equations describe the total 
force and moment response for the entire rotorcraft to perturbations in the control angles.  CAMRAD II 

(F,M )Total
lc+1 = (F,M )CAero

lc + (F,M )CFD
lc − (F,M )CAero

lc−1( )
= (F,M )CFD

lc + (F,M )CAero
lc − (F,M )CAero

lc−1( )

(F,M )Total = lim
lc→∞

 (F,M )CFD
lc + (F,M )CAero

lc − (F,M )CAero
lc−1( ) = (F,M )CFD

 
Figure 8 Loose coupling process for 
CFD/CSD/trim. 
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Figure 9  O-mesh for a NACA 0012 airfoil. 

 

supplies the aerodynamic loads due to the other vehicle components.  Potsdam et al. [11] provide a 
detailed description of the delta airloads loose coupling process.   

Finally, the assumption of time-periodic airloads on the rotor blades is a fundamental assumption to 
the time-accurate LC process.  There may be some aperiodicity in the rotor wake, which is often the case, 
but the rotor blade airloads are required to be sufficiently periodic.  The LC process is therefore unable to 
simulate non-periodic vehicle maneuvers.   

4.  Results and Discussion 
The OVERFLOW Navier-Stokes CFD code is used throughout this study for a NACA 0012 airfoil 
oscillating in angle of attack and an isolated UH-60A rotor in forward flight.  Both cases involve dynamic 
stall and use 2nd-order dual-time accuracy and 5th-order central differences with added artificial 
dissipation.  The SA-RANS turbulence model is used for the 2D airfoil problem while the SA-DDES 
turbulence model is used for the 3D UH-60A rotor.  The SARC rotational correction is used for both 
cases. 

All CFD results have been carried out on the NASA Advanced Supercomputing (NAS) facility at 
Ames Research Center using the Pleiades and Electra supercomputing system.  This system collectively 
has 323,872 CPU cores consisting of Skylake, Broadwell, Haswell, Ivy Bridge, and Sandy Bridge nodes.  
Skylake nodes, which consist of 40 cores and 192 GB of memory, are used for all CFD simulations in this 
paper.  Data is saved to a 29 PB Lustre filesystem for solution post processing and animation.   

4.1 Two-Dimensional Dynamic Stall 
Dynamic stall is a challenging flow regime to accurately predict because an airfoil’s large incidence 
results in flow separation and hysteresis of the forces and moments.  Spatial and temporal algorithm 
accuracy, grid resolution and the turbulence model have a strong influence on the physical realism and 
accuracy of the computed flow.  This two-dimensional problem is used to more readily study how the 
forces and moments converge in space and time using OVERFLOW’s NB-AMR algorithm.  This will 
provide guidance on how to apply this 
approach to the three-dimensional dynamic 
stall rotor problem. 

Figure 9 shows the O-mesh grid topology 
for a NACA 0012 airfoil used for this study, 
which consists of 371x79 points in the 
circumferential and normal directions, 
respectively.  There are 36 grid cells along 
the blunt trailing edge.  The O-mesh is split 
into two grids with a total of 8 cells of 
overlap at each end because OVERFLOW’s 
NB-AMR algorithm does not currently 
permit periodic boundary conditions.  The 
far-field boundary is approximately 45 
chord lengths away from the airfoil surface.   

The angle of attack as a function of time 
is defined by 
 𝛼 = 10° + 10° sin�2𝑘𝑡 − �

s
� (11) 
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where t is the non-dimensional time, 𝑘 = 𝜔𝑐
2𝑈��  the reduced frequency, w the circular frequency, c the 

chord length, and U¥ the freestream speed.  Note that 0° ≤ 𝛼 ≤ 20°.  The solution process begins with a 
converged steady-state solution at a=0°, i.e., when t=0 and the airfoil is momentarily at rest.  This initial 
condition is followed by 10 periods of oscillation to reach a converged periodic state.   

The following NB-AMR nomenclature is used through this paper.  NB-AMR0 refers to NB-AMR=0, 
i.e., a baseline case where there is no NB refinement; NB-AMR1 refers to NB-AMR=1, i.e., 1-level of 
near-body refinement; NB-AMR2 refers to NB-AMR=2, i.e., 2-levels of near-body refinement, etc.   

Figure10 shows vorticity contours at selected angles of attack, and plots of the lift, drag, and pitching 
moment coefficients.  The forces and moments are colored to indicate the upstroke and downstroke of the 
motion along with directional arrows.  During a pitch cycle, a vortex forms near the leading edge and 
eventually advects downwind past the trailing edge.  Lift stall, indicated by a sudden loss of lift, is 
associated with the vortex leaving the leading-edge region.  Moment stall, indicated by a sudden negative 
nose-down pitching moment, is associated with the vortex passing over the trailing edge.  Flow separation 
at the trailing edge is a third measure of the dynamic stall process.  The forces and moments indicate a 
significant hysteresis with three stall events per cycle, which are slightly out of phase with each other.  
Each stall event is weaker than the previous one during the pitch cycle.   

 
Figure 11 shows flow streamlines and the three-level near-body AMR grids (NB-AMR3) at a=20°.  

The streamlines are a realistic representation of the flow topology since the airfoil is momentarily at rest 

 
Figure 10 Visualization of vorticity contours, and plots of lift, drag and pitching moment coefficients 
with angle of attack.  Three stall events, i.e., S1, S2 and S3 are shown in the figure. 
 

S1 

S1 

S1 

S2 

S2 

S2 

S3 

S3 

S3 
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at the apex of the pitching motion.  These streamlines indicate a large primary leading-edge vortex, a 
small trailing edge vortex, and two secondary vortices near the airfoil leading edge.  As the leading-edge 
vortex approaches the airfoil trailing edge, it induces an upwind velocity directly above the trailing-edge 
shear layer, while the flow below the shear layer has a downwind direction.  These directionally opposing 
upper and lower velocities cause a shear-layer instability that rolls the shear layer up into a trailing-edge 
vortex.  Although the nose-down pitching moment is associated with the leading-edge vortex passing over 
the trailing edge, it’s the trailing-edge vortex that provides the local suction and nose down moment.   

 
Figure 11 also shows the NB-AMR3 grids resolve the flow around the airfoil.  The leading and 

trailing-edge vortices are automatically resolved to three levels, i.e., an 8X finer mesh in both coordinate 
directions.  Additional resolution also occurs near the leading and trailing edges, where there are large 
flow gradients.  The undivided difference sensing function, Eq. 3, captured these features well without the 
need to adjust the default AMR parameters.  It was originally designed to require minimal attention. 

Time convergence of the forces and moments with NB-AMR is now examined.  Figure 12 shows how 
the RMS forces and moments change with the number of sub-iterations and near-body refinement.  A 
comparison of RMS values takes into account the entire wave form, including all resolvable frequencies.  
This is a much stronger convergence criterion than using the mean.  Each sub-iteration data point plotted 
in Fig. 12 was started from the previous one and run for two periods.  The second period was found to be 
converged since the initial condition was sufficiently close.  This approach allowed for more than 50 
cases to be examined in an efficient manner.  A green circle in the figure indicates that all differences in 
forces and moments are bounded by 0.25%, which is considered converged in this paper.   

Figure 12 shows that the number of sub-iterations required for temporal convergence of the forces and 
moments increases with near-body refinement.  This behavior is expected because the isotropic 
refinement results in finer meshes near the airfoil surface, especially in the body-normal direction.  The 
situation can be further exacerbated by turbulent flow separation, which can lead to a stiff set of discrete 
equations and Courant-Friedrichs-Levy (CFL) restrictions.  Initially the solution process converges in a 
smooth and nearly monotone manner but becomes more oscillatory and non-monotone with higher levels 

 

Figure 11  Dynamic stall streamlines and three levels of NB-AMR for a NACA 0012 airfoil at a=20°. 
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of refinement.  This required significantly more sub-iterations to ensure the converged result was 
bounded.   

Figure 13, which is based on the converged green circled results of in Fig 12, shows how the drop in 
the L2-norm dual-time residual varies with near-body refinement.  It’s interesting to note that as the grids 
are refined, the residual drop required for time accuracy decreases.  It’s not clear that this trend will 
continue.  It’s common practice with the OVERFLOW code to require a 2-order drop in the residual.  
These results indicate that the more difficult dynamic stall case should have at least a 2.5-order residual 
drop to ensure time accuracy.   

 
 

 

     

     
Figure 12  Second-order time-accuracy convergence.  Percent change in the RMS lift, drag and 
pitching moment coefficients with sub-iterations.  Green circle indicates change is bounded by 0.25%.   
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The spatial convergence of the forces and moments with NB-AMR is now examined.  Figure 14a 

compares the percent change in the RMS forces and moments with NB-AMR.  For example, the result 
plotted at NB-AMR=2 compares the waveforms of levels 2 to 1, and so on.  The change in RMS forces 
and moments are less than 1% for NB-AMR≥3 and considered sufficiently converged.  Figure 14b shows 
that the RMS values of the forces and moments are relatively flat after 2 to 3 near-body refinements.  The 
lift coefficient converges first, followed by the drag and pitching moment coefficients.   

 
Figure 15 shows the grid growth for the NACA 0012 airfoil with NB-AMR.  Each level of grid 

refinement is reflected by a local increase in grid size by 4X.  The three-dimensional problem will exhibit 
a more rapid 8X grid growth.  So a reasonable baseline grid should be design to limit the number of AMR 
levels to two or three, when possible.  This will also help mitigate the CFL restriction due to isotropic 
refinement.   

 
Figure 13  Required sub-iteration drop 
for temporal convergence.  (See green 
circles in Fig. 12.)   
 

                
 a) Percent change from previous NB refinement. b)  RMS value. 

Figure 14  Spatial convergence of lift, drag and pitching moment coefficients with NB-AMR.   
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4.2 Three-Dimensional Dynamic Stall 
Dynamic stall usually occurs when helicopters operate at high flight speeds or during high load-factor 
maneuvers.  This occurs because the generated thrust must keep the vehicle aloft while providing the 
propulsive force for forward flight.  By contrast, fixed-wing aircraft usually experience stall at low flight 
speeds.   

Figure 16 represents the flow conditions experienced by a UH-60A rotor in forward flight.  Initially, 
blade 1 of the rotor is aligned with the x axis (ψ=0 deg).  This represents the starting point of an 
impulsive start CFD solution, and an azimuthal reference point.  The x-axis also represents the nominal 
direction of the freestream velocity, V∞.  The rotor blade advances into the headwind on the right side of 
the diagram while it retreats away from the headwind on the left side of the diagram.   

The incident velocity normal to the blade’s leading edge is also shown in the figure for azimuth angles 
of ψ=0, 90, 180, and 270 deg.  This local leading-edge velocity, VLE, is the sum of the rotor rotational 
speed and the normal component of the vehicle flight speed.  The rotor blades experience a region of 
reversed flow, shown by a red circle, where the flow is directed from the local airfoil trailing edge 
towards the leading edge.  The advance ratio, μ=V∞/Vtip, is the normalized diameter of this circle.  As the 
rotor blade advances into the headwind it usually operates at a lower angle of attack, providing sufficient 
lift while avoiding strong shocks and flow separation.  As the rotor blade retreats away from the headwind 
it experiences a lower relative velocity, requiring the blade to pitch up to higher angles of attack.  

Flight counter C9017 is a flow condition where the UH-60A rotor experiences dynamic stall.  Figure 6 
shows a side view of the OB-AMR grids automatically capturing the rotor wake, which is visualized by 
gray-scale vorticity contours.  This rotor wake is resolved using ∆S=5% ctip, and consists of 
approximately 3,700 grids and 210 million grid points.  Reference [6] showed that finer wake-grid 
resolutions did not affect the predicted airloads.  This baseline grid resolution, whose body grid size is 
summarized in Table 3, represents a best attempt to predict the airloads without the use of NB-AMR.    

Figure 17 shows an oblique view of the rotor’s tip vortices and wake.  Note that the nature of this flow 
is much more complex than the 2D airfoil example shown in Fig. 10.  The flow is relatively attached on 
the advancing side and separated on the retreating side.   

 
Figure 15  Grid growth with NB-AMR. 

 

 
Figure 16  Flow conditions for forward flight. 
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Figure 18 illustrates some of the marked differences between 2D and 3D dynamic stall.  The two 

frames in the figure show Blade 1 at two separate times. The first frame, y=180º, shows the vortices of 
Blades 2 and 3 passing over Blade 1 with no local flow separation.  The second frame, y=225º, shows 
outboard and inboard flow separation on Blade 1, due to the vortices from Blades 2 and 3.  This BVI 
induced dynamic stall was first observed in Ref [6].  The swirl of a vortex causes a local increase in 
angle-of-attack along the outboard side of the vortex and a decreased angle-of-attack along the inboard 
side of the vortex.  In this case, the flow separates outboard of the two vortices and remains attached 
inboard of the two vortices.  When Blade 1 rotates through the 3rd-quadrant, the Blade 2 vortex moves 
towards the Blade 1 tip and the Blade 3 vortex moves towards the Blade 1 root.  A time-dependent 
animation of this flow shows each separation moving along the Blade 1 span with these vortices, and a 
region of attached flow in between, see Fig. 18.  Chaderjian [6] also showed a good correlation of the 
CFD vortex positions on Blade 1 and the locations of the two dynamic stall events reported by Bousman’s 
analysis of the flight-test data [1].   

Figure 18 shows two other differences between 2D and 3D dynamic stall.  2D dynamic stall involves a 
leading-edge vortex that lifts off from the airfoil leading edge and advects downwind, past the airfoil 
trailing edge, see Fig. 10.  Something similar happens in 3D, however, Helmholtz’s vortex theorem states 
that a vortex line can not terminate within a fluid, but on a boundary.  Thus, when the 3D leading-edge 
vortex begins to lift off the rotor blade, the vortex line must close in on itself and form a vortex ring.  
Figure 18 shows that several vortex rings are emitted as the stall progresses along the blade span during 
blade rotation.  Figure 18 (y=225º) also shows that the path of the Blade 2 vortex changes due to flow 
separation on Blade 1.  This can alter the airloads and BVI noise on the following blade. 

 
Figure 17  Oblique view of vortex wake (q-criterion iso-surfaces) colored by vorticity magnitude..  
Baseline resolution:  no NB-AMR, OB-AMR spacing ∆S=5% ctip, and approximately 3,700 grids and 
210 million grid points. 

Dynamic Stall Wake 

V∞ 
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Figure 19 shows the loose coupling convergence history for the baseline resolution pitch, flap, and lag 

control angles, along with their first harmonics.  These motions are applied at the blade root, see Eq. 8.  
All the control angles are converged within 5 revolutions from impulsive start and run further to 10 
revolutions.  The pitch and lag angles do have some small oscillations.  This is caused by a small 
aperiodicity on the blade airloads due to turbulent flow separation.   

 
Near-body AMR was also applied to the UH-60A rotor grid system.  The aeroelastic deflections (and 

control angles) were “frozen” at 10 revolutions to allow for a more direct comparison of the near-body 
refinement solutions.   Each near-body refinement solution was started from a previous result and run for 
two additional rotor revolutions, i.e., AMR1 begins from the converged AMR0 solution and AMR2 
begins from the converged AMR1 solution.  The forces and moments were found to be converged on the 
second period.  Based on the previous 2D time-accuracy study, all UH-60A solutions had at least a 2.5-
order L2-norm drop in the dual-time residual.  Table 5 summarizes the time step and number of sub-
iterations used to maintain time accuracy.  The time step was reduced for the NB-AMR cases to keep the 
number of sub-iterations near 100.   

Near-body refinement was turned off within a distance of 2% ctip of the blade surface.  This was done 
for two reasons.  First, NB-AMR resulted in very fine meshes and low y+ values near the blade surface.  It 
was difficult to maintain code stability due to CFL restrictions.  The baseline mesh was already very fine, 
well within y+<1 over most of the blade surface.  Secondly, each curvilinear body grid had 100 grid cells 

 
Figure 18  Close-up view of blades one and two.  ∆yBlade 1=45º, NB-AMR0, ∆S=5% ctip. 

         
Figure 19  Loose coupling convergence history for the baseline resolution pitch, flap, and lag control 
angles.  
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in the normal direction, with about 60 grid cells within the attached boundary layers.  Applying NB-AMR 
down to the blade surface over resolved the boundary layer, resulting in rapid grid growth to over 1 
billion grid points for NB-AMR2.  Both of these negative attributes are expected when using isotropic 
NB-AMR.   

 
Figure 20 compares the computed and measured normal force coefficient (mean removed) at four 

radial locations, see Fig. 3, for NB-AMR0, NB-AMR1 and NB-AMR2.  There is overall good agreement 
between computation and experiment, however, the drop in normal force is under predicted near ψ=90° 
for the outboard sections.  This is surprising because the flow is attached and relatively benign in that 
region.  On the other hand, the comparisons are better at the first stall event (220°≤ψ≤270°) and the 
second stall event (330°≤ψ≤360°).  Refining the blade meshes with up to two-levels of NB-AMR has 
little effect.  There is similar agreement between the computed pitching moment coefficient (mean 
removed) and the flight-test data, see Fig. 21.   

 

 

Table 5  Summary of NB-AMR 2nd-order time accuracy parameters. 

Near-Body Refinement Time Step (revs) Sub-iterations 
NB-AMR0 1/4º 100 
NB-AMR1 1/8º 90 
NB-AMR2 1/8º 130 

 

    
Figure 20  Comparison of normal force coefficient (mean removed) at four radial stations. 

    
Figure 21  Comparison of pitching moment coefficient (mean removed) at four radial stations. 
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These two figures indicate that the CFD solutions are grid converged.  It is unlikely that the turbulence 
model is responsible for the noted discrepancies at ψ=90° since the solution compared better with flight-
test data on the retreating side, where stall occurs, than on the advancing side, where the flow is mostly 
attached.  It is more likely that uncertainties in the rotor blade aeroelastic properties, such as moments of 
inertia, or flight-test measurement discrepancies reported in Ref [11] are responsible for these differences.   

Figure 22 displays four frames taken from a time-dependent animation showing the dynamic nature of 
the NB-AMR2 process.  An outline of the near-body grids are shown on selected spanwise stations and 
colored by a transparent vorticity magnitude.  The transparency highlights flow structures near the blade 
surface while deemphasizing flow structures away from the blade surface.  These images show fewer 
AMR grids on the advancing side, ψ=90° and 180°, where the flow is relatively attached, and more AMR 
grids on the retreating side, ψ=270° and 360°, where the flow is separated.  The NB-AMR process is 
refining the flow physics where it is needed, and with greater efficiency than using uniform grid 
refinement throughout the entire NB grids. 

 
Figure 23 provides a closeup view of the third quadrant vortex wake for NB-AMR0, NB-AMR1 and 

NB-AMR2.  The NB-AMR1 and NB-AMR2 solutions provide greater detail of the flow separation and 
vortex rings than the baseline NB-AMR0 case.  However, it is also noted that the flow structures for NB-
AMR1 and NB-AMR2 are almost indistinguishable.  This supports the conclusion, together with Figs. 20-
21,  that the flow is both quantitatively and qualitatively grid resolved.   

Figure 24 shows two snapshots in time from animations of the NB-AMR0 and NB-AMR2 simulations.  
These correspond to the first stall event at ψ=270°.  The viewpoint moves with the blade tip and shows 
transparent vorticity magnitude contours along the blade’s span.  Similar to Fig 23, NB-AMR2 provides 
greater detail of the dynamic stall flow separation than NB-AMR0.   

   
a) ψ=0° or 360° b) ψ=90° 

   
c) ψ=180° d) ψ=270° 

Figure 22  Outline of NB-AMR2 grids at selected spanwise locations on a rotor blade. 
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Table 6 summarizes the computer wall-clock time used for the three NB-AMR resolutions.  The 

computer time and cost grow significantly with NB-AMR grid refinement (see 4th column).  However, the 
computational efficiency (see 6th column) also degrades significantly.  On the other hand, the 

 
 a)  NB-AMR0 

   
 b)  NB-AMR1 c)  NB-AMR2 

Figure 23  Close up view of vortex wake at ψ=270°.  Q-criterion colored by vorticity magnitude..  . 

   
b)  NB-AMR0 b)  NB-AMR2 

Figure 24  Snapshot from time-dependent animation (ψ=270°).  Cutting planes colored by transparent 
vorticity magnitude. 
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computational efficiency was found to improve with OB-AMR grid refinement, see Table 7 from Ref [6].  
These opposite trends are probably attributed to at least two factors:  1) The computational cost/grid point 
is higher for curvilinear grids than Cartesian grids; 2) NB-AMR has slower temporal convergence than 
OB-AMR due to CFL restrictions.  This second issue is related to isotropic grid refinement on highly 
non-isotropic body grids, especially with fine grid spacing normal to the viscous wall.   

 

 

5.  Conclusions 
Time-dependent flow simulations for a NACA 0012 airfoil and a flexible UH-60A Blackhawk helicopter 
rotor undergoing dynamic stall has been carried out using the OVERFLOW Navier-Stokes CFD code. 
Second-order dual-time accuracy and 5th-order spatial accuracy was used throughout this study.  
OVERFLOW’s NB-AMR was used to improve the curvilinear body-grid resolution while OB-AMR was 
used to resolve the UH-60A rotor wake with a Cartesian grid spacing of ∆S=5%ctip.  The Spalart-Allmaras 
RANS turbulence model was used for 2D flows while the hybrid RANS/LES model (DDES) was used for 
3D flows.   
NACA 0012 Airfoil Results 

Up to four levels of NB-AMR where applied to a baseline O-mesh.   
• The 2nd-order undivided difference sensing function performed well, automatically finding all 

relevant flow features.  There was no need to change the default sensor parameters, making it 
easy to use.   

• The number of dual-time sub-iterations increased from 50-150 with NB refinement.  This 
bounded the change in RMS lift, drag and pitching moment coefficients within 0.25%.   

• A 2.5-order L2-norm sub-iteration drop is recommended to maintain 2nd-order dual-time 
accuracy for dynamic stall.   

• The change in RMS lift and drag coefficients were bounded within 1% with two levels of NB 
refinement while the pitching moment coefficient required three levels of refinement.   

• Isotropic grid refinement produced rapid grid growth.  A baseline grid should be designed so 
that only 2-3 levels of NB-AMR are needed to achieve a grid-converged solution.   

 

Table 6  Summary of computer wall-clock time using 5,600 Skylake CPU cores with two threads. 

Flight Counter C9017 - (Dynamic Stall) 

NB-AMR Resolution # Grids # Grid Points Time/Rev Relative Time Time/Rev/ 
100 Million GP 

NB-AMR0 3,700 210 million 6.6 hr 1.0 3.1 
NB-AMR1 8,000 360 million 17.6 hr 2.7 4.9 
NB-AMR2 14,533 675 million 60.4 hr 9.2 8.9 

 
Table 7.  Summary of computer wall-clock time using 5,600 Broadwell CPU cores with two threads [6]. 

Flight Counter 9017 – (Dynamic Stall) 

OB-AMR Resolution # Grids # Grid Points Time/Rev Relative Time Time/Rev/ 
100 Million GP 

∆S=10%ctip 870 78 million 5.6 hr 1.0 7.2 
∆S=5%ctip 3,200 236 million 9.5 hr 1.7 4.0 
∆S=2.5%ctip 14,500 1.29 billion 26.0 hr 4.6 2.0 
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UH-60A Rotor Results 
• 3D dynamic stall was significantly more complex and different than 2D dynamic stall.  Some 

of these differences include: 
o BVI-induced flow separation. 
o The release of vortex rings from the rotor blades rather than simple 2D vortices.   
o Flow separation can alter the path of blade-tip vortices, possibly affecting the 

following blade’s airloads and acoustics.   
• NB-AMR was considerably more difficult to apply in three dimensions.  It was turned off 

within 2% ctip of the rotor blade surface, typically well within the blade’s boundary layer.   
o It was difficult to maintain algorithm stability when applying NB-AMR all the way to 

the blade surface, mostly due to CFL stability restrictions. 
o Turning off NB-AMR near the blade surface also helped control grid growth, 

especially in separated flow regions.  Two levels of unrestricted NB-AMR resulted in 
over 1 billion grid points. 

• There was little change in the blade sectional airloads, even with two levels of NB-AMR.   
o The baseline solution is grid converged.   
o There was overall good agreement between CFD and flight-test measured airloads. 
o The agreement was better on the retreating side, where there is dynamic stall and 

significant flow separation, compared to the advancing side, which is mostly attached 
flow.  It is more likely that these differences are due to uncertainties in the aeroelastic 
blade properties or flight-test measurements rather than the turbulence model.   

• Time-dependent flow animations provided insight into the NB-AMR process.   
o NB-AMR provided much finer resolution and detail of the separated flow. 
o The 2nd-undivided difference sensor function performed well, finding all relevant 

flow features without any user adjustment, similar to the 2D results.   
• Computational efficiency was found to improve with OB-AMR but decrease with NB-AMR. 

o There are at least two reasons for this difference. 
§ The computational cost/grid point is higher for curvilinear grids than 

Cartesian grids 
§ NB-AMR has slower temporal convergence than OB-AMR due to CFL 

restrictions. 
• A non-isotropic NB-AMR process would probably alleviate some of these NB refinement 

difficulties.   
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