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Abstract: Starting with a Boundary Representation (BRep) of the geometry of an aerospace
vehicle, an automated marching scheme is presented for generation of structured overset surface
meshes. First, a pre-processing step automatically generates discrete representations of the BRep
faces and BRep edges by tessellating in parameter space. Topological connectivity between the
discretized BRep edges is then established, followed by automatic grid point distribution on these
edges based on local turning angle, proximity to sharp geometric features, and prescribed maximum
stretching ratio and grid spacing. A set of initial curves for algebraic or hyperbolic marching on a
surface is then derived from the redistributed edge curves. A spatially-variable marching distance
together with a grid point distribution in the marching direction are automatically determined for
each initial curve. A set of overset surface meshes that covers the entire geometry is then obtained
by combining the surface meshes around the BRep edges, and the structured meshes derived from
the discretized BRep faces.
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1 Introduction

Structured overset grid technology has been successfully applied to a wide range of complex geometry con-
figurations [1, 2, 3, 4, 5, 6, 7]. The flow solution procedure [8, 9] is highly efficient compared to other grid
strategies especially in moving-body and rotational settings. However, the grid generation step typically
requires expert knowledge and significant manual effort to produce good quality grids. The overset grid
generation step consists of three parts: surface grid generation, volume grid generation, and domain connec-
tivity. It is widely recognized that surface grid generation is by far the most difficult task requiring laborious
human interaction and expertise [10, 11].

Overset structured surface mesh generation typically involves the following steps: (1) The surface domain
is decomposed into four-sided regions bounded by one, two, three, or four surface features such as sharp edges,
leading edge curves, and open boundaries. (2) Curves following these surface features are discretized with
a grid point distribution governed by multiple constraints. These include appropriate resolution of high
curvature regions and sharp convex edges, maximum prescribed grid spacings, and low stretching ratios in
each direction to keep truncation error in check. (3) Surface meshes are typically created using a combination
of algebraic (transfinite interpolation) or hyperbolic methods depending on the number of initial curves on
each surface domain.

Early efforts to reduce the manual work in generating overset structured surface meshes involves a script-
ing approach[12] which has several advantages. Geometry and mesh inputs such as maximum stretching
ratio and grid spacings can be easily parameterized. The entire process is recorded in a script, and is thus
repeatable. Mesh modifications are simply a minor edit of the script provided there are no topological
changes in the geometry. However, scripting also has disadvantages. Each new geometry requires significant
development time to build the initial script, and topological geometric changes also demand non-trivial extra
effort in script modifications. In order to utilize overset grid technology in increasingly complex and rapidly
changing geometries as in a design environment, it is clear that an automated surface mesh generation scheme



that is capable of quickly creating surface meshes on topologically distinct new geometries is needed.

The scheme described in this paper is based on earlier ideas on automation of structured overset surface
mesh generation around surface features or seam curves[13]. There are multiple improvements in the cur-
rent scheme over the earlier work. The current scheme begins with an analytic Boundary Representation
(BRep)[14] geometry definition while the previous work begins with a discrete unstructured surface triangu-
lation. The marching scheme in the current work is more flexible in conforming to geometric features since
it allows either algebraic or hyperbolic methods, while the previous scheme only allows hyperbolic marching.
For example, when marching from the root of a swept wing towards the wing tip, it is more appropriate
to use algebraic marching which follows the swept isoparametric lines which are typically also constant cur-
vature lines of the wing. In contrast, a standard hyperbolic method would generate grid lines orthogonal
to the wing root and not follow the local surface curvature. Grid point distribution in the current scheme
is automatically determined while it has to be manually prescribed in the previous scheme. The marching
distance is spatially variable and automatically determined in the current scheme while it is constant and
manually specified in the previous scheme. In the previous method, a singular point topology is applied at a
seam point, a vertex where multiple seam curves meet. In the current procedure, a non-singular patch grid
is constructed around a seam point to take solver limitations into consideration. A patch topology allows
an implicit solution procedure with a vertex-based scheme through the seam point rather than an explicit
boundary condition update as is imposed if a singular point topology is used.

The current work begins with a pre-processing step that converts the analytic BRep solids from a STEP
or IGES file into discrete representations for the BRep faces and edges. Details of this process are described
in Section 2. Extraction of an initial curve set from the BRep edges for use as starting curves for either an
algebraic or hyperbolic marching scheme is presented in Section 3. The algorithm used to determine the
choice of algebraic versus hyperbolic marching for a given initial curve is described in Section 4. Details of the
scheme for computing the variable marching distance, and grid point distribution in the marching direction
are provided in Section 5. The surface mesh generation procedure is presented in Section 6. This paper
will focus primarily on the decomposition of the surface geometry into appropriate overlapping quadrilateral
domains. A more sophisticated grid point distribution scheme with improved overlap between neighboring
meshes is deferred to a future paper. Test cases on application of the current scheme to various aerospace
conceptual design geometries are described in Section 7, followed by a summary and concluding remarks in
Section 8. For the remainder of this paper, BRep faces and BRep edges will be referred to simply as Edges
and Faces.

2 Geometry Definition Pre-processing

The current scheme assumes that the geometry definition is available as a BRep solid model described in
a STEP or IGES standard file. Access to the model topology and entities is accomplished through the
EGADS API which is a foundational component of the Engineering Sketch Pad (ESP) [15]. The EGADS
library contains a rich set of functions for interrogation and evaluation of the BRep geometry model which
has a dependency on OpenCASCADE for construction and standard file I0. Moreover, it is freely available
and downloadable under an open source license.

As a pre-processor to the automation scheme, discrete representations of various geometric entities are
generated from each solid. This part of the process is currently performed by a tool called egads2srf which
accepts three simple input control parameters for the grid cell attributes: the maximum dihedral angle
between adjacent cells, the maximum edge length of a cell, and the maximum deviation between the cell center
and the analytic geometry. Structured grid and function files generated by egads2srf are in PLOT3DI[16]
format, while unstructured triangulation grid and function files are in Cart3D[17, 18] format.

These files include the following:

1. A structured surface grid file containing an untrimmed structured patch for each Face based on tes-
sellation of the Face parameter space (directions indicated by u and v). An integer tag (iblank) at
each vertex is used to identify whether the vertex lies inside (iblank=0) or outside (iblank=1) of the
trimmed region (.uvx file, Fig.1a,b)

2. A curve grid file containing tessellated Edges (.cur file, Fig. 1c).
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Figure 1: Discrete geometry representation from pre-processing of solids from STEP files. (a) Structured
surface mesh patches from tessellation of u, v parameter space in global view. (b) Structured surface mesh
patches from tessellation of u,v parameter space showing blanking of vertices in trimmed regions. (c)
Structured curves representing tessellation of the Edges. (d) Unstructured surface triangulation where each
trimmed Face is shown in a different color.

3. A structured grid function file containing u,v parameter space values for each vertex in the .uvx file
(.uv file).

4. A structured grid function file containing the w,v parameter space values for each vertex in the .cur
file (.cuv file).

5. An unstructured surface triangulation containing the trimmed Faces (.i.tri file, Fig. 1d).

6. A topology file that contains the identification indices of the Faces adjacent to each Edge, as well as
the directional sense of the Edge on each associated Face. Under the BRep solid model framework,
each interior Edge is guaranteed to have exactly two adjacent Faces, one on each side of the Edge. The
directional sense of an Edge on a Face is the direction along an Edge where untrimmed geometry is
identified on the left side (Fig. 2).

3 Initial Curve Set Preparation for Grid Marching

The surface mesh generation automation scheme proposed for the current work involves algebraic or hyper-
bolic marching. For both cases, a mesh is created by marching from an initial curve. The first step is to
establish an initial curve set by determining the topological connectivity between the curves, followed by
placing an appropriate grid point distribution on these curves. These point-redistributed curves are then
trimmed and concatenated to form the initial curve set.



On processing a BRep solid, EGADS is able to ex-
tract information on the topological connectivity be-
tween the Edges. However, an independent topological
connectivity between the Edges stored in the .cur file
is established in the current work. This independent
step allows the possibility of starting from a set of dis-
crete geometry representation files (listed at the end of
the previous section) that is not necessarily created by
ESP. Each end point of each curve is coincident with
one or more other end points from other curves. The
vertex where multiple curve end points meet is called a
seam point (BRep node). The valence of a seam point
is defined to be the number of curve end points that
meet there. For each seam point, the valence and the
list of curve end points that meet at the seam point are
automatically determined. For each curve end point,
the identity of the associated seam point is then found.
Fig. 3 shows several valence 3 and 4 seam points.

Heuristic rules based on the attributes of the Edge
curves are used to determine the grid point distribution on these curves. Attributes considered include the
total curve arc length relative to the characteristic length of the solid, total and local curve turning angles.
The grid spacing at a curve end point is determined by whether it falls on a concave or convex sharp edge of
the geometry, as well as the concave/convex angle of the sharp edge. The resulting grid point distribution
needs to provide sufficient resolution in steep flow gradient regions which include high curvature locations
such as wing leading edges, as well as sharp convex features such as wing trailing edges. Details of the grid
point redistribution scheme are described in Ref. [19].

One of the most difficult steps in structured surface mesh gener-
ation is surface domain decomposition, the task of partitioning the
surface domain into quadrilateral regions for the creation of struc-
tured meshes. Sharp geometric features defined by some of the Edges
need to be captured by the surface meshes. For the overset grid ap-
proach, constraints on the surface meshes are not as severe as the
abutting grid approach since neighboring meshes are allowed to over-
lap arbitrarily. However, sharp surface features should still be re-
solved well by appropriate grid lines from neighboring meshes. The
current work follows a similar automated surface domain decompo-
sition strategy outlined in Ref. [13] except at the seam points.

Two groups of curves contribute to the initial curve set for al-
gebraic or hyperbolic marching. Curves in the two groups are con-
structed to guarantee 2 x Ny + 1 points overlap between neighboring
meshes where Ny is the number of fringe points at the outer and
hole boundaries of a grid where interpolation of dependent variables Figure 3: Seam points and their asso-
of the flow solution occurs. For example, Ny is set to 2 for a flow cjated curves with valence marked by
solver with a five-point differencing stencil which guarantees that integer label.
the first interior solution point is supported by such a stencil. The
first group is created by trimming each of the original redistributed Edge curves (Fig. 4a) away from the
seam points (Fig. 4b). The second group is formed by constructing an initial curve that straddles each seam
point. Let N, be the number of curves that meet at the seam point. From this set of curves, two are selected
to be concatenated to serve as the initial curve for constructing a marching grid from the seam point.

For N, = 3, a special test is designed to ensure appropriate grid topology near wing trailing edges in the
root and tip regions, as well as in other regions away from sharp corners. The angle between each pair of
curves ending at the seam point is computed. If the largest angle is greater than 120 degrees, the two curves
adjacent to that angle are concatenated (Fig. 5a). Otherwise, the two curves adjacent to the smallest angle
are concatenated (Fig. 5b).

Figure 2: Directional sense of an Edge relative to its
two adjacent Faces with the untrimmed geometry
on the left side of the sense arrow.




Figure 4: Construction of initial curve set for algebraic or hyperbolic marching. (a) Original curves. (b)
Curves derived from trimmed Edge curves. (c¢) Curves derived from concatenation of two appropriate curves
that meet at seam points.
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Figure 5: Concatenation of Edge curves for valence 3 seam points. (a) Largest angle > 120 degrees. (b)
Largest angle <120 degrees.

For N, = 4, the two that meet at closest to 180 degrees are selected to be concatenated to form the initial
curve at the seam point (Fig. 4c). The concatenation procedure also gives priority to curves that represent
sharp edges of the geometry. Note that at a typical seam point, not all curves meeting at the point belong
to sharp features. However, if they do, the resulting surface mesh marched from a seam point with N, < 4
could still capture all sharp features meeting at the point. It is recognized that this no longer holds true
when N, > 4. However, the current approach is automated and should produce mesh topologies that are no
worse than ones that are manually generated for these cases. We note further here that N, < 4 holds for the
vast majority of seam points encountered in typical aerospace vehicle geometries. The above construction
process implies that the total number of initial curves is the sum of the number of original Edge curves and
the number of seam points.

4 Determination of Marching Type and Direction

Starting with the initial curves, structured patches that follow constant u and constant v lines, and a reference
triangulation of the surface, we have two choices for marching from the curves to generate surface meshes in
the vicinity of the curves. The first follows the constant u or v lines of a Face adjacent to the initial curve, and
interpolates along the curves defined by the constant-uv surface. We term this method algebraic. The other
method is to use the curve as an initial front and solve the hyperbolic surface mesh generation equations [20]
to march the curve along the reference triangulation. Both methods produce a proper mesh, but the algebraic
method requires less computation. When the initial curve is lined up with either a constant-u or constant-v
contour, it is preferable to generate an algebraic mesh to maximize alignment of the computational mesh
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Figure 6: Marching from a curve attached to a Figure 7: An initial curve and adjacent Faces.
seam point. The curve is coincident with patch boundaries.

with constant parameter space lines which are also typically constant curvature lines. When the initial curve
cuts through both u and v contours, a special tie-break test is needed to determine whether a hyperbolic or
algebraic method is more appropriate.

It is important to note that this determination must be done for each curve/Face pair. It is possible (and
often necessary) for a curve to march algebraically onto a Face on one side and hyperbolically on the Face
on the other side. For trimmed edge curves, there are only two neighboring Faces and the determination is
simply independent for each curve/Face pair. However, for curves emanating from a seam point, two, three,
four or more neighboring Faces are possible. As noted earlier in Section 3, seam points of valence higher
than four are treated like a seam point of valence four. Each curve/Face pair is considered independently.
Once this independent determination is complete, each side of the curve is examined. If it is determined
that the curve must march onto each of the Faces on one side of the curve algebraically (See Fig. 6, side 1),
the determination is complete. However, if it is determined that hyperbolic marching is to be used for one
of the two Faces on the same side of the curve, then the entire curve is flagged for hyperbolic marching on
that side of the curve. A characteristic of this process is that marching onto these Faces must result in a
single grid emanating from the seam point curve. A consequence of this is the requirement that the resulting
meshes must match the number of points in the marching direction on each side of the curve.

To decide whether it is preferable to use the al-
gebraic method from a given initial curve onto a
neighboring reference Face, the variation in the u
and v values is computed. Let j and k be the in-
dex space representation of the discretized u and v
values on the Face. Here, it is of note that this varia-
tion is different for each neighboring Face for a given
curve. First, the minimum and maximum values of
u and v are computed for each curve/Face pair. If
the variation in v values is large across the curve, but
the variation in w is small (see Fig. 7), the curve is
closely aligned with a j index of the curve and is
flagged to be marched in the u or j direction. How-
ever, two possibilities arise for growing the mesh.
The mesh can be marched in the +j or —j direction
of the reference patch. To decide which of these is
the correct direction, the curve sense information
from the .topo file is used, where untrimmed geom-
etry lies on the left side of a directed Edge given by
the sense in the .topo file. Thus, an examination of the direction associated with the Edge/Face (curve/patch)
pair provides enough information to make this choice. Similar logic is applied when the variation in u is
large, but the variation in v is small.

If the variation of u and v on the curve is large compared to an adjacent Face’s u and v values, then there
are two possibilities. One is that the curve is making a large turn through the w, v representation (green
fuselage Face on Fig. 8). In this case, the curve is flagged for marching hyperbolically onto this patch. The
other possibility is that the curve must be going through the patch at an angle to the w,v contours (blue
wing Face on Fig. 8).

Figure 8: An initial curve at a wing/body intersection.
Curve is not aligned with constant u or v lines on the
wing and the body.



To march onto the adjacent blue Face, a further determination must
be made to see if algebraic meshing is preferable. To do this, we first
determine the marching direction on the Face using the Edge sense.
The result of this step is +u, —u, +v, or —v. The angle between
the curve direction, and the marching direction on each parent cell is
then computed at every point on the curve. If the variation in this
angle across the entire curve is less than 60°, the algebraic method is
selected (wing side). For larger variations, the hyperbolic method is
more appropriate (fuselage side). The result of these choices is shown
in a grid in Fig. 9.

The above procedure is used for all trimmed curves (group 1). Once
each trimmed curve is assigned algebraic or hyperbolic type along with
marching direction (+u, —u, +v, or —v for algebraic and + or — direc-
tion relative to curve direction for hyperbolic), this information can be
directly used to assign marching type and direction of the seam point
curves in group 2.

Figure 9: Mesh from an initial
curve at a wing/body intersection.

5 Determination of Marching Scheme Inputs

Automation of a marching scheme, whether algebraic or hyperbolic, requires the determination of an initial
spacing, marching distance, and a grid point distribution in the marching direction for each point on the
initial curve. For a hyperbolic method, automatic selection of boundary conditions and smoothing parameters

is needed. This section describes the methods used to determine these inputs automatically.

5.1 Initial Spacing Determination

The point distribution on the initial set of reference curves has been
assigned as described in Section 3. For a given curve in this set, each
end point is connected to at least one other curve since the valence
of any seam point is at least two or higher. The initial spacing for
marching away from a curve is then guided by the average of the end
point grid spacings of connected curves. Fig. 10 shows four initial
curves. For curve 2, the initial spacing in the marching direction is
taken from the average of the end point spacing at 1b from curve 1
and 3b from curve 3. This initial estimate is then corrected to assure
that a user-specified minimum number of points can fit within the
minimum marching distance over all points on the curve (see next
subsection). Where a minimum number of points does not fit, the
initial spacing is reduced.

5.2 Marching Distance Determination

Marching distance determination is dependent on the type of march-
ing due to the fact that algebraic marching is limited to stay on the
constant-u or v lines of the single Face that the initial curve is asso-
ciated with in the marching direction. Hyperbolic marching is free
to grow onto multiple neighboring Faces in any direction.
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Figure 10: Determination of march-
ing direction initial spacing from end
point spacing of connected curves.
Marching direction is indicated by

For algebraically marched curves, the distance from the curve point to the end of the associated Face in the
marching direction is considered to be a good starting estimate of the maximum possible marching distance.
To do this, a parent cell on each Face is found, and interpolation coefficients within that cell are determined
to identify the value of the constant u or v iso-parametric line to follow. This continues in the marching



direction (Fig. 11) until either a blanked cell is encountered or the end of the Face is reached. A blanked

cell may be present due to an inner loop cutting a hole in the Face.
As an example, Fig. 11 depicts a curve/patch pair. A point

(J.) along the initial curve belongs to the parent cell high-

lighted by its indices. To avoid large errors due to large ref-

erence cells, coefficients describing the location of the point in

this cell are computed. These coefficients are used to compute

the distance along the green arc to the cell boundary. March-
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Figure 11: Computing marching distance
on a Face along the 4+v direction from the
blue initial curve.

For a hyperbolically marched curve, the reference surface trian-
gulation is employed for the marching distance estimate since
the mesh is free to grow over any number of Faces on the sur-
face geometry. From a starting point on the initial curve, the parent triangle on the neighboring Face in the
marching direction (found when determining the marching direction) is used as the starting point. From
this triangle, a vector in the marching direction is used to walk from triangle to triangle accumulating the
distance along this arc. An example of this procedure is shown in Fig. 12 where Fig. 12(a) shows the starting
curve in green. A point on this initial curve is shown to be “walking” along the triangulation in blue. Fig.
12(b) shows the resulting tracks from all points along the initial curve. Note that when “walking” along the
triangulation, one must consider the possibility that the path may cross an edge or a vertex. Also note that
the marching direction must be updated along the path through each encountered triangle using the local
surface normal, allowing the path to traverse through a curved surface.

The “walking” procedure has three possible termination criteria. The first is that there is an end to the
triangulation. This should never be encountered for a closed solid. The second criterion is that a sharp edge
is encountered. All sharp edges are marked a-priori if the angle between the normals to the triangles on
each side exceeds a user specified threshold. It is recommended that this threshold be set to indicate large
or sudden changes in slope along the geometry. The third termination criterion is when the angle between
the initial marching direction and the final marching direction exceeds 90°. In other words, the track has
undergone a large change in direction.

Initial Curye

(b)

Figure 12: Computing marching distance along a triangulation. (a) Blue curve indicates path taken by
marching distance estimator along a triangulation from a point on the green curve. (b) Curves derived from
marching on a triangulation.



Fig. 12b shows the marching tracks for all points along an initial curve. The initial curve is the intersection
between the upper surface of the starboard wing and the fuselage. Due to the fuselage upper bulge, a large
number of points at the beginning of the curve (near the top of the figure) terminate from having undergone
a large change in marching direction. The same is true at the other end of the curve, but this time it is
because the curve has gone from the top of the fuselage to the other side of the fuselage. A number of tracks
terminate at the intersection of the fuselage and the rear portion of the port wing, while a number of tracks
closer to the leading edge portion of the wing march right onto the wing. This is due to a larger discontinuity
in slope between the fuselage and the rear portion of the wing as compared to the forward portion of the
wing and the threshold is set so that only the edges on the rear portion are considered sharp. Note that
the tracks that continue onto the wing are terminated by either the trailing edge or the boom due to sharp
edges.

5.3 Limiting and Smoothing the Marching Distance

There are several reasons to not use the full esti-

‘ ‘

1 3 : 3 — Initial Estimate 4
mated marching distance. One reason is that since o -0 Fraction of Iniia i
every reference patch is surrounded by initial curves 20— |a-a ;mé% o —

derived from Edges, it is not necessary to march
any initial curve the entire length computed by the

AAAANAANNNNN. AN

marching distance estimate. Doing so would create g 15~ 18 T

meshes with excessively redundant overlap. Thus, % - Lok VAR

this initial distance estimate is first trimmed by a 2 | TR ]

fraction (on the order of 0.4) before other consid- 8§20  ™F T

erations come into play as described later in this = | 125 8‘0 0 g

section. However, there are places where nearly the i &

entire estimated distance is needed due to the prox- 5T

imity to an opposing boundary. When the oppos- " !

ing boundary is close, the initial spacing needs to ‘ ‘ — ‘

be modified as described in the previous subsection. % 20 40 60 80
j-index along curve

Thus, the 0.4 fraction is only applied to cases where
the initial spacing is not modified.

Another limiter is necessitated by the fact that
blanking due to inner loops or termination due to
different criteria while walking along a triangulation can often produce marching distances with large varia-
tions (Fig. 12b). Thus, the ratio of the maximum marching distance to the minimum is limited to a given
value. A value of 1.5 to 2 seems reasonable, though a user can specify larger values when deemed necessary.
Fig. 13 depicts a case which shows where this kind of limiter is necessary.

Finally, if the variable marching distance is left as a limited estimate computed above, it may contain
discontinuities. To address this, a 3-point weighted average smoothing procedure is introduced where the
weights on an interior point and its two neighbors are 0.5 and 0.25, respectively. Fig. 13 shows the effect of
the smoother in an inset figure.

Figure 13: Estimate, limiting, and smoothing of vari-
able marching distance.

5.4 Determination of Grid Point Distribution in Marching Direction

The last step before creating surface meshes is to specify the point distribution in the marching direction.
This step must be performed for every point along all initial curves since marching distance varies from point
to point. To determine a distribution from a given point for a user-specified stretching ratio, pre-computed
marching distance, and pre-computed initial spacing, the hyperbolic tangent stretching function [21] is
utilized. First, the number of points (IVy) that satisfies the constraints for hyperbolic tangent stretching is
computed for the point where the marching distance is the largest on each initial curve. Subsequently, the
point distribution for every point along that curve is computed to fit Ny points within its marching distance.



6 Creation of Surface Meshes

For the algebraically marched surface meshes, each point on an initial curve is advanced (marched) along the
pre-determined direction (e.g. +u) along the reference Face. To do this, the cell containing the initial point
on the Face is determined and an approximation for the next point is computed in the marching direction
using the point distribution computed in the previous section. Linear interpolation within a cell is then
used to adjust the exact location of the point from one cell to the next. This procedure is repeated until
all Ny points have been created for all points on all curves. For the hyperbolically marched surface meshes,
the procedure presented in Ref. [20] is used to generate a surface grid on the reference surface triangulation
using the pre-computed point distributions.

The marching scheme described in the above sections takes care of domain decomposition around the
Edge curves resulting in surface meshes in the region around the surface features. One may be tempted
to extend the variable marching distance capability of the current scheme to ensure complete coverage of
the surface domain with appropriate overlap between neighboring meshes. Further consideration indicates
that it is more advantageous to allow the automatically generated surface patches from parameter space
tessellation to take over coverage of the region away from the Edge curves. Since the parameter space
isolines are typically surface curvature aligned, surface patches created from such isolines are superior in
resolving the surface geometry provided appropriate grid spacings are imposed.

As described in Section 2, the surface patches derived from parameter space tessellation carry a tag
at each vertex to indicate whether the vertex falls in a trimmed region of the geometry. Such a vertex is
labelled a ‘blanked’ vertex and can be disregarded in subsequent flow solver computations. The cells from
the parameter space surface patches with non-blanked vertices cover the surface regions not occupied by the
meshes created from the marching scheme. One could directly utilize these parameter space surface patches
with blanked vertices as surface meshes since the overset mesh approach supports such a blanking scheme
for flow solution computation. If a non-trivial fraction of the vertices on these surface patches are indeed
blanked, savings in grid points, and hence flow solution computational time, can be achieved by breaking up
these surface patches into smaller pieces where most vertices are not blanked. Such a grid point reduction
scheme, together with local grid refinement to match grid resolutions of neighboring meshes, are left as tasks
for future work.

7 Test Cases

The scheme described in the previous sections is applied to a number of aerospace vehicle test cases. At
the time of completion of this paper, about 80-90% of the automatically generated meshes for these test
cases are satisfactory. The remaining defective meshes are mainly caused by an inappropriate choice between
algebraic and hyperbolic marching, or an inappropriate determination of a local marching distance. Since
80-90% of the resulting meshes are usable, this is still a significant improvement in time and labor needed
over manually created meshes.

The first test case is a conceptual design rotorcraft called Quad with 30 Faces, 58 Edges, and 42 seam
points. Fig. 14a shows 30 surface meshes derived from tessellation of the Faces in the geometry. Vertices
that fall inside the trimmed regions of the geometry (iblank=0) are not displayed. Fig. 14b shows 100 surface
meshes generated from the decomposition and tessellation of the Edges and employment of an algebraic or
hyperbolic marching scheme. There are 130 surface meshes with a total of 166923 grid points. The total
surface mesh generation time took 46 seconds of wall clock time on a Linux workstation.

The second test case is a conceptual design rotorcraft called Vehicle B HECTR in airplane mode with
49 Faces, 100 Edges, and 63 seam points. Fig. 15a shows 49 surface meshes derived from tessellation of the
Faces in the geometry. Fig. 15b shows 163 surface meshes generated from the decomposition and tessellation
of the Edges and employment of an algebraic or hyperbolic marching scheme. There are 212 surface meshes
with a total of 286623 grid points. The total surface mesh generation time took 35 seconds of wall clock
time on a Linux workstation.

The third test case is a conceptual design rotorcraft called Tiltwing in airplane mode with 56 Faces, 133
Edges, and 85 seam points. Fig. 16a shows 56 surface meshes derived from tessellation of the Faces in the
geometry. Fig. 16b shows 218 surface meshes generated from the decomposition and tessellation of the Edges
and employment of an algebraic or hyperbolic marching scheme. There are 274 surface meshes with a total
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Figure 14: Automatically generated surface meshes for Quad. (a) Structured surface patches from tessellation
of Faces in parameter space where vertices in trimmed regions are blanked. (b) Structured surface meshes
generated from decomposition and tessellation of Edges.

(a)

Figure 15: Automatically generated surface meshes for Vehicle B in airplane mode. (a) Structured surface
patches from tessellation of Faces in parameter space where vertices in trimmed regions are blanked. (b)
Structured surface meshes generated from decomposition and tessellation of Edges.
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(a) (b)

Figure 16: Automatically generated surface meshes for Tiltwing in airplane mode. (a) Structured surface
patches from tessellation of Faces in parameter space where vertices in trimmed regions are blanked. (b)
Structured surface meshes generated from decomposition and tessellation of Edges.

of 256959 grid points. The total surface mesh generation time took 71 seconds of wall clock time on a Linux
workstation.

8 Summary and Conclusions

A scheme has been presented for the automation of overset surface mesh generation based on algebraic
and hyperbolic marching methods starting from a BRep (solid) model of the geometry. The pre-processing
step, using ESP software, creates discrete representations of the Brep Faces and Edges derived from a
parameter space tessellation. Attributes of the discrete representations are user-controllable via parameters
for maximum dihedral angle, edge arc length, and chordal deviation. The connectivity topology of the Edges
is automatically determined by storing Edge curve end points at the seam points. An initial curve set for
grid marching is derived from two sources: (1) Edge curves retracted away from the seam points, (2) curves
created by concatenation of two appropriate Edge curves at each seam point. Grid point distribution on
these curves is automatically performed based on consideration of curve arc length, total and local turning
angles, and local geometry behavior at the curve end points.

The marching scheme type (algebraic or hyperbolic) is determined by considering parameter space values
of the initial curve vertices, and the relative marching directions of each vertex on the initial curve. A
spatially-varying marching distance is computed by determination of surface arc lengths to the closest sharp
surface feature for the hyperbolic marching scheme, and by the surface arc lengths of adjacent Faces for the
algebraic marching scheme. Surface meshes created from the marching schemes cover the surface domain
around the Edge curves, and hence all geometric surface features. The remainder of the surface domain is
covered by the original automatically generated parameter space tessellation of the Faces. The combination
of these two sets of meshes forms an overset mesh system that covers the entire surface domain.

A number of test cases demonstrating the capability of the current scheme are presented. The surface
domain of each case is successfully decomposed into structured mesh regions with a grid point distribution
that is mostly satisfactory. Although the automatically generated surface domain decomposition is typically
different from and contains more meshes than that created manually by an expert, the automated process is
highly efficient. All test cases presented here are completed in 0.5 to 1.25 minutes on a desktop workstation,
compared to about one to two days of wall clock time if these meshes are generated manually.

A number of improvements are still needed before the proposed scheme could be used as a production
tool. As indicated earlier, about 10-20% of the automatically generated meshes are currently unsatisfac-
tory. Robustness in the choice of algebraic versus hyperbolic marching could be further enhanced. The
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automatically determined spatially variable marching distance may be inappropriate in some cases. A more
sophisticated estimate based on concavity/convexity of the initial curve in the marching direction would
help improve the distance estimate. The grid point distribution between neighboring meshes could be made
more compatible in some situations. The current scheme made no attempt to optimize the set of meshes
obtained by Face tessellation, resulting in excessive overlap and un-used grid points in some places. A simple
projection and repartitioning step could provide further blanking or removal of unneeded grid points from
these meshes. Faces with very small Edges, such as those on finite thickness trailing edges, would result in
mesh overlap in the middle of the thin Face under the marching scheme approach described in this paper.
By combining with an algebraic transfinite interpolation scheme approach as described in Ref. [19], such
overlaps can be avoided, allowing a more implicit solution computation process. All of these concerns are
planned to be addressed in a future paper.
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