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Abstract

Minimizing or controlling numerical dissipation is the key to realizing the promise of large-eddy
simulation (LES): to produce results whose first order statistics agree with direct numerical simulation
(DNS) at 1 to 10% of the computational cost. Whether LES is used to predict acoustic noise, transition
from laminar to turbulent flow, or unsteady separated flows, the methodology hinges on the amount
and location of dissipation added by numerics (in the case of implicit LES) or by a subgrid-scale (SGS)
model (in the case of explicit LES) being just enough to account for the unresolved dissipative scales. A
kinetic energy conserving compressible Navier-Stokes algorithm suitable for explicit LES is presented and
implemented in the context of a Cartesian immersed boundary framework with adaptive mesh refinement.
Results for standard benchmark cases such as isentropic vortex propagation, and the inviscid Taylor Green
Vortex (TGV) showcase the methodology’s ability to conserve kinetic energy. The level of agreement
obtained for LES of the TGV at Reynolds number 1600, turbulent channel flow at Reτ=180, and flow
past a cylinder at ReD = 3900, using this new approach demonstrates its ability to capture more physics
at lower resolutions without the need for any limiters or artificial dissipation.

1 Introduction
NASA has called for an increase in computational fluid dynamics (CFD) prediction accuracy of 30% for
separated and unsteady flows in its CFD 2030 vision [1]. Minimizing or controlling numerical dissipation in
large-eddy simulation (LES) is one of the key advances that will help produce CFD predictions whose first
order statistics recover those of DNS at 1 to 10% of the computational cost.

Numerical dissipation is introduced primarily in estimating the non-linear convective fluxes to stabilize
otherwise only conditionally stable schemes and to deal with discontinuities in the solution (e.g. shocks,
contact discontinuity, grid spacing disparities, etc). In incompressible flows, conservation of kinetic energy
is guaranteed in space for central differencing, and in time with the use of symplectic time integrators:
implicit methods that conserve quadratic invariants and are thus essentially reversible [2]. In all other
methods, including commonly used second-order accurate finite volume methods, the kinetic energy loss is
proportional to the level of under-resolution of the flow and the overall order of accuracy of the scheme,
which is often driven by the non-linear convective fluxes and approximations used therein. Whether LES is
used to predict acoustic noise, transition from laminar to turbulent flow, or unsteady separated flows, the
methodology hinges on the amount and location of dissipation added by numerics (in the case of implicit
LES) or by a subgrid-scale (SGS) model (in the case of explicit LES) being just enough to account for the
unresolved dissipative scales. However, recent work has shown that numerical dissipation can be quantified
[3], and it was found to be larger than what an explicit SGS model would provide in one commercial and
two academic Navier-Stokes solvers (two were compressible, and one incompressible) [4, 5]. Many LES suffer
from excessive dissipation, to which there are only three possible remedies:
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1. Increase the mesh resolution in key areas,

2. Decrease or remove contribution from SGS model,

3. Modify the numerics to use as little dissipation as possible.

Identifying where to refine the mesh to improve LES results is still an area of active research: it requires either
expert knowledge in CFD, or long enough integration times to post-process indicators of under-resolution
such as the ratio of resolved to modeled turbulent kinetic energy. Moreover, unless the grid refinement is
done globally and consistently in all directions, the obtained results may not improve monotonically given
a particular metric of interest (e.g. capturing the skin friction on an airfoil at moderate to high angles of
attack). If dissipation provided by the numerical scheme is comparable or larger than what modern SGS
models like the dynamic Smagorinsky and σ models provide, reducing or removing the contribution from
the SGS model might be beneficial, but it may also jeopardize agreement with the log law of the wall in
wall-bounded flows. Due to the known difficulties of the first two options, we explore the avenue of removing
numerical dissipation altogether for smooth problems, and adding dissipation only where discontinuities in
the solution or the grid occur.

Recent work has shown that it is possible to conserve kinetic energy in space and in time for the com-
pressible Navier-Stokes equations by carefully re-arranging terms and using a density-weighted symplectic
time integrator [6, 7]. In this work, we modify the kinetic energy conserving scheme of Brouwer et al.[7]
and extend it to a Cartesian immersed boundary approach implemented in the Launch, Ascent, and Vehicle
Aerodynamics (LAVA) framework [8].

First, the proposed kinetic energy conserving algorithm is detailed in section 2. Its implementation in the
LAVA Cartesian immersed boundary framework with adaptive mesh refinement (AMR) [8] is described in
section 3. Then we present results that demonstrate the new algorithm’s ability to conserve mass, momentum,
internal energy, and kinetic energy both in space and in time in section 4. Finally, we show LES results
for the Taylor Green Vortex problem at Re = 1600, turbulent channel flow at Reτ = 180, and flow past a
cylinder at ReD = 3900.

2 Numerical Methods
Brouwer et al. solve the Navier-Stokes equation in conservative finite difference form (no interpolation to
faces) for

{√
ρ,
√
ρui,
√
p
}

to enable conservation of kinetic energy in time without the added expense of
computing square roots [6], and use the state equation to eliminate internal energy [7]. To keep the structure
of the equations more general and admit different equations of state (e.g. non-ideal gas) while maintaining
kinetic energy conservation in time, we solve for the variables

{√
ρ,
√
ρui,
√
ρe
}
. Brouwer et al. note that

their proposed formulation suffers from decoupling between the convective and viscous terms due to the use
of repeated first derivatives, which are effectively blind to grid level oscillations. They solve this problem with
the use of high-order conservative filtering [7]. Here we use the product rule to expand all dissipation terms
to combinations of first, pure and mixed second derivatives to avoid the problem of decoupling altogether
and eliminate the need for filtering. Another important improvement is the inclusion of a consistent skew-
symmetric total energy convection term on top of the skew-symmetric momentum terms. This allows the
scheme to be stable without any dissipation mechanism for low Mach number periodic flows at any Reynolds
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number [9]. With these changes, the Navier-Stokes equations are solved in the following form:

∂
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= − 1

2
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where the variables take on their usual meanings of density ρ, velocity in the Cartesian directions [u1, u2, u3],
pressure p, temperature T , internal energy e, and mixture mass fraction Y . No assumptions have been
made regarding the particular equation of state that relates primary variables to conserved variables. This
formulation has several advantages. When discretized with derivative matrices that have the property
D = −DT , like the 6th order explicit central finite differences used in this work, along with a symplectic time
integrator that preserve quadratic invariants (e.g. implicit Runge-Kutta schemes with Gauss quadrature),
this formulation guarantees conservation of kinetic energy in space and in time (in the absence of viscosity,
and on periodic grids) [6, 7]. This formulation also has advantages when explicit time integrators are used
in that it does not suffer from the spurious transfer of kinetic energy to internal energy typically seen in
compressible flux-based finite difference schemes for turbulent flows at low to moderate Mach numbers [10, 9]

For LES, the σ model [11] with the dynamic procedure to determine Cσ [12] is currently implemented as
a modern starting point because it provides minimal dissipation away from turbulent regions. The computed
SGS viscosity µSGS is added to the viscosity µ, which in turn affects thermal conductivity in the usual way
κ = cP (µ + µSGS)/Pr, where Pr is the Prandtl number and cP is the specific heat coefficient at constant
pressure.

3 Implementation Details
The proposed kinetic energy conserving algorithm (KECons) outlined in section 2 eschews traditional flux
formulations while maintaining conservation properties [7]. This simplifies its implementation in that a single
subroutine needs to be maintained and optimized to increase the computational performance of the algorithm:
a flexible stencil operator that can perform derivatives of varying orders and accuracy. It also allows for
more direct estimates of the scheme’s truncation, dissipation and dispersion error as the confounding effects
of interpolation are removed. This comes at the cost of a higher operation count per iteration. However,
with current and future architectures that are memory bound, increasing the number of operations between
communication cycles while decreasing the working memory set can increase parallel efficiency.

Although the scheme is stable for most low Mach number flows at any Reynolds number on periodic grids,
the application of non-periodic boundary conditions can break this provable stability. LAVA implements
boundary conditions by filling in values on the three layers of domain ghost cells. However, this can create
problems, for example, when the outflow boundary sees vorticity or a pressure wave. The boundary condition
applied on the ghost cells may not be a good solution of the Navier-Stokes equations, and thus vortical and
pressure waves may reflect back into the domain. To minimize this effect without implementing complex
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boundary conditions that may work well for one flow type but fail in another, two options are available:
sponge regions where a body force returns the flow to a known solution smoothly as it gets closer to the
domain boundary [13], or smoothly adding high order artificial dissipation (upwinding) [14] near the domain
boundary. Both approaches are implemented and are effective in reducing reflections to acceptable levels.

Complex and potentially moving geometry is handled by LAVA’s immersed boundary framework. The
second-order ghost cell method (GCM) of Mittal et al.[15] is used to fill in primary variables for all in-body
neighbors to fluid cells. To guarantee kinetic energy conservation, the order of accuracy of the derivatives
used near the geometry is dropped smoothly from sixth to fourth, and from fourth to second order explicit
centered differences such that no stencil requires data beyond the single layer of ghost cells inside the body
determined from the GCM. Summation-by-parts (SBP) near-boundary operators were also tested to perform
energy-stable order of accuracy reduction near geometry. Little difference between the two approaches was
observed in practical applications thus far. The SBP approach does display slightly higher levels of error
in method of manufactured solutions (MMS) tests, and does require wider stencils near the boundary and
so it was not pursued further. The choice of GCM and order of accuracy reduction near the geometry does
lead to some non-smooth (stair-step) behavior for severely under-resolved geometry, but it has not caused
numerical instability so far. The SBP operators did not visibly help to smooth out the solution for under-
resolved geometry. In the future, higher order SBP-based immersed boundary methods with simultaneous
approximation terms (SAT) [16] may be explored to increase the effective resolution of the scheme next
to the geometry. The ghost-in-fluid method [17] is used to handle thin subgrid scale geometry like airfoil
trailing edges and thin rotor blades.

Adaptive mesh refinement (AMR) is one of the most important enabling technologies for Cartesian
approaches when dealing with problems that have a wide range of scales. The methodology implemented in
LAVA creates patches where the cell sizes are recursively decreased by a factor of two in an isotropic fashion.
LES has been shown to be very sensitive to grid quality and stretching. So this instantaneous stretching
by a factor of two in all directions creates an effective boundary condition for the fine-to-coarse transition,
which can result in the reflection of pressure and vortical waves. In order to avoid reflections at fine-to-coarse
interfaces, the same high order artificial dissipation (upwinding) as is used at domain boundaries is used here
for points adjoining the interface – the approach is akin to that of Pantano et al.[18]. Designing a better
AMR interface that does not break conservation of kinetic energy locally, perhaps inspired by overset SBP
operators and simultaneous approximation terms [19], will be a topic of future research.

4 Results

4.1 Method of Manufactured Solutions
The proposed kinetic energy conserving algorithm (KECons) in some ways increases the complexity of the
solver and so it is important to demonstrate that we obtain the expected spatial convergence rate. The
method of manufactured solutions (MMS) is used to provide an initial condition for which the right-hand-
side (RHS) operator can be computed analytically. This capability has been integrated into the LAVA
framework for arbitrary initial conditions using the complex step derivative method.

First we test the implementation for the Euler equations without geometry, then the viscous Navier-
Stokes where the viscosity is set to 1010, and finally we repeat the first two cases with under-resolved spheres
present in the domain which are handled with the GCM (see figure 1). To obtain convergence rates, initial
conditions for p, u, v, w, T are set to constants plus a sinusoidal functions in each Cartesian direction with
a different wavelength for each primary variable, and the RHS is obtained for 3 different resolutions where
the mesh size is halved every time. The exact boundary conditions from the given initial condition fields are
imposed on the domain boundary ghost cells and inside the geometry if present.

The spatial convergence rates of the convective operators with and without geometry for KECons are
compared to the more mature and well-tested 6th order weighted essentially non-oscillatory (WENO6) with
optimal weights in table 1. This becomes the limiting factor for its convergence. KECons and WENO6
(with optimal weights) both display the expected 6th order convergence of their error with respect to the
exact solution for the Euler equations without geometry. Absolute error magnitudes are comparable for
KECons and WENO6 for the mass equation, their momentum lines lie on top of each other, and their
energy equation errors are also very close with WENO6 taking a small lead. This could be due to the
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Figure 1: Cut of the two spheres in the domain used for MMS tests with geometry and the starting mesh
(before any refinement).

transformation to characteristic space before the WENO interpolation is performed (e.g. the initial conditions
may be smoother in characteristic space for the energy equation). Despite the greater number of individual
derivative operations in KECons, as in all the skew-symmetric terms for example, which each have errors
that are correlated and may be additive in the KECons algorithm, its error levels are almost identical to
WENO6. This cannot be attributed to the skew-symmetric terms mitigating aliasing error in this MMS test
because the wavelengths of the sinusoidal initial conditions are large – this is necessary for the schemes to
be in the asymptotic region of convergence.

Table 1: L∞ norm of the discretization error obtained from inviscid MMS without geometry. Convergence
rates are shown in parenthesis.

Mesh Mass Momentum Total Energy
WENO6 KECons WENO6 KECons WENO6 KECons

m0 3.6E-08 3.3E-08 2.6E-06 2.6E-06 8.4E-04 1.3E-03
m1 5.2E-10 (6.11) 5.3E-10 (5.96) 4.2E-08 (5.98) 4.1E-08 (5.99) 6.1E-06 (7.11) 2.1E-05 (5.97)
m2 8.2E-12 (5.98) 8.3E-12 (5.99) 6.7E-10 (5.98) 6.5E-10 (5.99) 9.9E-08 (5.94) 3.3E-07 (5.99)

Table 2: L∞ norm of the discretization error obtained from inviscid MMS with two spheres close together
as seen in figure 1. Convergence rates are shown in parenthesis.

Mesh Mass Momentum Total Energy
WENO6 KECons WENO6 KECons WENO6 KECons

m0 1.9E-02 7.0E-05 4.4E-01 4.0E-02 1.3E+03 6.2E+00
m1 1.0E-02 (0.89) 1.8E-05 (2.01) 2.1E-01 (1.03) 1.0E-02 (2.00) 6.7E+02 (0.97) 1.5E+00 (2.01)
m2 5.0E-03 (1.00) 4.4E-06 (2.01) 1.1E-01 (1.02) 2.5E-03 (1.99) 3.4E+02 (0.98) 3.8E-01 (2.00)
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Two spheres of diameter 1 are introduced in the MMS domain with a very narrow spacing between them
for the case with geometry (see figure 1). This creates regions of concave curvature, which is seen as a
concave corner until the finest refinement level where one cell lies between the spheres. This is a particularly
difficult problem for WENO6 which drops to first order in the concave corner region as shown in figure 2.
In contrast, we observe that KECons has strong second order convergence when dealing with under-resolved
geometry.

Thanks to the way the viscous dissipation terms are decomposed and discretized in KECons, sixth
order convergence is easily achieved for viscous Navier-Stokes without geometry as demonstrated in figure
3. Discretizing the viscous terms to higher order in flux form is significantly more difficult and can lead
to numerical instability, so the WENO implementation utilizes a standard second order discretization. It
reaches its expected convergence rate in the viscous case without geometry (figure 3), and with geometry
(figure 4) because the way viscous terms are computed is not affected by geometry due to the availability
of the in-body ghost cells. KECons similarly display second order convergence for the viscous Navier-Stokes
with geometry. This successfully demonstrates the ability of KECons to reach the expected convergence rate
from its discretization order of accuracy for the full Navier-Stokes with geometry.

Table 3: L∞ norm of the discretization error obtained from MMS for the Navier-Stokes equations with
µ = 1010. Convergence rates are shown in parenthesis.

Mesh Mass Momentum Total Energy
WENO6 KECons WENO6 KECons WENO6 KECons

m0 3.7E-08 3.3E-08 1.3E+08 3.0E+04 7.8E+12 1.2E+09
m1 5.3E-10 (6.12) 5.3E-10 (5.96) 3.2E+07 (1.99) 4.7E+02 (5.98) 2.0E+12 (1.99) 1.9E+07 (5.98)
m2 8.3E-12 (5.98) 8.3E-12 (5.99) 7.9E+06 (2.00) 7.6E+00 (5.96) 4.9E+11 (2.00) 3.1E+05 (5.95)

Table 4: L∞ norm of the discretization error obtained from MMS for the Navier-Stokes equations with
µ = 1010 and with two spheres close together (see figure 1). Convergence rates are shown in parenthesis.

Mesh Mass Momentum Total Energy
WENO6 KECons WENO6 KECons WENO6 KECons

m0 1.9E-02 7.0E-05 1.2E+08 1.3E+08 7.7E+12 3.6E+12
m1 1.0E-02 (0.89) 1.8E-05 (2.01) 3.1E+07 (1.99) 3.2E+07 (1.97) 2.0E+12 (1.99) 8.6E+11 (2.07)
m2 5.0E-03 (1.01) 4.4E-06 (2.01) 7.9E+06 (1.99) 8.1E+06 (1.99) 4.9E+11 (2.00) 2.1E+11 (2.02)

4.2 Isentropic Vortex Propagation
To demonstrate the conservation properties of the proposed kinetic energy conserving scheme (KECons)
in space and in time, the two-dimensional nonlinear Euler equations are solved for the isentropic vortex
propagation problem. The domain for this simulation spans [−1, 1] in x and y and the problem admits exact
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solutions of the form: 
ρ(~x, t)
u(~x, t)
v(~x, t)
p(~x, t)

 =


ρr(r)

U0 − ur(r) sin(θ)
V0 + ur(r) cos(θ)

pr(r)

 (5)

where

r =
√

(x− U0t)2 + (y − V0t)2, and θ = arctan(y/x) (6)

ur(r) =
U ′max

b
re

1
2 (1−

r2

b2
) (7)

ρr(r) =

(
1− 1

2
(γ − 1)U ′2maxe

1
2 (1−

r2

b2
)

) 1
γ−1

(8)

pr(r) =
1

γ
ργr (9)

The initial conditions are set as follows: U0 = 0.5, V0 = 0, U ′max = 0.5U0, b = 0.2, with γ = 1.4, and
cp = 2.5. This gives a baseline density and temperature of 1, with pressure at 0.714253, and Mach number
0.5. One flow-through time (FT) or the time necessary for the vortex to be convected around the domain
back to its original position is 4 time units, and results are presented for 10 FT or, equivalently, 40 time
units as was done in previous work with the LAVA framework [20]. The domain is discretized with 32
uniformly spaced points in each direction, and time integration is performed with the classic fourth-order
Runge-Kutta (RK4) scheme with a relatively small time step ∆t = 0.01 to keep time integration errors as
minimal as possible compared to spatial discretization errors, which gives a CFL number of roughly 0.28
. KECons does not require any stabilization mechanism for this problem because the solution is smooth
and because of the algorithm’s strong skew-symmetric nature. In contrast, finite difference algorithms in
strong conservation form (e.g. WENO6 with optimal weights) require stabilization for this problem, and
otherwise quickly become numerically unstable. This is because WENO6 collapses to a sixth-order central
scheme with no dissipation when used with optimal weights. So only results for WENO6 with non-linear
weights are shown from here on out. The contours of vorticity after 10 FT for KECons and WENO6 (with
non-linear weights) are compared to the exact solution in figure 2. From this figure, the dissipative nature
of the WENO approach is already visible: the level of vorticity at the center of the vortex has diminished
and now occupies a much smaller area. Figure 3 shows the recovery of the pressure at the center of the
vortex and the kinetic energy loss for KECons compared to two common high-order finite difference schemes:
WENO6, and 6th order central differences with 5th order scalar-based artificial dissipation with ε6 = 0.001
(Central6). KECons here shows the least deviation from the exact solution, with WENO6 a close second.
However, it is clear that WENO6 starts to lose kinetic energy from the start, whereas the KECons level of
kinetic energy remains constant.

A fully implicit Runge-Kutta (IRK) time integration capability was developed to test kinetic energy
conservation in time at higher CFL numbers. For this purpose, we tested the symplectic Gauss quadrature
of fourth order (Gauss4) with a simple explicit fixed-point sub-iteration technique with linear convergence.
The obtained convergence rate is sub-optimal, but this approach has the advantage that it doesn’t require
the creation and approximate solution of a full non-linear system of equations. The results shown in figure
4 were somewhat disappointing when the total time to solution was taken into account. The explicit RK4
simulations with ∆t = 0.01 reached a total integration time of 40 time units in approximately 8 seconds
when parallelized on 44 Message Passing Interface (MPI) threads on a desktop workstation. The Gauss4
simulation with the same time step and a convergence tolerance of 1× 10−10 took about 30 seconds to reach
40 time units with the same number of MPI threads on the same workstation. Both produce the same level
of solution error (e.g. deviation from exact pressure distribution), and conservation error (e.g. kinetic energy
loss). It is clear that comparing RK4 to Gauss4 for the same time step and this tight convergence tolerance,
the ratio of solution error to computational time is in favor of RK4. There is however some advantage to
the Gauss4 approach at higher CFL numbers. The Gauss4 simulation with the larger time step ∆t = 0.04
corresponding to a CFL number of 1.1 and the same tolerance also took approximately 30 seconds, but did
not produce noticeably more error in the solution. This is because for the 40 time units of interest, time
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Figure 2: Contours of vorticity for isentropic vortex propagation problem after 10 flow-through times using
WENO6 (dots) and KECons (dashes) versus exact solution (lines).
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Figure 3: Comparison of inviscid isentropic vortex propagation results for different high order finite difference
schemes after 10 flow-through times.

integration error accumulates: the larger the CFL number, the fewer instances where error is accumulated.
In order for Gauss4 to complete the simulation in the same wall time as the RK4 algorithm (8 seconds), the
number of sub-iterations have to be limited to 10, which produces kinetic energy conservation error levels
4 orders of magnitude larger as shown in figure 4b. The nature and distribution of error in the solution for
pressure is also significantly affected, in a potentially dangerous way: instead of recovering, the pressure at the
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center of the vortex further decreases. This is consistent with past accounts where high sensitivity to implicit
residual convergence criteria were observed for implicit Runge-Kutta schemes with Gauss quadratures [21].
The Gauss4 scheme considered in this isotropic Cartesian setting will thus only become advantageous for
nearly incompressible flows, or when an accurate and well-optimized Newton-Krylov solver is implemented
along with an accurate left-hand-side to make the overall computational time to solution competitive with
RK4.
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Figure 4: Comparison of inviscid isentropic vortex propagation results for KECons with explicit RK4
(squares), Gauss4 (crosses), Gauss4 using a 4 times larger time step (triangles), and Gauss4 using a 4 times
larger time step and a limit of 10 sub-iterations (diamonds).

4.3 Inviscid Taylor-Green Vortex
The inviscid Taylor-Green Vortex (TGV) is a useful problem to demonstrate numerical stability and con-
servation of kinetic energy in a highly under-resolved turbulent problem. The flow field is initialized as
follows:

u = V0 sin(
x

L
) cos(

y

L
) cos(

z

L
),

v = −V0 cos(
x

L
) sin(

y

L
) cos(

z

L
),

w = 0,

p = p0 +
ρ0V

2
0

16

(
cos(2

x

L
) + cos(2

y

L
)
)(

cos(2
z

L
) + 2

)
, and

T = T0.

The ideal gas law is assumed with γ = 1.4, and cp = 3.5. The dynamic viscosity µ0 is set to zero. The
temperature T0 is chosen such that the Mach number M0 = V0/c0 = 0.1, where c0 is the speed of sound.
The domain is discretized using 32 points in each Cartesian direction. The time step is set to ∆t = 0.0014,
which gives a CFL number near 0.5. The simulation is run for 20 non-dimensional time units tc = L/V0. For
the inviscid case, it is accepted that the total kinetic energy in the volume should remain constant whereas
the enstrophy should increase exponentially. No subgrid-scale models are used in this problem for any of the
schemes tested. All simulations were integrated explicitly in time using RK4 unless otherwise noted.

Figure 5 demonstrates that even for severely under-resolved flow, the proposed approach is numerically
stable and conserves kinetic energy almost exactly, whereas all other approaches cause the kinetic energy to
decay rather rapidly. WENO6 with is able to delay adding numerical dissipation for the longest, whereas
the Central6 scheme has some level of numerical dissipation from the very start by design. However, once
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the smoothness indicator is tripped, WENO6 provides a higher dissipation rate than Central6. For this
reason, WENO6 tracks the expected increase in enstrophy the best for t < 3, but reaches a lower maximum
enstrophy than Central6. KECons results agree with theoretical predictions for t < 8, after which the size
of vortical structures generated becomes comparable to what the derivative operator can resolve on this
mesh. Subsequently, the rate of enstrophy growth decreases significantly beyond t = 10. This is consistent
with what theory predicts: the smallest resolved scales will accumulate energy and start interacting with the
larger scales until all energy is equi-partitioned between all resolved wavenumbers.
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Figure 5: Comparison of inviscid Taylor-Green vortex results for different high order finite difference schemes
over 20 flow-through times.

4.4 Taylor-Green Vortex
The Taylor-Green Vortex (TGV) at Re = 1600 is a well-established problem for which benchmark DNS
data exists. The problem description is identical to that described in section 4.3, with the exception that
the dynamic viscosity is set to µ0 = 1/Re. The goal is to predict the correct rate of dissipation at the
lowest resolution possible as the flow transitions from laminar to turbulent and the relevant length scales
become smaller and smaller. Time integration is performed again with explicit RK4 with a CFL of 0.5 for
all computations.

Figure 6 demonstrates the strength of the KECons approach. KECons with the dynamic σ SGS model
produces a kinetic energy evolution and dissipation rate that is in excellent agreement with the DNS bench-
mark. KECons predicts the peak dissipation almost exactly at resolutions beyond 643. Even at 323 resolution,
where KECons under-predicts peak dissipation by 14%, it still reaches peak dissipation at the expected time
of t ≈ 8. At 2563 resolution, the small differences between the incompressible DNS and KECons can be
attributed to compressibility effects and the non-zero bulk viscosity β = −2µ/3. It also produces visually
satisfying results as can be seen in figure 7, where all the vortical structures are smooth and well-defined.

Results for other schemes are shown in figure 8 at a resolution of 643 where KECons already correctly
predicts peak dissipation. WENO6 produces excessive dissipation early on, with marked departures from
the benchmark as early as t = 3. On the other hand, the Central6 scheme provides more gentle dissipation
from the start. Even at 323 resolution, KECons arguably performs better than WENO6 at 643, which
over-predicts the dissipation peak by 19% and departs significantly from the benchmark as early as t = 3.

4.5 Turbulent Channel Flow
Turbulent channel flow is one of the critical tests that measures a solver’s ability to capture wall-bounded,
highly anisotropic boundary layer physics. In this context, the goal of LES is to recover first order statistics
of DNS and experiments at a fraction of the computational cost by coarsening the grid in all directions.
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Figure 6: Taylor-Green Vortex results for kinetic energy conserving scheme (KECONS) with the dynamic σ
SGS model at different grid resolutions

Figure 7: Iso-surfaces of Q-criterion = 1.5 at t = 8.04 colored by velocity magnitude for KECons with 2563

The bulk Reynolds number is set to Rb = ρU0δ/µ = 3300, and the friction Reynolds number to Reτ =
ρuτδ/µ = 180. A constant body force Fb = ρu2τ/δ is used to prevent the flow from decaying to a stop.
To keep compressibility effects at a minimum while allowing a larger time step, the Mach number is set
to M0 = 0.2. The channel centerline velocity U0 is set to 1, density ρ is set to 1 and the gas is air with
γ = 1.4. The domain spans [6.1875, 2.0625, 3.09375] channel half-widths δ in the x, y and z directions
respectively. It is discretized using 64 evenly distributed cells in each direction, giving a cell size in inner
units of ∆x+ = 17,∆y+ = 5.8,∆z+ = 8.7 with the first cell center inside the channel at ∆y+ = 2.9. This
corresponds to less than half the resolution required for the benchmark DNS in each direction [22], and
roughly 6.6% of the overall number of points. The time step is set to ∆t = 0.0025 to keep the CFL near
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Figure 8: Taylor-Green Vortex results for kinetic energy conserving scheme (KECONS) with the dynamic σ
SGS model compared to ILES with different finite difference schemes at 643 resolution

0.5, and the flow is integrated in time using explicit RK4 for 167 flow-through times. Statistics are gathered
over the last 100 flow-through times.
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Figure 9: Mean velocity profile for channel flow at Reτ = 180: KECons 643 (diamonds), law of the wall
u+ = 2.5 ln(y+) + 5.5 (dashes), u+ = y+ (dash-dots).

Figure 9 shows the obtained time and planar averaged velocity profile in non-dimensionalized by the
friction velocity uτ . Despited having only two points below y+ = 10, the mean velocity profile agrees well
with the linear law of the wall in the inner viscous layer. In the logarithmic region, near perfect agreement
is found with the low-Reynolds number law of the wall, where the offset is increased from 5 to 5.5 [22]. The
root-mean-square velocity fluctuations agree well with both DNS and experiment as demonstrated by figure
10. The slight over-prediction of u+rms and under-prediction of w+

rms in the buffer region and logarithmic
region compared to DNS is a common occurrence when the vertical direction is under-resolved. These results
are particularly encouraging for the prospect of accurately predicting higher Reynolds number wall-bounded
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Figure 10: Root-mean-square velocity fluctuations for channel flow at Reτ = 180. Kreplin & Eckelmann
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flows with a similar number of grid points by using a wall model.

4.6 Flow Past Cylinder
Flow over a cylinder at ReD = 3900 is a well-established unsteady benchmark for low Mach number LES for
which there is experimental data available. The goal is to correctly predict the mean velocity profiles across
the wake at different downstream stations ranging from 1 to 6 cylinder diameters. The cylinder is placed at
the origin and has a diameter D, which will henceforth be used to non-dimensionalize all lengths. The domain
spans [−6,−8,−2] to [26, 8, 2] in x, y, z respectively, where x is the flow direction, y the vertical direction
and z the spanwise direction. The upstream boundary condition is prescribed to be the reference velocity
and pressure, whereas the downstream domain boundary is treated as a subsonic outflow (pressure is set,
all other primary variables are extrapolated from the interior) boundary condition. Periodicity is enforced
both in the vertical and in the spanwise directions. Enforcing periodicity in the vertical is equivalent to an
infinite array of cylinders 8 D apart as opposed to a single one in freestream. This approach allows us to
reduce the size of the domain without incurring strong confinement effects. This problem tests the ability of
the proposed scheme to deal with immersed boundaries accurately, and transition from laminar to turbulent
flow in the wake.

Figure 11 shows the mesh used for KECons. Each level of refinement visible in figure 11 corresponds to a
factor of 2 in each direction. The coarsest level extends the entire domain, whereas the finest level of resolution
∆x = 1/64 is reserved only for the geometry to ensure that the effects of curvature are resolved by the GCM.
This is important for this kinetic energy conserving scheme where we observe secondary instabilities on the
shear layer much earlier when the curvature of the geometry is not as smoothly represented by the GCM.
Immediately outside of the vicinity of the cylinder, the mesh size increases to ∆x = 1/32. The entire mesh
is 8 million cells, not counting ghost cells necessary for parallelization and coarse-fine interfaces.

Shedding occurs and the remnants of a transitional Von-Karman vortex street are visible. This is exem-
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Figure 11: Slice of the mesh showing an x− y plane for flow past cylinder at ReD = 3900.

Figure 12: Instantaneous snapshot of iso-surfaces of Q-criterion colored by Mach number for flow past
cylinder at ReD = 3900.

plified in figure 12, where the iso-surfaces of the Q-criterion delineate the turbulent structures and coherent
vortex cores. Results are time-averaged over the last 26 shedding periods and compared to benchmark ex-
perimental, DNS, and LES data in figure 13. The KECons mean velocity profiles agree very well with the
benchmark data at all locations except near x/D = 2 where both KECons and WENO6 have a smaller
velocity deficit.

This is likely due to the coarseness of the grid and its inability to represent the geometry with high
fidelity. The flow thus sees a bumpier geometry, and transitions earlier than expected. As soon as 3D
turbulent structures appear, both the σ SGS model in the case of KECons, and the smoothness indicator
in the case of WENO6 are triggered as expected, providing further dissipation and increased mixing, which
would explain the wider velocity profile and smaller velocity deficit. From x = 3 to x = 5, KECons recovers
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Figure 13: Time-averaged velocity profiles for flow past a cylinder at ReD = 3900. Experimental PIV
Measurements [23] (squares), DNS at Re = 3300 [24] (circles), LES [23] (triangles), LES [25] (diamonds),
LAVA WENO6 (dashes), LAVA KECons + σ model (line).

the DNS data accurately, whereas the WENO6 seems to provide excessive dissipation and has a lower
velocity deficit. Downstream of x = 5, both KECons and WENO6 show good agreement with the DNS
and LES benchmarks. This confirms that the limiting factor for the new KECons algorithm is the geometry
representation. Without resorting to a more costly and complex immersed-boundary method, the only resort
is to increase the grid resolution near the geometry.

5 Conclusions and Future Work
We proposed a novel high-order finite difference scheme to solve the Navier-Stokes equation that conserves
kinetic energy in space and in time that is well-suited to perform explicit LES. Its implementation into the
Cartesian immersed boundary solver of the Launch, Ascent, and Vehicle Aerodynamics (LAVA) framework
[8] was presented. The scheme was shown to provide the expected convergence rate using the method of
manufactured solutions (MMS), and to have increased stability properties which allow it to perform well
on the isentropic vortex problem without the addition of any numerical dissipation. It conserved kinetic
energy in space and in time for the (small) time steps tested regardless of whether the more expensive
symplectic time integrator was used in both the isentropic vortex propagation and inviscid Taylor-Green
vortex benchmark problems. Its ability to perform large-eddy simulation (LES) with increased accuracy was
demonstrated on the Taylor-Green vortex at Re = 1600, where it captures the dissipation peak at only 643

resolution. LES of turbulent channel flow was also performed and displayed good agreement with benchmark
data, showing the scheme’s ability to deal with highly anisotropic wall-bounded turbulence. Finally, flow
past a cylinder at ReD = 3900 was simulated to verify the proposed algorithm’s coupling with the ghost cell
method (GCM), and its performance when dealing with under-resolved geometry. Obtained results agreed
well with the benchmarks and confirmed that the geometry representation is now the limiting factor.

Future work will focus on three fronts. The first effort will be to implement shock-capturing capability
to enable the simulation of rotorcraft and of high speed jet acoustics. We will also invest in the development
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of robust turbulent wall-layer modeling in order to simulate wall-bounded flow with complex geometries
for target applications like flap noise. The last focus will be to implement better thin and highly curved
geometry representation through a higher-order immersed boundary method.
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