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Abstract: Nested cartesian grid systems by design require interpolation of solution �elds from
coarser to �ner grid systems. While several choices are available, preserving accuracy, stability and
e�ciency at the same time require careful design of the interpolation schemes. Given this context,
practical interpolation methods for nested cartesian �nite di�erence grids were developed and
tested in several situations. These algorithms are based on post-processing, on each local grid, the
raw (bi/trilinear) information passed to the halo points from coarser grids. In this way modularity
is maximized while preserving locality. The results obtained indicate that the schemes improve
the convergence rates and the overall accuracy of �nite di�erence codes with varying grid sizes. In
addition to basic testcases, some large-scale separated �ows past complete car con�gurations are
considered in order to demonstrate the capabilities developed.

Keywords: High order solvers - Interpolation - Parallelization - Cartesian Grids - Finite Di�erence
Solvers

1 Introduction

Separated �ows which require LES-type runs at large Reynolds-numbers have been at the forefront of CFD
research for decades. Yet, to date, LES runs last at least 3 weeks even if the number of cores available is
arbitrarily high. Simply put, in order to achieve the industrial goal of overnight (4 · 104 secs) LES runs with
O(107) advective timesteps, one needs to run at 250 timesteps/sec, or 4 msec/timestep with O(109) degrees
of freedom/points. At present, we have not seen codes able to run faster than O(0.050) sec/timestep when
going beyond 10Kcores. A recent study conducted by the authors con�rmed that if only communication is
taken into consideration, the aim of 4 msec/timestep is achievable. Therefore, the focus at present is on
how to minimize the CPU requirements per point per timestep. The large number of points (or degrees
of freedom) required by these LES runs, the option to easily increase the approximation order and the low
FLOP overhead associated with them makes solvers based on nested cartesian grid systems [1, 2, 3, 4, 5]
ideal candidates for the �ow solvers sought. On the other hand, nested cartesian grid systems by design
require interpolation of solution �elds from coarser to �ner grid systems. While several choices are available,
preserving accuracy, stability and e�ciency at the same time require careful design of the interpolation
schemes.

However, the transition between grids of di�erent spatial resolution is still a source of di�culty. A study
conducted by the authors for a 6th-order FD �ow solver revealed that at the transition between grids the
numerical di�usion and dispersion due to interpolation completely overwhelmed the physics. This prompted
a search for better interpolation techniques and interface treatments for such problems.

A theme often discussed in the literature is the need to use conservative interpolation schemes (see, e.g.
[6, 7, 8]). A common conclusion seen is that for smooth solutions the standard interpolation procedure
accurately capture the physics of the problem. As expected, conservative interpolation are only required
near discontinuities. A typical situation often seen are very slow shocks crossing a grid transition area.
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If one considers the interpolation problem, the immediate inclination is to use standard classic high-order
interpolation techniques. High-order interpolations for locally re�ned Cartesian grids have been reported
repeatedly in the literature [9, 10, 11], where techniques such as Fourier basis, cubic least squares and limited
monotone (WENO type) schemes were considered for designing the interpolations. In three dimensions, this
often led to large stencil sizes (of the order of 20 to 30 coe�cients) that needed to be synthesized for each �ne
grid point. Moreover, interpolation schemes were �xed to maintain a particular order of accuracy. Extending
them to even higher orders often required revisiting the derivations and a re-implementation of new schemes.

Having a large stencil footprint often defeats the purpose of using `fast and cheap' FD methods. This
has led the search for simpler interpolation techniques, utilizing immediately available data and constructing
fast schemes that reuse results of interpolations performed previously. The aim here is to assess whether
improvements in accuracy with a modest increase in complexity are possible using such schemes.

In the sequel, we detail the solver methodology used, the interpolation schemes implemented, and the
results obtained for model problems to show the bene�t of using these schemes. Thereafter, we apply them
to some large-scale separated �ows around complete car con�gurations.

2 Grid Generation

One of the key attractions of cartesian grids is the very simple and fast grid generation. As each `block'
will be discretized further by at least O(10Kpts), the generation of the blocks (or skeleton) may be carried
out on a laptop. Given a surface triangulation (e.g. an STL �le for a complete car), the user speci�es the
desired cell sizes based on the distance to the surface, the surface curvature, surface corners or edges, and
additional regions that should be re�ned based on user experience (e.g. wakes). Based on this information,
the pre-processor (in this case FECAD) automatically generates the octree of the blocks, and subsequently
merges them in order to reduce as much as possible the �nal number of blocks. Note that this depends on
the number of cores available for the run. This block generation is fast enough to allow for interactive trial
and error. It usually takes longer to draw the STL (which can reach into the 20Mtria range) and the blocks
than regenerating a new mesh.

3 Finite Di�erence Navier-Stokes Solver (FDFLO)

3.1 Equations Solved

FDFLO solves the weakly compressible Navier-Stokes equations. The temperature is included as an option,
as well as the Boussinesq approximation for natural convection. The system of PDEs is given by:

1

c2
p,t + ρ∇ · v = 0. (1)

ρv,t + ρv∇v +∇p = ∇µ∇v + ρg + βρg(T − T0) + Sv. (2)

ρcpT,t + ρcpv∇T = ∇λ∇T + ST . (3)

where ρ,v = (u, v, w), p, T, c, µ, cp, λ, β, T0 denote, respectively, the density, velocity, pressure, tempera-
ture, (constant) speed of sound, viscosity, heat capacitance, conductivity, thermal expansion and reference
temperature for the �uid, and g, Sv, ST the gravity vector and source terms for velocities and temperature.

3.2 Numerics

The numerics implemented may be summarized as follows:

- Explicit timestepping via low-storage Runge-Kutta schemes;

- Conservative formulation for advection and divergence;

- Easy extensions to high-order stencils;
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- Ordered access to memory;

- Minimum access to memory;

- Long 1-D loops (for optimal vector, OMP and GPU performance);

- Use of halo points to impose boundary conditions and enable easy extension to massively parallel
machines.

In the next sections, we describe in detail the discretizations and boundary conditions employed.

3.3 Discretization in Space

The spatial discretization is carried out via Finite Di�erences on a cartesian grid with equal mesh size in all
directions:

hx = hy = hz = ∆x. (4)

All �uxes are written in conservative form as:

ri =
1

∆x

[
fxi+1/2 − fxi−1/2 + fyi+1/2 − fyi−1/2 + fzi+1/2 − fzi−1/2

]
. (5)

Each �ux is composed of the physical and the arti�cial dissipation �ux, e.g.:

fi+1/2 = fpi+1/2 − fdi+1/2. (6)

The advective physical �uxes are obtained from central di�erence operators of 2nd, 4th, 6th and 8th order:

fpi+1/2

∣∣∣II =
1

2

(
fpi+1 + fpi

)
. (7)

fpi+1/2

∣∣∣IV =
7

12

(
fpi+1 + fpi

)
− 1

12

(
fpi+2 + fpi−1

)
. (8)

fpi+1/2

∣∣∣V I =
37

60

(
fpi+1 + fpi

)
− 8

60

(
fpi+2 + fpi−1

)
+

1

60

(
fpi+3 + fpi−2

)
. (9)

fpi+1/2

∣∣∣V III =
533

840

(
fpi+1 + fpi

)
− 139

840

(
fpi+2 + fpi−1

)
+

29

840

(
fpi+3 + fpi−2

)
− 3

840

(
fpi+4 + fpi−3

)
. (10)

For the 2nd order (Laplacian) operators the physical �uxes of 2nd, 4th, 6th and 8th order are:

fpi+1/2

∣∣∣II =
(
fpi+1 − fpi

)
. (11)

fpi+1/2

∣∣∣IV =
15

12

(
fpi+1 − fpi

)
− 1

12

(
fpi+2 − fpi−1

)
. (12)

fpi+1/2

∣∣∣V I =
245

180

(
fpi+1 − fpi

)
− 25

180

(
fpi+2 − fpi−1

)
+

2

180

(
fpi+3 − fpi−2

)
. (13)

fpi+1/2

∣∣∣V III =
7175

5040

(
fpi+1 − fpi

)
− 889

5040

(
fpi+2 − fpi−1

)
+

119

5040

(
fpi+3 − fpi−2

)
− 9

5040

(
fpi+4 − fpi−3

)
. (14)
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These (unstable) approximations are stabilized by adding an appropriate arti�cial viscosity / damping
[12, 13, 14, 2] of the form:

fdi+1/2

∣∣∣II = cdλi+1/2 [(ui+1 − ui)] . (15)

fpi+1/2

∣∣∣IV = cdλi+1/2 [3 (ui+1 − ui)− (ui+2 − ui−1)] . (16)

fpi+1/2

∣∣∣V I = cdλi+1/2 [10 (ui+1 − ui)− 5 (ui+2 − ui−1) + (ui+3 − ui−2)] . (17)

fpi+1/2

∣∣∣V III = cdλi+1/2 [35 (ui+1 − ui)− 21 (ui+2 − ui−1) + 7 (ui+3 − ui−2)− (ui+4 − ui−3)] . (18)

where λ is the maximum eigenvalue of the system

λ = |v|+ c. (19)

and cd the arti�cial viscosity / damping coe�cient. Typical values are: cIId = 0.2, cIVd = 0.10, cV Id =
0.02, cV IIId = 0.02. For viscous cases, the arti�cial viscosity / damping coe�cient of the momentum equations
is reduced:

c∗d = cd · r(u) , r(u) = max(0,min(1, Reh − 1)) , Reh =
ρu∆x

µ
. (20)

Note that as the mesh is re�ned and the cell Reynolds-number Reh falls below Reh = 1, the arti�cial viscosity
vanishes. The same type of advection and arti�cial viscosity is also used for the temperature equation, but
limiting with the local Peclet-number.
Finally, for the Boussinesq terms the approximation taken is simply:

ri = gβ (TB − Ti) . (21)

The same is done for the source-terms Sv, ST .

In order to achieve long vector loops the formation of right-hand sides (RHSs) is carried out by forming
a single array of point data. Given nx, ny, nz, and de�ning nxny = nx * ny, the points are traversed
as ip = nxny*(iz-1) + ny*(iy-1) + ix. In order to minimize the use of registers, the RHSs are formed
dimension by dimension.

4 Boundary Conditions

A variety of boundary conditions are required for practical computations. An easy way to implement these
is via halo points. In order to be able to cast all operations in terms of large loops over all points, two (for
4th order stabilized �uxes), three (for 6th order stabilized �uxes) or four (for 8th order stabilized �uxes)
halo points are added at the minimum and maximum extent of each dimension. This increases the total
point count, but allows for maximal vector length. The boundary conditions are then imposed as follows:

- No-Slip (NavSto) Wall: Same p,v, T as wall;

- Symmetry/Euler Wall: same p,v · t, T , opposite v · n;

- In�ow to Field: v, T imposed, p free;

- Out�ow of Field: p imposed, v, T free.
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5 Immersed Body Option

A solver based on Cartesian Finite Di�erences may be very fast, but its use is very limited when considering
geometrically complex objects. There are two options of treating these: either via immersed body methods,
or via embedded surface techniques. We have implemented both.

Immersed Body

v(fluid)=v(body)

Figure 1: Immersed Body Approach.

The immersed body methods [15, 16, 17, 18, 19, 20, 21, 22, 23] (see Fig. 1) may be classi�ed by the
way they apply the boundary conditions into kinematic or kinetic [14].
The kinematic approaches simply set the velocity of the �ow to the velocity of the body:

vflow = vbody. (22)

This 1st order scheme may be improved via interpolation or weighting functions, i.e. taking into account
neighbour information [19].
The kinetic (i.e. force-based) approaches add a force to the momentum equations such that Eqn. 22 is
ful�lled at the end of the timestep, or a penalty term that imposes Eqn. 22 weakly.
In either case, the immersed body options described require the following steps:

- Read in the immersed bodies as a mesh (elements, coordinates, velocities, temperature);

- Determine the cartesian points inside the bodies; this is done by performing a loop over the elements
of the immersed bodies; for each of these the cartesian points inside the element are obtained and
marked;

- Store the points marked in a separate boundary point array.

In order to be as general as possible, the immersed bodies are de�ned via tetrahedral meshes.

6 Embedded Surface Option

The second way to treat geometrically complex objects within a Cartesian Finite Di�erence code is via
embedded surface techniques [24, 25, 26, 27, 28, 29, 30] (see Fig. 2).

The key idea is to `extend' the stencil past the edges crossed by the embedded surfaces, mirror these
points back into the proper computational domain, and then use mirroring or other boundary conditions to
impose the presence of the embedded surfaces (see Fig. 3). This way of imposing the boundary conditions
for embedded surfaces is theoretically 2nd order accurate. However, in many cases (particularly if the points
are very close to the embedded surface, or in narrow passages) the available information for interpolation is
not su�cient to guarantee this order.
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Embedded Surface

Figure 2: Embedded Surface Approach.

P1

P2 P3

P’

P

PN         P’: Interpolation

P            P’: Mirroring

Embedded Surface

Figure 3: Embedded Surface Approach: Boundary Conditions.

The embedded surface option requires the following steps:

- Read in the embedded surfaces as a triangulation (elements, coordinates, velocities, temperature);

- Determine the cartesian edges crossed by the surface; this is done by performing a loop over the
triangles of the embedded surfaces; for each of these the cartesian edges crossed are obtained and
marked;

- Determine the interpolation conditions for the points `on the other side' of the crossed edges.

- Store the points marked in a separate boundary point array.

There are several possible ways of incorporating the values of the unknowns required to imposed embedded
surfaces. We have pursued a dual-loop approach: The �rst loop over the points is the usual one, i.e. it
ignores the embedded surface boundary conditions. The second loop, over the points whose surrounding
edges are crossed by embedded surfaces, subtracts the right hand of the 1st loop, and adds the right hand
side replacing the unknowns `on the other side' with the proper values. In this way, the extra burden of
imposing embedded surface boundary conditions is minimized.
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7 Spatial Discretization

After spatial discretization, the original PDEs given by Eqns. 1-3 form a coupled system of ordinary di�er-
ential equations (ODEs) of the form:

u,t = r(t,u). (23)

This system is solved using explicit, low-storage Runge-Kutta methods of the form:

∆un+i = αi ∆t r(un + ∆un+i−1) , i = 1, s , ∆u0 = 0. (24)

or via the usual 4-stage Runge-Kutta scheme [31]. We remark that for linear ODEs the choice

αi =
1

s+ 1− i
, i = 1, s. (25)

in combination with Eqn. 24 leads to a scheme that is s-th order accurate in time. Like all explicit schemes,
the allowable timestep is bounded by the condition:

∆t < CFL ·min
(

h

|v|+ c
,
ρh2

µ
,
ρcph

2

λ

)
. (26)

where the allowable CFL factor is proportional (i.e. increasing) with the number of stages s.
One complete timestep is given by the following steps:

- Apply BC / Transfer Info from Domain to Halo Points

- Get Allowable Timestep

- Set Timestep ∆t = 0 for Halo Points

- Loop Over the Stages:

- Set r = 0

- Compute r

- Obtain ∆u = αi∆tr(u)

- Apply Boundary Conditions

- Update u

8 Multiblock Option

A solver based on Cartesian Finite Di�erences may be very fast, and may be made applicable to complex
geometries via immersed or embedded techniques. However, its use is still very limited when considering
problems with varying spatial lengthscales. The best way of addressing this problem while keeping the speed
advantages of the basic solver is via multiblocking [32, 26]. The key idea is to consider each cartesian grid
or block independently, and to combine these by interpolating the unknowns of the halo points from the
adjacent blocks.

9 Interpolation Between Cartesian Grids

The transition between grids of di�erent spatial resolution can be a source of di�culties. High-order in-
terpolation in local re�ned Cartesian grids have been reported in literature [9, 10, 11], where techniques
such as Fourier basis, cubic least squares and limited monotone (WENO type) schemes were considered for
designing the interpolations. In three dimensions, this often led to large stencil sizes of the order of 20 to
30 coe�cients that need to be synthesized for each �ne grid point. Having a large stencil footprint often
defeats the purpose of using `fast and cheap' FD methods. This has led to the consideration of simpler inter-
polation techniques, utilizing immediately available data and constructing fast schemes that reuse results of
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Domain 2 [size: h/2] Domain 1 [size: h]

Grid Points

Halo Points

Figure 4: Multiblock Option.

interpolations performed previously [33]. At the beginning of each timestep, iteration, or Runge Kutta stage
the information required for the halo points is obtained from the appropriate neighbouring grids. For the
gridpoints that coincide this information is kept (implicitly assuming that the information given at gridpoints
is the most accurate and should therefore not be changed). However, at intermediate points one is at liberty
to interpolate with higher order schemes. This so-called `post-processing interpolation' has shown excellent
results in many tests carried out to date [33].

9.1 h/2h Interpolation

The situation commonly encountered is shown in Figures 5�6 for the 1-D and 2-D cases respectively. We
denote the �ne grids as grid h and coarse grid as grid 2h respectively. At the h/2h boundary, the Cartesian
grids need to exchange information. The assumption is made that in order to maintain code modularity, halo
points are used to transfer information between grids (and also for boundary conditions). In this way, the
update and boundary condition stages of the di�erent solvers are separated in a a clean, modular fashion.
At the beginning of each timestep, iteration, or Runge-Kutta stage the information required for the halo
points is obtained from the appropriate neighbouring grids. Furthermore, it is assumed that the information
given at gridpoints is the most accurate and should therefore not be changed. This implies that for points
that coincide (labeled D in Figure 6) a direct injection / transfer of information is desirable. On the other
hand, for the points along edges or faces (labeled E, F in Figure 6), one is at liberty to apply interpolation
schemes of di�erent order. Note that this will only be required for grid h on a h/2h boundary, i.e. only for
the �ner grid.
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Grid h Grid 2h

Halo Points of Grid h

Halo Points of Grid 2h

Halo Points

Grid Points

Figure 5: Interpolation Between FD Grids (1-D).

Halo Point of Grid h

Halo Point of Grid 2h

Grid Point

Grid h Grid 2h

F

D

E

E

E

1

2

Figure 6: Interpolation Between FD Grids (2-D).

9.2 Post-Processing Interpolation

An interesting option when trying to maximize modularity is to transfer all direct injection points �rst from
2h to h, and then obtain the missing information by post-processing this data on grid h. In 2-D, the cases
that need to be considered are:

- E1: Edge-points aligned with grid-lines from grid h

- E2: Edge-points not aligned with grid-lines from grid h

- F : Face-points

The distinguishing factor for points of type E1 is that information from the interior of grid h is readily
available and can be used to improve the interpolation order. Figure 7 shows some of the possibilities,
together with the interpolation weights. For the points of type E2 usual high order Lagrangian interpolation
schemes are employed. Figure 8 shows some of the possibilities, together with the interpolation weights.
Points of type F may be interpolated either via a weighted average of the surrounding edge-points, or by
treating them as points of type E1 with the extra information required obtained previously for the points of
type E2.

For a 2D cell information is `known' at 4 points, while 5 points need to be interpolated. However, in 3D
information is `known' at 8 points, while 19 points require interpolation. Based on this, the options for 3D
cases are to use a simple bi/trilinear interpolation or develop di�erent techniques. For example, for a E2

point (the blue point in Figure 10), the information needed to obtain the required value is obtained as a
combination of linear (red points) and high order (blue edges) interpolation.
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−15180270−609

Figure 7: Interpolation Factors for Edges of Type E1).

9.2.1 Interpolation Limiters

In order to avoid spurious oscillations or sharp changes in the high order interpolation due to Runge's
phenomenon, several limiters were implemented and tried.

• Barth-Jespersen limiter: This is a simple limiter where the maximum and minimum (Umax, Umin)
values from the closest points around the interpolated point are selected and then used to limit the
high order solution, Uh.

Ui = max(Umin,min(Umax, Uh)). (27)

• Radius of curvature limiter: Introduced by [34], this method constrains the high order solution with
the argument that the interpolated value is accurate as long as the radius of curvature of an interface
region is higher than 3 grid cells. It requires the calculation of a linear or low order interpolation, Ul.

Ui =

{
Uh if |Uh − Ul| < β∆x

Ul otherwise.
(28)

where β is heuristically chosen as β = 1/20.
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Figure 8: Interpolation Factors for Edges of Type E2.
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Figure 9: Interpolation Factors for Faces.

Figure 10: E2 Interpolation in 3D.

• Modi�ed radius of curvature limiter: Proposed by [35], this method attempts to overcome possible
discontinuities that can appear with the previous technique. A modi�cation is made to obtain a more
regular interpolation

Ui =

{
Ul + β∆x if |Uh − Ul| > β∆x

Uh otherwise.
(29)

• QMSL limiter: With the aim of using a simple and e�cient limiter algorithm, and based on the Flux
Corrected Transport technique, Bermejo[36] proposed the following method. First de�ne Umax and
Umin and then set,

Q+ = Umax − Ul ; Q− = Umin − Ul ; P = Uh − Ul. (30)
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The value of the interpolated point is de�ned as

Ui =


C = min(1, Q+

P ) if P > 0

C = min(1, Q−
P ) if P < 0

C = 1 if P = 0.

(31)

Ui = Ul + C(Uh − Ul) (32)

10 Model Problems

The interpolation schemes developed were implemented and tested in FDFLO. In the present section the
performance of these schemes is shown for some basic model problems.

10.1 2D Lamb Vortex

The so-called Lamb-vortex, centered at x, y = 0, is a classic testcase for vortical �ows. The unknowns are
given by:

u = u0 −
α

2π
yeφ(1−x

2−y2) ; v =
α

2π
xeφ(1−x

2−y2) ; p = −
( α

2π

)2 1

4π
e2φ(1−x

2−y2) (33)

and µ = 0 (i.e. no viscosity). For the particular case tested, the domain was given by −5 ≤ x, y ≤ 5,
and α = 1, φ = 0.5, c = 1, ρ = 1, and the grids were of size h = 0.125 and 2h = 0.250. The vortex was
propagated for T = 200 time units. Given that the domain is doubly periodic, the vortex should reappear
in the exact location as at time T = 0 after traversing the mesh twice.
Figure 11 shows the initial conditions for the mesh h2h, where the discretizations used are clearly visible.
Figures 12�13 show the pressure and velocity obtained using an 8th order spatial discretization and a 5th
order low-storage Runge-Kutta timestepping scheme. From left to right, the cases are: mesh 2h,mesh h2h
(i.e. mesh h inside mesh 2h) with usual bilinear interpolation, mesh h2h with cubic interpolation, and mesh
h. One can see that for the case with bilinear interpolation, running the case on the 2h mesh yields better
results than the h2h mesh, defeating the purpose of mesh re�nement. This should be a cause of alarm
if one considers complex �ow problems where vortices and other �ow structures will traverse grids with
di�erent mesh sizes. On the other hand, the cubic interpolation does yield results on the h2h mesh that are
demonstrably better than those on the 2h mesh, indicating the potential of the procedures developed.

Figure 11: Lamb Vortex: Initial Conditions, h2h Mesh.

12



Figure 12: Lamb Vortex: Comparison of Pressures,
2h, h2h Bilinear, h2h Cubic, h.

Figure 13: Lamb Vortex: Comparison of Velocity Magnitudes,
2h, h2h Bilinear, h2h Cubic, h.

10.2 2D Convergence Study with Stationary Lamb Vortex

In order to quantify the relative merit of the di�erent interpolation schemes, a series of convergence studies
were carried out. The same domain as before was used, but the boundary conditions were changed from
periodic to gliding wall. The right half of the domain was of size h, the left of size 2h. At the same time,
uniform grids of size h and 2h were run for comparison. A stationary Lamb-Vortex was set as the initial
condition. This is an exact steady solution, so the initial residual can be used to measure the convergence
of the schemes. A typical con�guration is shown in Figure 14.

Figure 14: Stationary Lamb Vortex: Typical Initial Con�guration.

Figures 15�18 show the convergence obtained for the 6th and 8th order solvers, together with di�erent
interpolation schemes. The notation is as follows: L2 denotes the L2 norm, LI the L∞ norm, P the pressure,
V the velocity, UNH and U2H the convergence on uniform grids of size h and 2h, and M00, M33, M43 the
cases of mixed h, 2h grids with simple bi/trilinear interpolation, cubic interpolation and quartic interpolation.
As expected, for the L2 norm the errors of the high order interpolation schemes fall between the values for
uniform grids of size h and 2h. This is not always the case for the L∞ norm. Furthermore, one can see
the serious negative e�ect on convergence of the bi/trilinear interpolation. The results show that the aim of
interpolation schemes that are balanced and appropriate to the spatial discretization while being local and
fast has been achieved.
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Figure 15: Stationary Lamb Vortex: L2 Convergence for 6th Order.

Figure 16: Stationary Lamb Vortex: L∞ Convergence for 6th Order.

Figure 17: Stationary Lamb Vortex: L2 Convergence for 8th Order.
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Figure 18: Stationary Lamb Vortex: L∞ Convergence for 8th Order.
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10.3 Immersed Cylinder

This classic testcase was added in order to show the e�ect of high-order interpolation for wake �ows. The
domain considered was −4 ≤ x ≤ 10, −2 ≤ y ≤ 2, with gliding wall boundary conditions at ymin, ymax,
prescribed uniform in�ow and prescribed pressure at out�ow. As can be seen from Figure 19, the mesh
consisted of 10 domains, with three levels of re�nement: ∆x = 0.100, 0.050, 0.025. The physical parameters
were set as follows: ρ = 1.0,v∞ = (1, 0, 0), µ = 0.01, c = 5, and the diameter of the cylinder was d = 1.0,
yielding a Reynolds number of Re = 100. A 6-stage, low-storage RK scheme was used to integrate in time
with a Courant-number of C = 0.4. The immersed boundary option was used with a spatial discretization of
6th order. The case was run with the usual, low-order bi/trilinear interpolation, the high-order interpolation
with and without the QMSL limitor and with a homogeneous �ne mesh of h = 0.025. The results obtained
for the latter one at T = 100 are shown in Figure 20. A number of station time history points were placed
in the �ow and the results recorded. Figures 21�22 show the values for the pressure, x- and y-velocities for
two stations. The most pronounced di�erence can be observed in the pressures and x-velocities where the
di�erences compared with the �ne mesh results are around 15% of the peak value. These di�erences are larger
for the points far away from the body. Furthermore, even the y-velocities show larger variations in time for
the high-order interpolation, indicating less dissipation. Note also that a slight change of frequency is incurred
when changing interpolation order. Due to the smooth behaviour of the wake the interpolated+limiter results
are very similar to the values obtained with the high order interpolation.

Figure 19: Cylinder: Grid System Used.

Figure 20: Cylinder: Results at Time T = 100.
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Figure 21: Cylinder: Station Time History for Station 5: x = (1, 0, 0).

Figure 22: Cylinder: Station Time History for Station 7: x = (10, 0, 0).

11 Complete Car Con�guration

As an example for a complete car con�guration, we consider the �ow past an Audi A4 as shown in Fig-
ures 23,25. The surface mesh provided, shown in Figure 23, consisted of nface=141,702 triangles and
npoin=70,767 points, with several water-tight but intersecting pieces. It was run trough the FECAD pre-
processor, which invoked the PRE-FDFLO grid generator, leading to ndomn=2,932 domains and a total
point count of npoin=236.3 Mpts, of which nactp=210.5 Mpts were actually updated (some points are not
updated are they are in nested grids or inside the car). The following physical and numerical setting were
employed:

- Density: ρ = 1.2 kg/m3

- Velocity: |v| = 30 m/sec

- Speed of sound: c = 300 m/sec

- Laminar viscosity: µ = 1.85 · 10−5kg/m/sec

- Smagorinsky constant: cs = 0.325

- Smagorinsky length: hs = 0.005 m

- Smallest cell/element size: hmin = 0.003 m

- Largest cell/element size: hmax = 0.470 m

- Spatial discretization: 4th order, central + AV

- Temporal integration: explicit 4th order (LS) RK

The run was performed on an older production machine based on Intel E5-2699v3 processors and 4x
FDR In�niBand, with 36 cores/node, using 128 domains and 16 cores/domain for a total of 2,048 cores,
i.e. about 100 Kpts/core. The results obtained after 30,000 timesteps are shown in Figure 24. The timings
obtained were 0.51 sec/timestep, i.e. 2.433e-9 sec/timestep/pt. While o� by a factor of 100 from the stated
goal of 4 msec/timestep, there is room to increase to core count and improve the network. We are presently
performing such runs, and will report the timings and results at the meeting.
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Figure 23: Audi A4: Surface Mesh Provided (STL)

Figure 24: Audi A4: Velocities After 30,000 Timesteps

Figure 25: Audi A4: Closeup of Mesh in Symmetry Plane for Windshield Region
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12 Conclusions

Simple interpolation schemes based on post-processing raw bi/trilinear halo-point transfer for nested carte-
sian grid systems have been developed. This allows to maximize modularity while preserving locality.
Results obtained for model problems indicate that the schemes improve the convergence rates and thus pre-
serve the overall accuracy of �nite di�erence codes with varying grid sizes.
The schemes were applied to complete car con�gurations, showing the expected overall performaned. It is
expected that with further code optimization and hardware development that aim over overnight LES runs
may be achievable in the near future.
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