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Abstract: Shockwave/boundary-layer interactions (SBLI) are an important design consideration
for many aeronautical flows, including supersonic engine intakes and transonic wings. In many
simulations of these phenomena span-periodicity is assumed, neglecting complex flow phenomena
resulting from physical flow confinement. In this paper 3D SBLI with sidewall confinement effects
are simulated for laminar and transitional boundary layers, in the automatic source code generation
framework OpenSBLI. An incident shock of wave angle 31.6◦ impinges on a laminar boundary layer
for a Mach 2 inlet. The incident shock interacts with both the sidewall and bottom wall boundary
layers, causing large regions of flow reversal. A laminar base flow is obtained, which is then forced
to transition by the introduction of upstream disturbances. A 6th order Targeted Essentially non-
Oscillatory (TENO) scheme is used for shock capturing. OpenSBLI generates code in the domain
specific language of the Oxford Parallel Structured software (OPS), which is then translated to
a range of parallel programming paradigms. All computations were performed on multi-GPU
configurations of NVIDIA P100/V100 GPUs.
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1 Introduction: shockwave/boundary-layer interactions
The study of shockwave/boundary-layer interactions (SBLI) is important in the context of aeronautical
design, with common applications including but not limited to: transonic aerofoils, supersonic engine intakes,
and over-expanded nozzles [1]. SBLIs have been an active area of research for the past 70 years [2]. The
review by [2] highlights the need for an improved understanding of unsteady shock motion and complex
three-dimensional (3D) effects. In the two decades since that review, significant improvements have been
made in the available computational power, which now enables unsteady 3D SBLI effects to be investigated
numerically. Shock interactions with laminar boundary-layers are of interest because they can provide
information on shock-induced transitions to turbulence. A common starting point for numerical study of
shock induced separation of a laminar boundary-layer is the work by [3], in which 2D simulations were
performed for SBLI with Mach numbers ranging from 1.4 to 3.4. Based on the experiments of [4], the
numerical results were largely in good agreement with experimental values despite an over estimation of
the size of the separated region. This discrepancy may be due to 3D effects in the experiments that were
not present in the 2D simulation. The parameters influencing the length of the separation bubble were
investigated, with a linear scaling of the length with increasing shock strength observed. A recent review
of this study by [5] examined some of the issues with the original work via 2D direct numerical simulation
(DNS), notably the need for a large integration time for a fully developed separation bubble.

The review by [1] discusses the need for better understanding of three-dimensional effects for SBLIs.
Central to this aim is the addition of sidewall effects that are present in most realistic geometries, and the
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need for more extensive parametric studies to investigate whether current findings remain valid at higher
Reynolds numbers. Internal flows contain substantial complexity, as multiple shocks interact and reflect
between the walls of the enclosed environment. At the corner between solid walls conical shocks are believed
to form and interact with the initial incident shock [6]. The presence of a sidewall is known to cause a curving
of the incident shock compared to quasi-2D periodic cases, and can strengthen the shock and corresponding
central separation bubble [7].

A recent numerical study [7] performed an LES for a turbulent SBLI with sidewall effects at Mach 2.7. In
addition to the central separation region on the bottom wall, two smaller corner separations were observed.
Between the regions of corner separation and central separation, a region of attached flow was seen on both
sides. By reducing the aspect ratio from four to one a shift upstream of the separation and reattachment
points of the central separation was observed compared to the quasi-2D results. The length of the separation
bubble was increased by 30% compared to the quasi-2D results, and a curving of the incident shock was seen.
Interaction between the incident shock and the sidewall boundary-layer caused three-dimensional effects for
the central separation that are not present in quasi-2D studies. Notably near the sidewall, the incident shock
is weakened from compression waves resulting from the shock-induced thickening of the sidewall boundary-
layer. Further away from the wall the main shock becomes curved and is strengthened. Due to the increased
susceptibility of laminar boundary-layers to separate, 3D SBLI of laminar boundary-layers with a sidewall
are expected to exhibit much larger regions of separation compared to the turbulent case.

A detached eddy simulation (DES) of a full wind tunnel configuration with turbulent boundary-layer
was performed by [8]. It was observed that the presence of sidewalls reduced the effective section of the
wind tunnel geometry, and led to a strengthening of the main interaction. Strong fluctuations were found in
the corner regions, and a low frequency motion of the reflected shock was observed. Wall-modelled LES of
oblique SBLI with turbulent boundary-layers was performed by [9], to study confinement effects present in
rectangular duct SBLIs. Strong three-dimensionality was seen in the mean separation due to the confinement
effects, and a larger separation bubble was observed relative to a span-periodic 3D case. A train of reflected
oblique shocks was captured, causing secondary separation on the upper surface of the domain.

Several experimental studies have been performed to investigate sidewall effects on SBLIs, which often
include the use of flow controls to reduce the onset and extent of the separation. The work of [10] studied
corner flows in rectangular supersonic inlets for Mach numbers of 2.0 and 2.75. These exploratory experiments
used wedges of 6◦ and 10◦ to generate the incident shock, and noted the difficulty there is in matching
simulation and experiment in this area. Recirculation in the corner region was observed to move upstream
and form secondary shocks that interacted with the main shock, and in several configurations unstart was
observed. They noted that cases with more moderate separation were better suited to computational fluid
dynamics (CFD), as disturbances would not propagate upstream to the leading edge; reattachment would
also occur more promptly to avoid separation induced issues with outflow boundary conditions.

Experimental studies [6],[11], have investigated turbulent oblique SBLI within rectangular channels at
Mach 2.5. The aim of the experiments was to observe and manage the onset and magnitude of the corner
separation. It was observed that three-dimensional effects were not confined to corner regions, since oil
streak patterns identified three-dimensionality throughout the channel. The shape and size of the central
separation region was altered significantly from a quasi-2D configuration, a feature that was most prominent
for exaggerated corner separations. Conical shocks emanating at the onset of corner separation affected the
adverse pressure gradient felt in other regions of the flow, further highlighting the shortcomings of quasi-
2D (span-periodic) studies of SBLI. Various control methods have been applied in the corner region in an
attempt to suppress the three-dimensionality introduced to the flow by corner separation. The work of [12]
used wind tunnel experiments to assess the impact of rectangular vortex generators on regions of corner
separation. For a Mach 1.4 inlet, the experiments studied the interaction of a turbulent boundary-layer with
a normal shock-wave. Vortex generators were shown to be effective at reducing the observed separation in
the corner region, but large regions of separation remained in the centre of the duct.

1.1 Code generation and domain specific languages
Scientific codes are often developed over several decades, containing significant portions of legacy code
that can be incompatible with emerging computational architectures and modern software practices. Codes
written for conventional CPU nodes with MPI are often difficult to port to GPU and many-core accelerators,
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requiring non-trivial development and validation efforts. In addition to the insight into laminar SBLI with
confinement effects, the present work demonstrates the progress made in the development of OpenSBLI [13]
[14], a Python-based source code generator for scientific applications. OpenSBLI is a platform to generate
code to solve systems of partial differential equations via finite-difference methods on structured meshes,
starting from an easy to use high-level Python interface. Although OpenSBLI is designed to be able to
handle a wide range of differential equations, its main application to date has been solving the compressible
Navier-Stokes equations. OpenSBLI takes user specified equations, expands and discretizes them according
to the selected numerical schemes, outputting a C code with all of the components required to solve the
problem.

The C code is written in the domain specific language (DSL) of the Oxford Parallel Structured (OPS)
software library [15], that takes a base sequential code and produces parallel codes for a variety of common
parallel programming paradigms. The coupling of OpenSBLI with OPS is known as a ‘separation of concerns’:
the physical problem and numerical algorithms to solve it are separated from the parallel implementation.
The benefit of such a modular approach is to avoid the time consuming and error prone process of code
parallelization that can better be handled by teams with greater experience in computer science disciplines;
freeing up time for the researcher to focus on the physical problem. Additionally, the modular design allows
for modern and upcoming computational architectures to be fully exploited without large re-writes of the
total code base. Other examples of DSLs include Pluto [16], Mint [17], and Devito [18], however unlike
OPS these are often restricted to a single computational platform. OPS generates code for MPI, OpenMP,
MPI+OpenMP, CUDA, OpenCL and OpenACC, plus MPI versions for multi-GPU clusters.

1.2 Outline of this study
In this paper 3D features of oblique Mach 2 SBLI are investigated for laminar boundary layers with sidewall
confinement effects. Disturbances are added to the laminar base flow through blowing/suction applied on the
bottom and sidewalls separately. The disturbances trigger a transition to turbulence, with a corresponding
reduction in the extent of the shock-induced reverse flow. Section 2 introduces the compressible Navier-Stokes
equations in non-dimensional form, and describes the low-dissipative Targeted Essentially non-Oscillatory
(TENO) schemes used for the 3D SBLI. TENO schemes potentially represent a significant improvement over
the classic Weighted Essentially non-Oscillatory (WENO) schemes. To motivate the choice of TENO schemes
for low-dissipative shock capturing, the end of section 2 applies a selection of WENO/TENO schemes to the
turbulent 3D Taylor-Green vortex problem. Temporal evolution of integrated enstrophy is shown for each of
the shock capturing schemes, compared to a non-dissipative central scheme and a reference result. Section
3 presents a brief overview of OpenSBLI and the OPS code that it generates; full details of the code design
and implementation can be found in [13], [14]. Single node runtime performance of the OPS code is given for
CPU and GPU. In section 4 the 3D SBLI problem is introduced, with discussion of the computational set-up
and sensitivity to grid refinement. Section 5 looks at the structure of the laminar 3D SBLI with sidewall
effects, with comparison to a quasi-2D span-periodic configuration. The laminar base flow with sidewalls is
then tripped and transitions to turbulence in section 6, to investigate the effect localised disturbances have
on the stability of the laminar base flow. Upstream disturbances are amplified by the regions of flow reversal
and lead to transition further downstream. A series of hairpin vortices develop as the flow transitions, which
merge and form a banded pattern of high velocity streamwise streaks. In the case of disturbances added
only to the sidewall, the sidewall separation also showed transition, while the central separation remained
laminar.

2 Numerical methods

2.1 Governing equations
The application of OpenSBLI to date has been for aeronautical fluid flow problems, solving the compressible
3D Navier-Stokes equations with finite-difference methods. Despite aeronautics being the main research
interest of the authors, OpenSBLI is also capable of generating finite-difference codes for other applications;
the core design of OpenSBLI aims to be a general code-generation platform for computational science. In
this work OpenSBLI focuses on the compressible Navier-Stokes equations, specifically on supersonic flow
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physics that requires numerical shock-capturing schemes. OpenSBLI uses numerical indices to distinguish
variables, for example the Cartesian coordinate base (x, y, z) and standard velocity components (u, v, w) are
taken to be (x0, x1, x2), and (u0, u1, u2) respectively.

The governing compressible Navier-Stokes equations are given in non-dimensional index form with density
ρ, pressure p, temperature T , and velocity components uk as

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0, (1)

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk + pδik − τik) = 0, (2)

∂

∂t
(ρE) +

∂

∂xk

(
ρuk

(
E +

p

ρ

)
+ qk − uiτik

)
= 0, (3)

with heat flux qk and stress tensor τij defined as

qk =
−µ

(γ − 1)M2
∞PrRe

∂T

∂xk
, (4)

τik =
µ

Re

(
∂ui
∂xk

+
∂uk
∂xi
− 2

3

∂uj
∂xj

δik

)
, (5)

where Pr, Re and γ are the Prandtl number, Reynolds number and ratio of heat capacities respectively.
Unless specifically stated, temperature dependent dynamic viscosity µ (T ) is given by Sutherland’s law

µ (T ) = T
3
2

(
1 + Ts

T∞

T + Ts
T∞

)
, (6)

with reference and Sutherland temperatures taken to be T∞ = 288.0K and Ts = 110.4K. For a freestream
Mach number M∞, pressure and local speed of sound are defined as

p =
1

γM2
∞
ρT, a =

√
γp

ρ
. (7)

2.2 High-order shock capturing schemes
Traditional approaches to shock-capturing include total variation diminishing (TVD), monotonic upstream-
centred scheme for conservation laws (MUSCL), and the family of essentially non-oscillatory (ENO) schemes.
The past two decades has seen the emergence of more sophisticated methods with superior shock-capturing
properties, addressing some of the issues with traditional schemes. The work by [19] gave a comparison of
TVD, MUSCL, and ENO, to an early version of a weighted essentially non-oscillatory (WENO) scheme. It
was observed that the TVD scheme using a Van-Leer Harmonic limiter added large amounts of numerical
diffusion. The MUSCL scheme produced anomalous results, including low frequency oscillations induced
downstream of the shock. Better agreement with reference results was obtained via the ENO scheme, but
the best shock-resolving performance was obtained by a 5th order WENO formulation.

A more recent review of high-order shock capturing methods [20] was motivated by the need to resolve
highly shocked unsteady rocket launch flows. The aim of the review was to replace the existing 2nd or-
der MUSCL scheme within the Launch Ascent and Vehicle Aerodynamics (LAVA) finite difference code,
with a modern alternative. Comparison was made between central finite-differencing with artificial dissipa-
tion (Central-AD), localized artificial diffusivity (LAD), and weighted essentially non-oscillatory (WENO)
schemes. The 6th order Central-AD was the computationally cheapest approach, comparable to the cost of
the existing MUSCL scheme while offering better spectral resolution. Despite being an attractive option due
to the cheap cost, Central-AD performed poorly compared to the other schemes, and large oscillations were
still present across flow discontinuities. LAD schemes work by introducing local grid-dependent artificial
diffusion through transport coefficients, smoothing out discontinuities in the flow. These methods obtain
good spectral resolution for turbulent flows, and were found to be a credible option for flows containing weak
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shocks. Their performance over strong shocks however was found to be poor, with significant numerical
oscillations observed; both Central-AD and LAD were inferior to the more robust WENO schemes.

Shock capturing methods introduce excessive levels of numerical dissipation, making them a poor choice
for resolving small scale structures in transitional and fully turbulent flows. To obtain similar resolution
to a non-dissipative scheme, excessively fine grids are required. These large grids are impractical for direct
numerical simulation (DNS) and severely limit the scale of the problem that can be tackled. Hybrid methods
pair a non-dissipative scheme with shock-capturing applied only in areas of high gradients, reducing the
numerical dissipation that is introduced into the flow field. While these methods are widely used, care has to
be taken with the choice of shock-sensor, and tuning may be required between different physical problems.
Significant efforts have been made to reduce the numerical dissipation of the underlying shock-capturing
schemes, such as the improved WENO-Z scheme [21], [22]. Targeted Essentially non-Oscillatory (TENO)
schemes [23], [24], aim to improve upon the existing WENO schemes via a discrete stencil selection method
and a physically motivated scale separation weighting procedure. TENO schemes are selected to perform
the simulations in this paper, owing to the need for resolving a forced transition to turbulence of a laminar
separation bubble. The levels of numerical dissipation induced by the scheme are compared to existing
WENO schemes for a 3D Taylor-Green vortex turbulent problem at the end of this section. An overview
of flux reconstruction schemes are given in the context of a TENO scheme applied to the compressible
Navier-Stokes equations (1), where the reconstruction is performed in characteristic space to further reduce
numerical oscillations around shocks. Details of the WENO implementation in OpenSBLI is omitted; full
details can be found in [14].

2.3 Flux reconstruction
A brief overview of flux reconstruction methods is given in this section, in the context of WENO/TENO
schemes. The following is simplified to a 1D advection equation, but it easily extended to the system
of equations in (1), where the procedure is applied for each component of the system. Finite-difference
WENO/TENO methods have lower computational cost scaling than in finite-volume [25], as the reconstruc-
tion can be applied for each dimension of the problem independently. For a simple 1D hyperbolic equation
of the form

Ut + f(U)x = 0, (8)

the flux term f(U)x at each discrete grid point xi can be approximated by computing a flux reconstruction
over the half-node locations [xi− 1

2
, xi+ 1

2
] with grid spacing ∆x such that

∂U

∂t
+

1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
= 0. (9)

The full numerical stencil for a WENO/TENO scheme is constructed from a convex combination of lower
order candidate stencils, as shown in Figure 1. Non-oscillatory behaviour is obtained by measuring the
smoothness in each candidate stencil, and assigning it a weighting ωr in the final reconstruction. Fluxes
at the half-node locations fi+ 1

2
and fi− 1

2
are reconstructed as a weighted sum of essentially non-oscillatory

(ENO) interpolations over a set of r candidate stencils

f̂i+ 1
2

=

K−3∑
r=0

ωrf̂
(r)

i+ 1
2

, (10)

where f̂ (r)

i+ 1
2

are the classic ENO interpolations given in [25], and ωr are the non-linear weights satisfying the
conditions

ωr ≥ 0, and
K−3∑
r=0

ωr = 1. (11)

The formal accuracy of the scheme K results in three and four candidate stencils for the fifth and sixth order
TENO schemes respectively. Flux splitting is applied by summing upwind/downwind biased reconstructions
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f̂ = f̂+ + f̂−, using the well known local Lax-Friedrichs splitting method

f±(U) =
1

2
(f(U)± αU) , (12)

for a locally evaluated wave-speed α over the full numerical stencil. The negative flux contribution is
obtained by reflecting the stencils in Figure 1 about the half-node reconstruction point xi+ 1

2
. The next

section describes how the non-linear weights ωr are calculated, and the differences TENO has to conventional
WENO reconstructions.

2.4 Targeted Essentially non-Oscillatory (TENO) schemes

i-2 i-1 i i+1 i+2 i+3

i+1/2

𝑆"

𝑆#

𝑆$

𝑆%

Figure 1: Staggered candidate stencils for TENO schemes, adapted from [23].

TENO schemes differ from WENO in three fundamental ways: the staggered ordering of candidate stencils
as in Figure 1, the complete removal of candidate stencils deemed to be non-smooth via a discrete cut-
off function, and the modified non-linear weights, optimized for low numerical dissipation. The stencil
staggering is claimed to reduce the number of candidate stencils that are crossed by a discontinuity [23],
helping to enforce the underlying principles of the base ENO method. In the standard WENO formulation
each candidate stencil is given a non-linear weighting, with candidate stencils crossing discontinuities given
a low, albeit non-zero, weight. TENO schemes abandon this approach in favour of a discrete cut-off function
that discards candidate stencils completely from the flux reconstruction if they are deemed to be sufficiently
non-smooth. Candidate stencils that are considered smooth are included in the reconstruction with their ideal
linear weight to further reduce numerical dissipation. In reference to Figure 1, the 5th order reconstruction
uses candidate stencils {S0, S1, S2}, and the 6th order scheme uses {S0, S1, S2, S3}. The non-linear weights
of [25] are reformulated with ideal weights dr for a scheme of order K to be

ωr =
drδr∑K−3
r=0 drδr

, (13)

where δr is a discrete cut-off function of the form

δr =

{
0 if χr < CT

1 otherwise

for a tunable cut-off parameter CT . The smoothness measures χr are the same as the weight normalization
process in WENO

χr =
γr∑K−3
r=0 γr

, (14)
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comprised of the WENO-Z [21] inspired form of non-linear TENO weights [23] given by

γr =

(
C +

τK
βr + ε

)q
, r = 0, . . . ,K − 3. (15)

Polynomial smoothness indicators βr are unchanged from the standard Jiang-Shu formulation [26], and are
given explicitly for the TENO stencils of Figure 1 in [23]; the small parameter ε ∼ 10−40 is used to avoid
division by zero. A global smoothness indicator τK measures smoothness over the full numerical stencil, and
is given for 5th and 6th order TENO schemes as

τ5 = |β0 − β2|, (16)

τ6 = |β3 −
1

6
(β0 + β2 + 4β1)|. (17)

One feature of the TENO schemes is the optimization of the parameters C and q within the non-linear
weights, and the tunable cut-off parameter CT found in the discrete weight selection function (2.4). The
parameters C and q control the levels of dissipation invoked by the non-linear weight, and are based on
physically-motivated scale-separation mechanisms [23]. TENO schemes take the values of q = 6 and C = 1,
which was shown to significantly enhance the discontinuity detection capability of the scheme [23]. CT
meanwhile is the parameter that determines whether a given candidate stencil is rejected or contributes
to the flux reconstruction. Lower values of CT are suitable for compressible turbulence simulations where
minimal numerical dissipation is desirable, but this comes at the cost of increased spurious oscillations around
shock-waves. In the work of [23] an optimization process was performed, with the recommended optimal
values of CT for 5th and 6th order TENO schemes stated to be 1× 10−5 and 1× 10−7 respectively.

2.5 Characteristic reconstruction for systems of equations
Multi-dimensional problems are solved by applying the TENO reconstruction procedure component by com-
ponent, and then in each spatial dimension independently. While the method can be applied to either a
primitive or conservative formulation of the governing equations (1), reduced oscillations around discontinu-
ities can be obtained if the equations are first transformed into characteristic space [20]. For solution and
flux vectors U and f(U) of size m for the system of equations (1), there exists an eigensystem to decompose
the equations into characteristic space. For a set of m eigenvalues

λ1(U) ≤ · · · ≤ λm(U), (18)

with a set of independent eigenvectors r(U) that form the columns of the right eigenvector matrix

R(U) = (r1(U), . . . , rm(U)) , (19)

the Jacobian of the system can be diagonalised such that

R−1(U)f ′(U)R(U) = Λ(U). (20)

To perform a reconstruction on the half-node location xi+ 1
2
, the matrices R(U), R−1(U) must be evaluated

at an averaged state using either simple or Roe-averaging; for this study Roe-averaging is used throughout.
Each component of the split form of the flux (12) can be transformed into characteristic space by multiplying
it by the averaged left eigenvector matrix R−1(Ui+ 1

2
). For characteristic systems the wave-speed α in (12)

is taken for each component to be the maximum eigenvalue (18), evaluated over the full numerical stencil
in Figure 1. Having formed the full flux reconstruction in characteristic space, the flux is transformed back
to physical space by multiplying it by the averaged right eigenvector matrix R(Ui+ 1

2
). The final step is to

build the difference approximation as in (9)

1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
, (21)
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where f̂i− 1
2
would have been evaluated from the neighbouring grid point, and the flux contains the summed

upwind/downwind contributions
f̂i+ 1

2
= f̂+

i+ 1
2

+ f̂−
i+ 1

2

. (22)

2.6 Viscous terms and time advancement
Viscous terms of the compressible Navier-Stokes equations defined in (1) do not require a special treatment
with WENO/TENO, and can simply be computed with standard central differencing. To improve numerical
stability the Laplacian terms are expanded; one-sided derivatives are used as a boundary closure at all
domain boundaries aside from periodic. The one-sided derivative formulation is that of [27], with the
derivative evaluation at the first four points at domain boundaries replaced by alternative weightings. The
central differencing inside the domain is kept at fourth order in this study to match the fourth order of the
one-sided boundary treatment; OpenSBLI is capable of generating higher order central schemes as required.

Large-scale direct numerical simulation (DNS) of the compressible Navier-Stokes equations has consider-
able memory requirements, making low-storage time-advancement schemes an attractive option. OpenSBLI
currently has two low-storage explicit time-stepping schemes available, a standard 3rd order Runge-Kutta
scheme described in [13], and a strong stability preserving (SSP) version designed for flows containing dis-
continuities. The SSP version is a 3-stage 3rd order Runge-Kutta scheme in the low-storage form proposed
by [28], requiring only two storage registers per equation. For an m-stage scheme, time advancement of the
solution vector u from level un to un+1 is performed at stage i = 1, . . . ,m such that

du(i) = Aidu
(i−1) + ∆tR

(
u(i−1)

)
, (23)

u(i) = u(i−1) +Bidu
(i), (24)

un+1 = u(m), (25)

for a constant time-step ∆t, initial conditions u(0) = un and du(0) = 0, and residual R(u(i−1)). The constants
Ai, Bi are taken to enforce the SSP condition as introduced in [29].

2.7 Scheme comparison: 3D Taylor-Green vortex
Conventional shock-capturing schemes introduce excessive levels of numerical dissipation, making them un-
suitable for resolving small-scale turbulent structures. To demonstrate the effect numerical dissipation has
on the accuracy of a solution, the 3D Taylor-Green vortex problem was simulated for a selection of shock-
capturing schemes present in OpenSBLI. Results were compared to a non-dissipative 4th order central
difference scheme, and high-resolution spectral reference data [30]. Problem specifications are taken from
[31], solving the compressible Navier-Stokes equations on a domain of size 0 ≤ x0 ≤ 2πL, 0 ≤ x1 ≤ 2πL, and
0 ≤ x2 ≤ 2πL. Periodic boundary conditions were applied in all directions. The domain was initialised as

u0(x0, x1, x2, t = 0) = sin
(x0

L

)
cos
(x1

L

)
cos
(x2

L

)
, (26)

u1(x0, x1, x2, t = 0) = − cos
(x0

L

)
sin
(x1

L

)
cos
(x2

L

)
, (27)

u2(x0, x1, x2, t = 0) = 0, (28)

p(x0, x1, x2, t = 0) =
1

γM2
+

1

16

(
cos

(
2x0

L

)
+ cos

(
2x1

L

))(
2 + cos

(
2x2

L

))
. (29)

Reynolds, Prandtl and Mach numbers were set to Re = 1600, Pr = 0.71, and M = 0.1 respectively; the ratio
of heat capacities was taken to be γ = 1.4. The reference quantities L, uref and ρref were set to 1.0, and the
reference temperature Tref was evaluated using the equation of state (7).
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The simulation was performed on a 2563 uniformly spaced grid, with a non-dimensional time-step ∆t =
8.4625× 10−4 [31]. The integral of enstrophy is evaluated during the simulation as in [31] such that

ε =
1

ρrefΩ

∫
Ω

1

2
ρ

(
εijk

∂uk
∂xj

)2

dΩ, (30)

where Ω is the entire volume of the domain and εijk is the Levi-Civita function.
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Figure 2: Temporal evolution of enstrophy for the 3D Taylor-Green vortex problem on 2563 grids. The
reference solution is the 5123 spectral result from [30].

Figure 2 shows the resolving ability for a range of WENO/TENO schemes compared to the non-dissipative
central scheme. The standard 5th order WENO-JS scheme of [25] severely underestimates the enstrophy
curve, with the peak enstrophy reaching only about half of the reference solution. The WENO-Z schemes
of [21] offer a substantial improvement over WENO-JS of equal order; the different formulation of the non-
linear weights gives reduced numerical dissipation for a negligible increase in computational cost [22]. Both
the 5th and 6th order TENO schemes were less dissipative than even the 7th order WENO-Z scheme, with
the 6th order TENO scheme only underestimating the enstrophy peak by around 10% compared to the
non-dissipative central scheme. The computational cost of the TENO schemes is ∼ 15% greater than the
equivalent order WENO, owing to the evaluation of discrete cut-off functions (2.4) for stencil selection.

While the performance of the TENO schemes for a turbulent test case is much improved from WENO
formulations, they still lag behind the non-dissipative scheme. Further reduction in the induced numerical
dissipation could be achieved via the use of a Roe-flux instead of local Lax-Friedrichs flux splitting, or
with TENO schemes of order higher than 6 [24]. Hybrid methods, blending a non-dissipative scheme to
a shock-capturing scheme, are still preferable for the reduction of numerical dissipation for fully turbulent
problems. For simplicity the 6th order TENO scheme is selected to perform the simulations in this paper, as it
offers sharp shock-capturing ability and greatly reduced numerical dissipation compared to more established
schemes.

3 Code generation & domain specific languages
In this section a brief overview of the Python-based source-code generator OpenSBLI [13], [14] is given,
demonstrating how code generation techniques can be paired with a domain-specific language to solve sci-
entific problems. Users of OpenSBLI provide a high-level Python script containing the equations they wish
to solve, using the numerical schemes and boundary conditions made available to them. Section 3.1 shows a
cut-down version of one of these problem scripts, showing the steps required to solve the continuity equation.
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Computations to be performed are segregated into computational kernels. An example of an OPS kernel is
given in section 3.2 and the corresponding parallel execution call is shown in section 3.3. Finally, the ability
of OPS to generate code compatible with different architectures in demonstrated in section 3.4, with single
node performance for a 3D SBLI case shown for CPU and GPU systems.

3.1 OpenSBLI problem file

1 mass = "Eq(Der(rho,t), - Conservative(rhou_j,x_j,**{scheme:Teno}))"
2 Simulation_eqn = SimulationEquations(); ndim = 3 # Instantiate the main equation class
3 Simulation_eqn.add_equations(EinsteinEquation().expand(mass, ndim, coordinate_symbol="x",

substitutions=[], constants=[])) # Parse and expand the equation over the specified dimensions
4 LLF = LLFTeno(teno_order=6, RoeAverage([0, 1])) # Select a 6th order TENO scheme with Roe averaging
5 RK = RungeKuttaSSP(3) # Select a 3rd order SSP RK time-stepping scheme
6 block = SimulationBlock(ndim, block_number=0) # Create a block
7 block.set_equations([Simulation_eqn]) # Set the equations to be solved
8 block.set_discretisation_schemes({LLF.name: LLF, RK.name: RK}) # Set numerical schemes to be used
9 block.discretise() # Discretise the equations on the block

10 alg = TraditionalAlgorithmRK(block) # Create a Runge-Kutta solution algorithm
11 OPSC(alg) # Generate and write out the OPS C code

Listing 1: Simplified OpenSBLI Python problem file to generate a code to solve the continuity equation.

A cut-down version of an OpenSBLI problem file is shown in the code snippet above, containing the steps
required to generate a code to solve the continuity equation (1). In line 1 the equation is written as a string
in index form, to be expanded over the index j. The SymPy equation class Eq is used with time and spatial
derivatives on the left and right hand sides of the equation respectively. A spatial conservative derivative is
specified with a TENO scheme; changing the scheme here would modify how this derivative is discretised.
Lines 2-3 parse and expand the equation over the number of user-selected dimensions, before adding them
to the SimulationEquation class that stores the equations to be advanced in time. Line 4 instantiates a
characteristic local Lax-Friedrichs 6th order TENO scheme with Roe averaging, while third order Runge-
Kutta time-stepping is selected in line 5. A single SimulationBlock is created for this simulation in line 6,
to which the equations to solve and numerical schemes are set on in lines 7-8. At this point the user would
also instantiate classes for boundary conditions (in each direction), initial conditions and file I/O options,
which are each set on the block in the same way.

The block now contains everything required to solve the problem. The call to the discretisation method
in line 9 begins the discretisation of the governing equations for the selected schemes. During code generation
each significant computation is stored as a computational kernel object, which contains the required calcu-
lation, grid ranges, data access and input/output arrays. In line 10 an algorithm is generated; the algorithm
class loops over all of the kernels created by the discretisation, and orders them at the appropriate position
for the algorithm. Line 11 calls the OpenSBLI OPS C code writer, which finds each of the components of
the algorithm and writes them to a file as OPS compliant C code. The final code is then passed to the OPS
code translator, which generates parallel versions of the supplied sequential source code.

3.2 OPS Computational kernel

1 void opensbliblock00Kernel035(const double *u0_B0, double *wk1_B0){ // Kernel arguments
2 wk1_B0[OPS_ACC1(0,0,0)] = inv_1*(-rc9*u0_B0[OPS_ACC0(2,0,0)] - rc8*u0_B0[OPS_ACC0(-1,0,0)] +

(rc8)*u0_B0[OPS_ACC0(1,0,0)] + (rc9)*u0_B0[OPS_ACC0(-2,0,0)]);} // Computing a derivative

Listing 2: Example OPS kernel code generated by OpenSBLI. The kernel computes a 4th order central
finite-difference approximation of the variable u0.

The code snippet above is an example of the OPS code generated by OpenSBLI for a sample calculation.
The simplified kernel calculates a 4th order central derivative of the velocity component u0 with respect to
x0. A temporary work array wk1 has been assigned to this kernel to store the result of the computation. For
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each of the arrays there is an OPS_ACCX(0,0) argument, where X is an integer referring to the position
of that array in the function arguments. The quantities in parentheses are the relative grid indexing, with
(0, 0, 0) referring to the current grid point the kernel is being evaluated on. In OPS all computations are
specified in this way, with the user providing the computation to be performed relative to the current grid
point. The inv_1 and rcXX quantities are rational constants. OpenSBLI substitutes place holders to be
globally defined, for all of the rational constants found in the equations during code generation. Rational
quantities in the output code contain these placeholder variables and the numerical values are only computed
once when the program is initialized.

3.3 Corresponding OPS function call

1 int iteration_range_35[] = {0, block0np0, 0, block0np1, 0, block0np2}; // Grid range to compute
2 ops_par_loop(opensbliblock00Kernel035, "Viscous CD u0_B0 x0", opensbliblock00, 3,

iteration_range_35, // Parallel loop to perform a central derivative
3 ops_arg_dat(u0_B0, 1, stencil_0_08, "double", OPS_READ), // Input array and stencil access
4 ops_arg_dat(wk1_B0, 1, stencil_0_00, "double", OPS_WRITE)); // Output array

Listing 3: Example OPS parallel loop call, generated automatically by OpenSBLI. The loop executes the
kernel code over the entire 3D grid range.

The kernel code in the previous section specifies the computation to be performed, but does not contain
information relating to its execution over a grid. This is instead decoupled into the main program file, where
the calls to that kernel will be placed in the position required by the numerical algorithm. In the code
above, the first line defines the iteration range to perform the calculation; in this case the range is taken
to be the entire 3D grid. A call is made to an ops_par_loop, which is a parallel region in which OPS has
control over how the computation is decomposed and executed. Each of these parallel loops within the base
source code will be parsed by the OPS translator, and converted into different versions of parallel code ready
for the user to compile. OPS parallel loops require the array input/output arguments and their read/write
status, desired floating point precision, and a stencil. Stencils are lists of integers to tell OPS the data access
required to perform the computation, relative to each grid point; in this case the input stencil requires access
from i− 2 to i+ 2 in the x0 direction. The role of OpenSBLI is to generate these kernels, extract their data
dependencies, stencil access and iteration ranges, and write out strings compliant with the OPS language.
While OPS code can be written manually by hand, the added layer of code generation removes much of the
tedious work and reduces errors.

3.4 OPS architecture performance comparison

Architecture/compiler Runtime (s) Speed-up
Intel Skylake (40 cores @ 2 GHz, 40 MPI, Intel 17.0 -O3 -fp-model fast) 174.1 1.0

NVIDIA Pascal 16GB P100 (CUDA 8.0, nvcc -O3) 54.5 3.2
NVIDIA Volta 16GB V100 (CUDA 9.0, nvcc -O3) 35.2 4.9

Table 1: OPS single node runtime comparison on different architectures for 100 iterations. The time for the
CPU node (Intel Skylake Xeon Gold 6138) with 40 MPI processes is taken as the baseline.

A runtime comparison was performed to assess OPS single node performance for the 3D laminar SBLI
case presented in the next section. A grid size of (Nx0, Nx1, Nx2) = (500, 170, 170) was selected to fit on a
single GPU, with the time for 100 iterations of the main iteration loop recorded. The relative performance
between a GPU and a conventional CPU node is shown in Table 1. A baseline time of 174.1 seconds is
recorded for the Intel Skylake node, with one MPI process per core and the AVX-512 instruction set applied.
Stencil-based codes on structured meshes with explicit time-stepping are known to be well suited to GPU
architectures, which is consistent with the timings obtained for this problem. A single NVIDIA P100 Pascal
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GPU was 3.2 times faster than the CPU node with a time of 54.5 seconds. The latest NVIDIA V100 Volta
GPU improved upon this, with the single GPU being equivalent to slightly under 200 CPU cores.

Aside from the difficulty of porting scientific codes to run on GPUs, the main drawback of GPU plat-
forms is the limited available memory capacity. While the compute capability per card is impressive, the
difficulty is in providing each card with enough work using the limited memory available. To reduce the
memory requirements of the schemes, the implementation of WENO/TENO schemes in OpenSBLI attempts
to minimize the number of global arrays used for the reconstruction. Further optimizations of this kind are
possible within a code-generation framework. An initial re-factoring of the algorithms was reported in [32],
for central differencing in OpenSBLI. By using the OPS library the code is not restricted to a single compu-
tational architecture and the performance can be assessed on a case by case basis for different simulations.
As the implementation of numerical algorithms in OpenSBLI is independent of the parallel implementation,
the code is better placed to adapt to future changes in the high performance computing ecosystem.

4 3D SBLI problem specification
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2 degree shock 
generator ramp
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Figure 3: Schematic of the computational domain in non-dimensional units.

Three-dimensional shockwave/boundary-layer interactions are simulated for a Mach 2 inlet to a rectangular
duct; a schematic of the computational domain is shown in Figure 3. An incident oblique shockwave is
generated by an internal ramp on the upper surface of the domain angled at 2◦, giving a shock angle of 31.6◦;
the shockwave impinges on a laminar boundary-layer and is reflected. In addition to the main interaction
region, the presence of sidewalls on either side of the span causes a swept shock interaction with the sidewall
boundary-layers. The dimensions of the domain are (Lx0

, Lx1
, Lx2

) = (475, 175, 175), corresponding to a
one-to-one aspect ratio of the cross-sectional area. The height of the domain was selected to ensure that
reflections from the upper boundary do not impinge on the lower wall boundary-layer.

The domain is initialised with a similarity solution to the compressible boundary-layer equations [33].
Boundary layers are initialised on the bottom wall and both of the sidewalls, with a blending of the two
profiles applied in the corner region where two physical walls meet. The blending is achieved by fitting high
order polynomials to the profiles generated by the similarity solution, which are multiplied together in the
corner region. The wall normal velocity component from the similarity solution is linearly reduced with
increasing distance from the sidewall, to obtain a zero u2 velocity component at the mid-point of the span.

Most numerical work on SBLI to date has been restricted to 2D and span-periodic 3D configurations, for
which the incident shock can easily be imposed as a Dirichlet boundary condition containing exact shock-
jump conditions. However, applying this method in the presence of sidewalls proved to be problematic at
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the interface between the upper shock conditions and the viscous sidewalls. Attempting to match supersonic
shock conditions on the upper boundary with a subsonic sidewall boundary-layer generated substantial
numerical artefacts from the discontinuity. To remedy this problem, it was necessary to use a curvilinear
mesh to physically deflect the flow with a ramp. The ramp is taken to be an inviscid slip wall, acting as a
method to generate the incident shock and allow for the main and swept shock/boundary-layer interactions
to be investigated. A viscous no-slip ramp was not feasible for this study since compression waves emitted
from the start of the separation region on the bottom wall would cause boundary-layer separation on the
ramp. Compression waves from the ramp separation would cause a further separation on the bottom wall
which would then merge with the primary separation.

The bottom wall and both sidewall boundaries are set to viscous no-slip isothermal conditions, for the
constant wall temperature obtained from the similarity solution [33]. The inlet plane is treated with a
pressure-based extrapolation method dependent on the local speed of sound. At the outlet a zeroth-order
extrapolation of all flow variables is applied. The inviscid wall ramp is located at x0 = 20 with a deflection
angle of 2◦; upstream of the ramp, freestream and sidewall boundary-layer conditions are maintained with
constant freestream pressure. The initial shock impinges on the boundary-layer at Rex = 3.7× 105, and the
Reynolds number based on inlet displacement thickness is 950. Dynamic viscosity is used with Sutherland’s
law (6), for Sutherland and reference temperatures of 110.4K and 288.0K respectively. The Prandtl number
and ratio of heat capacities are 0.72 and 1.4, with a non-dimensional wall temperature of Tw = 1.6762 (5
s.f.).

4.1 Computational set-up and grid sensitivity

Grid Total points Nx0 ×Nx1 ×Nx2 Min ∆x0,∆x1,∆x2 Max ∆x0,∆x1,∆x2

Coarse 26.6× 106 525× 225× 225 0.90, 0.24, 0.24 0.90, 1.30, 1.30
Medium 65.1× 106 700× 305× 305 0.68, 0.17, 0.17 0.68, 0.95, 0.95
Fine 123.0× 106 875× 375× 375 0.54, 0.14, 0.14 0.54, 0.78, 0.78

Table 2: Computational grid parameters for three resolutions. The reported spacings are in non-dimensional
units at the inlet plane.

Table 2 shows the three grids used to determine grid sensitivity, with the minimum and maximum spacings
in each direction taken at the inlet of the domain. In each case x0 was uniformly distributed, x1 was
clustered symmetrically for higher grid density on the bottom wall and around the shock-generator, and
x2 was clustered symmetrically towards both sidewalls. For direction based stretch factors s1 = s2 = 1.5,
uniformly distributed points in the interval ξ = [0, 1] and lengths Lxi the grid stretching functions were

x0 = Lx0
ξ, (31)

x1 =
Lx1

2

(
1− tanh (s1(1− 2ξ)

tanh (s1)

)
, (32)

x2 =
Lx2

2

(
1− tanh (s2(1− 2ξ)

tanh (s2)

)
. (33)

All simulations were performed with a 6th order TENO scheme for spatial discretisation, with 3rd order
Runge-Kutta explicit time-stepping and a non-dimensional time-step of ∆t = 0.025. For the laminar base
flow in the following section, the solution was advanced to a non-dimensional time of t = 1×104. Convergence
was ascertained by monitoring the growth of the skin-friction on the bottom wall, taken along the centreline
of the span. The non-dimensional time of t = 1 × 104 corresponds to ∼ 21 flow through times of the
computational domain. Figure 6 (a) shows the sensitivity of the laminar solution to grid refinement. The
coarse grid shows numerical defects in the skin-friction at the inlet, and slightly underestimates the length
of the region of reverse flow. The medium grid is very close to the finest result, but exhibits some small
oscillations in the skin-friction near the outlet. The finest grid is used for all results in the subsequent sections
unless otherwise stated.
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5 3D Shockwave/boundary-layer interaction with sidewall effects

Figure 4: Density contours coloured by pressure; half of the channel for the laminar 3D SBLI is shown.

In this section the results for the laminar 3D SBLI with sidewall effects are presented, simulated on the
(Nx0, Nx1, Nx2) = (875× 375× 375) finest grid from the previous section. Figure 4 shows density contours
coloured by pressure for the final flow field at t = 1 × 104; half of the spanwise length is plotted as the
laminar problem is symmetric about the centreline. The flow is turned by the ramp located at x0 = 20,
causing a swept oblique shockwave that reflects off the bottom laminar boundary layer. The adverse pressure
gradient of the incident shock thickens the bottom and side wall boundary layers, causing large regions of
reverse flow (u0 ≤ 0) as seen in Figure 5. The shape of the incident shock deviates considerably as a result
of the sidewall, a feature that is reduced closer to the centre of the span. The swept interaction of the
incident shock with the sidewall boundary layer causes a visible curving that is not seen in span-periodic
configurations. Compression waves emitted as the boundary-layer thickens near the centreline are noticeably
further downstream compared to those emanating from the corner separation. Three main features are
identified in the vicinity of the bottom boundary layer: compression waves from the start of the central
separation, and expansion fans at the top of the central separation and at the reattachment point. All three
features leave the domain through the outlet, and do not cause secondary impingement on the bottom wall
boundary layer.

Figure 5: Regions of centre, corner, and sidewall reverse flow u0 ≤ 0; half of the channel for the laminar 3D
SBLI is shown.
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(a) Grid sensitivity of centreline skin-friction.
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(b) Effect of sidewall confinement on separation.

Figure 6: Streamwise skin-friction distribution along the bottom wall, evaluated at the centre of the span.

A span-periodic configuration with identical parameters was also simulated to highlight the effect that
sidewalls have on the central separation region. The grid was modified only in the spanwise direction, with
uniform spacing along the span and a resolution of (Nx0, Nx1, Nx2) = (875× 375× 225). Figure 6 (b)
shows the effect sidewall confinement has on the centreline skin friction. In both cases the expected form of
the skin-friction for a laminar separation bubble is observed, with reversed flow seen under the dashed black
line Cf = 0. The asymmetric shape of the separation bubble with two distinct troughs in Figure 6 (b) relates
to the pressure rises as the boundary layer separates, and then reattaches further downstream. Confinement
effects greatly increase the length and magnitude of the separation bubble, since the swept sidewall-shock
interaction strengthens the incident shockwave significantly. At this one-to-one aspect ratio of duct width to
height, the failure of the span-periodic approximation to predict the extent of centreline flow separation is
clear to see. A similar picture is seen in the side and bottom wall pressure contours of Figures 7 (a) and (b)
respectively. The swept interaction between the sidewall boundary layer and the incident shock causes an
initial jump in pressure far upstream of the 2D impingement location, corresponding to a region of separated
flow in the corner region. Figure 7 (b) shows the pressure distribution along the bottom wall, consistent with
the picture in Figure 4. At the start of the separation bubble in the middle of the span the flow tends towards
quasi-2D results and pressure contours increase perpendicular to the streamwise direction. In contrast, at
each of the corner regions there is a clear curving of the flow, where the strength of the sidewall effect is at
its greatest.

Wall-normal components of skin-friction are plotted for the side and bottom walls in Figures 8 (a) and
(b) respectively. A large region of separated flow is observed on the sidewall in Figure 8 (a), beginning at
the corner separation around ∼ x0 = 150. The zero crossing of the skin-friction is displayed as the dashed
white line, demonstrating that the sidewall separation extends almost a third of the way up the height of
the sidewall. A long thin streak of reverse flow is seen propagating all the way to the outlet. Further work
with a longer computational domain is needed, to identify whether this is a numerical artefact from the
extrapolation outlet boundary condition or not. Some numerical noise is observed at the start of the ramp
on the sidewall; this artefact was more pronounced for the two coarser grids and may be reduced with further
grid refinement.

Figure 8 shows the shape of the separation bubble on the bottom wall, once again encircled by the
dashed white zero-crossing line. The separation bubble takes an asymmetric oblate circular shape, curved
at the downstream side of reattachment and essentially perpendicular to the freestream near the onset of
separation. Two central core regions of highest magnitude consistent with the line plot of Figure 6 can be
seen, with the interaction at its strongest directly on the centreline. Two elongated thin strips of corner
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(a) Instantaneous pressure contours on the sidewall x2 = 0.
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(b) Instantaneous pressure contours on the bottom wall x1 = 0.

Figure 7: Side (a) and bottom wall (b) pressure distributions for the 3D laminar SBLI with sidewall effects.

separation are observed in the near sidewall region, with a buffer region of attached flow between them and
the central separation. Both the main and sidewall separations are substantially larger than those observed
in the turbulent study of [7], owing to the relative ease at which separation of a laminar boundary-layer can
occur.

The laminar base flow demonstrates the importance of modelling confinement effects when dealing with
shockwave/boundary layer interactions for internal flows. Regions of corner and sidewall separation not
captured in quasi-2D simulations have a drastic impact on the main interaction. To further highlight the
inadequacy of span-periodic simulations and their inability to replicate wind tunnel configurations, the
three-dimensionality of the interaction for a confined flow is shown in the velocity streamlines of Figure 9.
Figure 9 (a) displays (u0, u2) velocity streamlines within the central separation bubble, evaluated one point
above the bottom wall and coloured by pressure contours. Reverse flow can be seen in the corner regions at
x2 = 0, 175, and high velocity streaks in the attached region that merge into the central separation bubble on
both sides. Within the central separation two foci are observed, located symmetrically about the centreline
and qualitatively in agreement with the oil-streak images of [11]. Figure 9 (b) shows the same picture for
one of the sidewalls at x1 = 0.14, in which the large sidewall reversed flow can be seen. The streamlines
initially follow the deflected flow of the incident swept shock, and flatten out above x1 ∼ 50 to follow the
freestream towards the outlet. Below x1 ∼ 50 the reflected shock interaction causes a severe reversal of the
velocity streamlines, with reverse sidewall flow seen for almost a third of the domain height.
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(a) Instantaneous skin-friction distribution on the sidewall. The dashed white line highlights the zero crossing.
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(b) Instantaneous skin-friction distribution on the bottom wall. The dashed white line highlights the zero crossing.

Figure 8: Side (a) and bottom wall (b) skin-friction for the 3D laminar SBLI with sidewall effects.

6 3D Shockwave/boundary-layer interaction with forced transition
In this section disturbances are added to the laminar base flow, to investigate the transition mechanism for
3D SBLI with sidewall effects. Disturbances are generated by a strip of time-dependent blowing/suction
upstream of the interaction region, forced at an unstable mode obtained from linear stability analysis of a
Mach 2 laminar separation bubble [34].

6.1 Forcing mechanism
Modal time-dependent forcing is applied as a piecewise condition on the no-slip wall such that the wall-normal
velocity is modified in a strip between 10 < x0 < 30 as

u1 =

{
A0 cos (βx2) sin (ωt) exp

(
−
(

(x0−20)2

B

))
if 10 < x0 < 30

0 otherwise.

The constants A0 = 5× 10−2, β = 5×2π
Lx2

= 0.195, ω = 0.056 and B = 4 are the forcing amplitude, spanwise
wavenumber, forcing frequency and variance of the Gaussian respectively. Numerical values of the constants
are taken as the most unstable mode obtained by linear stability theory of a Mach 2 laminar separation
bubble from [34]. The spanwise wavenumber β is selected to fit five whole wavelengths across the span when
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(a) Bottom wall velocity streamlines, x1 = 0.14.
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(b) Sidewall velocity streamlines, x2 = 0.14.

Figure 9: Pressure contours and velocity streamlines at x1, x2 = 0.14 above the bottom wall (x0, x2) (a) and
sidewall (x0, x1) (b), within the main regions of reverse flow on each.

applied to the bottom wall of the domain, and three wavelengths in the case of the forced sidewalls.

6.2 Bottom wall forced transition
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(a) Grid sensitivity of centreline skin-friction.
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(b) Effect of forcing on the separation length.

Figure 10: Streamwise skin-friction distribution along the bottom wall, evaluated at the centre of the span.
The forced cases are time-averaged over one period of the forcing.

The forcing mechanism was first applied to the bottom wall of the domain; the laminar base flow was
restarted and advanced in time for an additional five flow-through times up to a final simulation time of
t = 12.5 × 104. To assess the sensitivity of the forced solution to grid resolution, forcing was applied to all
three grids defined in Table 2. To obtain mean profiles the forced simulation result was averaged over one
additional period of the forcing. Figure 10 (a) shows the mean skin-friction distribution on the bottom wall
along the centreline. A large rise in skin-friction is observed for all three grid resolutions, where the flow has
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transitioned downstream of the separation bubble. The medium and fine grids give a similar prediction for
mean skin-friction during the onset of the transition, but later diverge as the symmetry of the problem is
broken further downstream. The coarse grid is under-resolved, showing the same issues near the inlet as in
Figure 6 (a), and disagreement with the two finer grids at the start of transition. Figure 10 (b) demonstrates
the effect that the transition has on the centreline skin-friction compared to the laminar case of the previous
section. The separation bubble has shortened, most significantly on the reattachment side of the separation
bubble. The small increase in skin-friction near the inlet is due to the strip of wall forcing that generates
the disturbances.
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Figure 11: Instantaneous pressure along the bottom wall, with bottom wall forcing induced transition.

The transition is better visualised in Figure 11, which displays instantaneous pressure along the bottom
wall. Five wavelengths of forcing can be seen near the inlet, which leads to distortion of the pressure contours
upstream of the interaction region. The flow first becomes unstable directly behind the central separation
bubble, and is symmetric up until around x0 = 400. In the corner of the domain the separation does not lead
to the same magnitude of unsteady behaviour, and does not deviate substantially from the laminar solution
until the main transition has spread out across the span at the outlet. The instantaneous streamwise velocity
plot of Figure 12 (a) shows a similar picture, unsteady high speed streaks are seen directly downstream of the
central separation. The transition is strongest and occurs first at the centreline, and is reduced in streamwise
extent behind the regions of attached flow either side of the separation bubble. The high velocity streaks are
clearer to see in the time-averaged streamwise velocity contours of Figure 12, showing an alternating pattern
of low and high-speed flow. Weaker streaks can be seen in the corner region, that are far less developed
than those behind the main interaction. In total there are ten distinct streaks being formed for the five
wavelengths of forcing introduced to the system, suggesting that each wave and trough of the wall-normal
forcing is generating one of these structures.

Figure 13 shows the wall-normal vorticity component ωx1
in the transition region for the levels ω±x1

= 0.05,
coloured by streamwise velocity u0. A series of hairpin vortices develop independently at the reattachment
location of the separation bubble, before rolling up and forming the high velocity streaks. These structures
are consistent with the twin prongs seen at the start of each of the high speed streaks in Figure 12 (b). The
region of attached flow in Figure 13 between the sidewall and the central separation is seen to transition
much later downstream, suggesting that the separation bubble is the main factor in the amplification of the
upstream disturbances.

6.3 Sidewall forced transition
The final simulation takes the forcing strip method of the previous section and instead applies it onto both
sidewalls, to investigate the susceptibility of the sidewall flow to transition to turbulence. To avoid directly
disturbing the generation of the incident shockwave, the forcing was restricted to only 3 wavelengths up the
wall from the corner point on either side. This results in a forcing strip applied between 20 < x0 < 30 and
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(a) Instantaneous streamwise u0 velocity evaluated at x1 = 0.14.
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(b) Time-averaged streamwise u0 velocity evaluated at x1 = 0.14.

Figure 12: Bottom wall instantaneous (a) and time-averaged (b) velocity u0 evaluated at x1 = 0.14.

0 < x1 < 105, with the same frequency and amplitude as before. The laminar base flow was again taken
from t = 1.0× 104 to t = 1.25× 104, corresponding to five additional flow-through times of the domain.

Figure 14 (a) shows instantaneous pressure contours at the sidewall, with a large region of transitioned
flow observed downstream of the sidewall separation. As in the forced bottom wall case, the transition occurs
directly behind the central separation and not in the thin corner separation. The disturbances spread out as
they move further downstream, occupying up to half of the sidewall by the time the outlet is reached. Figure
14 (b) shows a similar picture, plotting the instantaneous streamwise velocity u0 at x2 = 0.14 above the
sidewall. The high speed streaks are more irregular than those seen in the forced bottom wall case in Figure
12 (a), with small regions of much higher velocity fluid. Wall-normal vorticity on the sidewall is plotted in
Figure 15, coloured by streamwise velocity. The transitional flow is again seen directly downstream of the
separation bubble and extends up over half of the sidewall. Unsteady behaviour is localised to the sidewall
and does not propagate significantly along the span.
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Figure 13: Wall-normal vorticity contours ω±x1
= ±0.05 coloured by streamwise u0 velocity; a zoomed in plot

of half of the channel for the forced bottom wall 3D SBLI is shown.

Figure 15: Wall-normal vorticity contours ω±x2
= ±0.05 coloured by streamwise u0 velocity; a zoomed in plot

of half of the channel for the forced sidewall 3D SBLI is shown.

7 Conclusions
Three-dimensional shockwave/boundary-layer interactions (SBLI) at Mach 2 have been simulated for an
oblique shock of θ = 31.6◦ impinging on a laminar boundary layer. The main contribution of this work
has been the inclusion of sidewall confinement effects, to model SBLIs that are often found in internal
supersonic duct flows. A stable laminar base flow was obtained, that will form the basis for stability analysis
of the system. To demonstrate the susceptibility of the system to a breakdown to turbulence, upstream
disturbances were added in the form of a strip of time-dependent forced blowing/suction. A transition to
turbulence was observed for disturbances localised to both the bottom and side walls of the domain; in both
cases the domain was not long enough for the effect to propagate beyond the regions directly downstream
of the forcing.

For the laminar solution a large central separation was seen at the shock impingement point, bordered
by thin regions of attached flow. The swept interaction of the incident shock with the sidewall boundary
layer caused a thickening of the sidewall boundary layer, and curving of the shock that was most apparent
in the near sidewall region in Figure 4. Elongated regions of corner separation were observed, with the onset
of corner separation seen far upstream of the central separation (Figure 5). In the presence of sidewalls the
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Figure 14: Sidewall pressure (a) and streamwise velocity (b) contours with forcing applied to the sidewall.

incident shock is strengthened near the centreline, causing a stronger centreline separation (Figure 6). In
between the corner and central separations the incident shock is weakened and a region of attached flow is
present. Large regions of sidewall separation were observed above the corner separation, much larger in size
compared to the turbulent solution of [7].

Upstream disturbances were added to both the bottom and sidewalls of the domain, forced at an unstable
mode from linear stability theory of a laminar separation bubble. Disturbances added on the bottom wall
were amplified by the central separation and became unstable, leading to a transition to turbulence. The
weaker separations in the corner region led to transition much further downstream compared to the central
separation, while the sidewall flow remained laminar. Similar behaviour was witnessed when disturbances
were added to both of the sidewalls, transition was seen downstream of the sidewall separation bubbles
and the flow in the centre of the domain remained laminar. Transition to turbulence led to an expected
reduction in the length of the central separation bubble (Figure 10 (b)), with the greatest reduction seen
around the reattachment side of the bubble. A laminar base flow was obtained for a relatively small shock
generator ramp angle of 2◦. Further studies should assess the generality of the flow features for higher shock
strengths, where transition may occur in the absence of artificial upstream disturbances. Furthermore, the
long strip of reverse flow propagating to the outlet in Figure 8 needs to be investigated, flow reversal at an
outlet boundary can cause issues for CFD codes. At higher aspect ratios the central separation should tend
towards the quasi-2D behaviour, as the influence of the swept sidewall effect reduces.
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The sidewall mechanism responsible for the strengthened central separation needs to be investigated. In
the experimental studies of [6], [11], the effect was attributed to the crossing location of compression waves
emitted at the start of the corner separations. When corner waves from each sidewall crossed at the centreline
within the central separation, a strengthening of the separation was observed. Corner waves meeting before
the central interaction were said to reduce the size of the interaction, suggesting that flow control applied
to the corners of a duct can modify the central separation and subsequent state of the downstream flow as
desired. Streamline plots of the reverse flows in Figure 9 (a) and (b) serve as comparison to experimental
oil-streak patterns, containing similar structures as seen in the experiments.
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