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1 Introduction
Computational fluid dynamics has traditionally been a significant benefactor of advances in high-performance
computing (HPC). The computational cost of simulating the dynamics of a fluid in motion is significant and
capturing the true physics of nearly any fluid flow for industrial applications requires simulation on the most
advanced supercomputers available.

For at least the past 20 years, there have been minimal changes in processor architectures between
generations of supercomputers. For our purposes, we define a generation of a supercomputer to be 3 to 4
years. The status quo has been that each advancing generation brings about a faster processor, as measured
by either higher clock frequencies or more cores per processor, but no fundamental changes in the processor
architecture or the programming models needed to effectively employ the computing devices.

This status quo has gradually started to change as the major computing vendors have introduced new
processor technologies targeted for HPC applications. To illustrate this change it is instructive to examine the
processing technologies of the Advanced Technology System (ATS) supercomputers that have been acquired
by the U.S. National Nuclear Security Administration (NNSA) in recent years. The first of these machines,
ATS-1 (named Trinity), has a traditional Xeon (Haswell processors) partition and another partition based on
Xeon Phi processors (codenamed Knights Landing or KNL) and was put into production in 2017. The second
of these machines, ATS-2 (named Sierra), is slated to be approximately 125 petaflop/s and is scheduled for
production use in 2019. Sierra is truly a heterogenous machine, utilizing IBM’s Power9 processors and Nvidia
Corporation’s Volta GPUs, with a significant fraction of the total flop/s coming from the GPUs.

What is unique and disruptive about devices such as KNLs or GPUs is the trend to add more parallelism
to each device either through threads and/or vector units. The Xeon Phi KNL processors in Trinity have 68
processing cores, each with 4 hardware threads and multiple 512-bit vector units, and require multiple levels
of parallelism (vector operations as well as thread parallelism) to utilize as much of the approximately 3
teraflop/s theoretical peak available per processor. Furthermore, KNL processors have two memory spaces,
an on-package high-bandwidth memory (HBM) in addition to traditional DDR memory. The high-bandwidth
memory provides approximately 480 GB/s bandwidth while DDR memory provides approximately 90 GB/s
bandwidth. The Volta GPUs in Sierra have a theoretical peak of approximately 7 teraflop/s double-precision
and have 900 GB/s memory bandwidth. When combined with the Power9 CPUs, a compute node of Sierra
has multiple execution spaces (CPUs and GPUs) and multiple memory spaces (host CPUs and GPUs).

Further complicating the architectural changes are the many programming models that have arisen.
It is fair to say that the Message Passing Interface (MPI) has been the de facto standard for inter-node
parallelism for almost 30 years. However, MPI itself does little to address intra-node parallelism, that is
the type of parallelism needed to effectively use Xeon Phi or GPU architectures by employing thread or
vector parallelism. To address intra-node (or on-node) parallelism, OpenMP, CUDA, and OpenACC have
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evolved. OpenMP has traditionally been focused on thread parallelism for x86 architectures, but with
OpenMP 4.0 and newer, offloading to GPUs is now possible. CUDA is a proprietary programming model
developed by Nvidia, specifically for Nvidia GPUs. OpenACC is a model that can span CPU and GPU
architectures, and is perhaps more general than OpenMP and CUDA, however, with OpenMP’s latest GPU
offloading support, OpenMP and OpenACC are now similar in nature. The diversity and complexity in the
processing architectures and programming model landscape makes writing a CFD code that can effectively
utilize multiple HPC platforms a very challenging task.

The purpose of this article is to introduce the approach being taken at Sandia National Laboratories
to utilize multiple levels of parallelism in a compressible CFD code for the next-generation HPC platforms
being acquired by the NNSA. Additionally, we discuss the problem of performance portability. Performance
portability is the notion of writing an application code such that it may be “ported” from architecture to
architecture without significant application-side, architecture-specific code or whole-sale rewriting using a
different programming model while still maintaining acceptable performance across all architectures. Many
efforts have focused on GPU-specific CFD codes [1, 2, 3, 4], and several on Intel’s Xeon Phi architecture
[5, 6]. Far less work has been done on performance-portable implementations across architectures, but there
are some notable exceptions [7, 8]. We discuss the salient programming design elements of our code to
achieve performance portability and will present performance across standard CPU-based HPC platforms
and the ATS platforms for a large-scale application of interest.

2 Sandia Parallel Aerodynamics and Reentry Code (SPARC)
The SPARC (Sandia Parallel Aerodynamics and Reentry Code) code is the next-generation transonic and
hypersonic CFD code being developed at Sandia to support the aerodynamic, aerothermal and aerostructural
simulation needs for the lab for at least the next decade and likely much longer. We will briefly describe a
primary set of the equations SPARC solves, that is the governing equations for compressible Navier-Stokes
for a perfect gas and for a gas in thermochemical non-equilibrium. SPARC also can solve the Reynolds-
Average Navier-Stokes (RANS) equations for both perfect and reacting gases; solving the RANS equations
was not a part of the performance analysis studies conducted here so we have omitted the commentary on
these equations. The primary discretization is a cell-centered finite volume method; the code is written to
support multiple discretization types and we are developing and researching high-order finite difference and
discontinuous Galerkin discretizations as well. The bulk of the discussion will center on the design features
of SPARC that we used to achieve high performance across multiple architectures.

2.1 Governing Equations for a Perfect Gas
The conservation of mass, momentum and energy for a perfect gas (i.e., calorically perfect) can be expressed
as

∂U

∂t
+
∂F i (U)

∂xi
− ∂Gi (U)

∂xi
− S (U) = 0. (1)

The assumptions of a calorically perfect gas are summarized in the equation of state paragraph below.
The conservative variable (or state variable) vector U in equation 1 is written in vector form as

U =

 ρ
ρvj
ρE

 (2)

where ρ is density of the fluid, ρvj is the fluid density times the fluid velocity vj , ρE is the fluid density
times the total energy per unit mass E. The total energy per unit mass is the sum of the fluid’s internal
energy e and kinetic energy and can be written as

E = e+
1

2
(vjvj). (3)
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The inviscid flux vector F i is defined as

F i(U) =

 ρvi
ρvivj + Pδij
ρEvi + Pvi

 (4)

where P is the pressure of the fluid. The viscous flux vector Gi is written by

Gi(U) =

 0
τij

τijvj − qi

 (5)

where τij and qi are the viscous stress tensor and the heat flux vector, respectively, and represent diffusive
effects of the fluid. In addition to the advection transport mechanism associated with the motion of the
fluid, the fluid has the ability to transport momentum and energy via a diffusion process. In the absence
of any diffusion, the viscous Navier–Stokes equations reduce to the inviscid Euler equations which account
solely for advection. Since viscous effects are of primary concern for most practical aerodynamic problems,
the Euler equations will not be further discussed.

The viscous stress tensor τij requires a constitutive equation which relates the viscosity and spatial
derivatives of the velocity to the stresses. For a Newtonian fluid (i.e., one which has a linear stress/strain
relationship) the deviatoric stress tensor is often written as

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ λδij

(
∂vk
∂xk

)
(6)

where µ is the viscosity and λ is the bulk viscosity of the fluid. For a Newtonian fluid the bulk viscosity is
often expressed as λ = −2µ/3.

The heat flux vector qi is a measure of the thermal energy flow and is typically written using Fourier’s
law

qi = −κ ∂T

∂xi
(7)

where κ is the gas thermal conductivity and T is the gas temperature.
Lastly the source vector S is written as

S(U) =

 0
0j
0

 (8)

Equation of State For a calorically perfect gas, an equation of state is needed to relate two independent
state variables to the third. Thus, the perfect gas equation of state is usually written as

P = ρRT (9)

where R is a constant specific to the type of gas (for air R = 287.1 J/kg/K). The calorically perfect gas
assumption has the following requirements: (1) the gas is in thermal equilibrium, (2) the gas is not chemically
reacting, (3) the internal energy and enthalpy are dependent only on temperature, and (4) the specific heats
(cv and cp) are constant.

In accordance with these assumptions, the internal energy and enthalpy are computed by the equations

e = cvT , h = cpT (10)

and the specific heats are written as

cv =
R

γ − 1
, cp =

γR

γ − 1
(11)
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where γ is the ratio of specific heats (for air γ = 1.4) and is expressed as

γ =
cp
cv
. (12)

An alternative but equivalent form of the perfect gas equation of state can be obtained by writing the
temperature as T = e(γ − 1)/R. Inserting this temperature expression into equation 9 we obtain the
following form of the ideal gas equation

P = (γ − 1)ρe. (13)

The perfect gas assumptions begin to break down when the temperature of the fluid reaches roughly
600 K. The differences between a perfect gas model and a thermochemical gas model become important
(on the order of 15–25% of QoI’s) around 2000 K. Above this temperature a perfect gas approximation will
significantly over–predict gas temperatures. It is noted that this limit usually coincides with a Mach number
of approximately 5, which is generally considered the hypersonic limit where chemical reactions and thermal
non–equilibrium begin to occur.

Transport Properties The viscosity and thermal conductivity transport properties needed in the pre-
ceding equations are computed according to Sutherland’s law (or a number of other functional forms) and
the constant Prandtl number to relate viscosity to thermal conductivity, respectively.

For the purposes of the performance analysis of the perfect gas model in this paper, we consider a laminar
flow case (i.e., no turbulence model), giving 5 equations per mesh entity (i.e., cell).

2.2 Governing Equations for a Reacting Gas
The conservation of mass, momentum and energy for a gas in thermochemical non-equilibrium (i.e., in a
state of chemical and thermal non-equilibrium) can be expressed as

∂U

∂t
+
∂F i (U)

∂xi
− ∂Gi (U)

∂xi
− S (U) = 0. (14)

The conservative variable vector U in equation 14 is written as

U =


ρs
ρvj
ρE
ρee

 (15)

where ρs is density of each species s, ρvj are the momentum variables, ρE denotes the density times the
total energy per unit mass, and ee is the internal energy associated with each internal energy mode e being
modeled for the molecules. Similar to a perfect gas, the total energy is the sum of all the fluid’s internal
energy modes and its kinetic energy

E = etot +
1

2
(vjvj). (16)

The inviscid flux vector F i is defined as

F i(U) =


ρsvi

ρvivj + Pδij
ρEvi + Pvi

F iem
i,e

 (17)

where P is the pressure of the fluid and F iem
i,e are internal energy mode inviscid fluxes associated with

the i-th coordinate direction and the e-th internal energy mode equation. F iem
i,e typically take the form of

F iem
i,e = ρeevi and will be further defined in the section on internal energy relaxation processes. The viscous
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flux vector Gi is written by

Gi(U) =


ρsvi,s
τij

τijvj − qi +
∑
s ρsvi,shs

Giem
i,e

 (18)

where ρsvi,s are the species diffusion fluxes, τij is the viscous stress tensor, and qi is the heat flux vector. Giem
i,e

are the viscous fluxes associated with the internal energy modes for the e-th internal energy mode equation.
Giem
i,e typically take the form Giem

i,e = −qi,e +
∑
s ρsvi,ses,e, where es,e is the internal energy associated with

species s for mode e.
The species diffusion fluxes ρsvi,s result from gradients in species, temperature and pressure. However,

a valid assumption for hypersonic flows is that species diffusion is only driven by species gradients, so the
species diffusion fluxes may then be expressed by Fick’s law as

ρsvi,s = −ρDs
∂cs
∂xi

(19)

where Ds is the effective diffusion coefficient for species s and cs is the mass fraction for species s (cs = ρs/ρ).
The viscous stress tensor τij remains unchanged from the form given in Equation 6. However, the heat

flux is now a total heat flux which includes contributions from each internal energy mode and is written as

qi = −κ ∂T

∂xi
−
∑
e

κe
∂Te
∂xi

(20)

where κe is the thermal conductivity and Te is the temperature associated with each energy mode.
Finally the source vector S is written as

S(U) =


ω̇s
0j
0
ω̇e

 (21)

where ω̇ is the rate of species or internal energy production/destruction for species s and energy mode e,
respectively.

Equation of State The equation of state for a reacting gas is assumed to be a mixture of thermally perfect
gases and obeys Dalton’s law of partial pressures. As such, it is written as

P =
∑
s

Ps =
∑
s

ρs
Runiv

Ms
T (22)

where Runiv is the universal gas constant (Runiv = 8314.45J/kmol/K) and Ms is the molecular mass for
species s.

The internal energy state for a reacting gas depends on whether or not the gas is in thermal equilibrium.
For diatomic molecules, which we have when the gas we are considering is air (composed of N2 and O2), we
consider three modes in which the molecule may contain internal energy: a translational mode, a rotational
mode, a vibrational mode (due to back–and–forth vibration between the two atoms). For the case of
thermal equilibrium, these modes are assumed to be in equilibrium with each other, and a single internal
energy representation is sufficient (which is governed by a single temperature T ). For the case of thermal
non–equilibrium, we must assume that each mode has the potential to carry its own internal energy, and
that each internal energy is governed by its own temperature, a translational temperature Tt, a rotational
temperature Tr, and a vibrational temperature Tv. Conditions for thermal non–equilibrium occur when the
gas is in a state of low pressure and high temperature with large temperature gradients. Such conditions
exist in high temperature expansions and behind strong shock waves.

A common assumption for hypersonic flows is that, since translational and rotational energy modes
equilibrate very quickly, these modes may be governed by a single translational/rotational temperature, that
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is T = Ttr = Tt = Tr. For a non–ionized flow, this means that the vibrational energy modes of the molecules
must be modeled by a separate temperature, Tv. It is typically assumed that one vibrational temperature
applies to all species, but it’s also possible to treat each molecule with its own vibrational temperature.

The total internal energy, etot, first expressed in Equation 16 is written as the sum of all the individual
energy modes

etot =
∑
s

csets︸ ︷︷ ︸
et

+
∑
s

csers︸ ︷︷ ︸
er

+
∑
s

csevs︸ ︷︷ ︸
ev

+
∑
s

csh
o
s (23)

where cs are the species mass fractions and hos are the heats of formation for each species. The details of
computing the species translational, rotational and vibrational internal energies are not included here for
the sake of brevity.

Transport Properties As with a perfect gas, the viscosity µ and thermal conductivity κ are needed to
evaluate the viscous stress tensor τij and the heat flux vector qi when the gas is reacting. Models are available
for individual species viscosities and thermal conductivity and then a mixing rule is applied to determine a
mixture viscosity and thermal conductivity.

Wilke’s mixing rule is used to compute a mixture viscosity and thermal conductivity from individual
species values. Blottner’s model is used to compute species viscosities while the thermal conductivities for
the translational, rotational and vibrational internal energy modes are often computed using the Eucken
relation, which relates the viscosity to the thermal conductivity via translational, rotational and vibrational
specific heats. Finally, species diffusion coefficients Ds appearing in Equation 19 are assumed equal if the
molecular weights of the species are similar. A constant Lewis number, Le, assumption is then used to
compute a single binary diffusion coefficient.

Species Source Term - Chemical Kinetics The species production/destruction rates, ω̇s, appearing
in Equation 21 have yet to be defined. These rates are dependent on the particular chemical reaction set
being considered. For air, a 5–species and an 11–species model are common choices for hypersonic flows.
The species source terms are written in general form as

ω̇s = Ms

∑
r

(αsr − βsr)Rr (24)

where the sum is over the number of reactions r in the reaction set, αsr are the stoichiometric coefficients of
the reactant species s for reaction r, and βsr are the stoichiometric coefficients of the product species s for
reaction r. The reaction rate for reaction r, Rr, is the difference between the reverse and forward reaction
rates

Rr = Rrevr
−Rfwdr

(25)

where the reverse reaction rate is written as

Rrevr
= krevr

∏
s

(
ρs
Ms

)βsr

(26)

and the forward reaction rate is

Rfwdr = kfwdr

∏
s

(
ρs
Ms

)αsr

. (27)

In Equations 26 and 27, krevr
and kfwdr

are the forward and backward rate coefficients, respectively. The
forward rate coefficient is governed by an Arrhenius rate equation as

kfwdr
= Cfwdr

exp (ηr ln Teff − θr/Teff) (28)

where Teff is a function of the various internal energy temperatures, Cfwdr
is the reaction rate constant,

ηr is Arrhenius pre–exponent factor, and θr is the activation energy. For thermal equilibrium, Teff =
max (T, Trmin), where Trmin is a minimum reaction temperature which helps mitigate spurious behavior of
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the reaction model at very low temperatures. For the case of vibrational non–equilibrium, a commonly
employed effective temperature is Teff =

√
TTv, which states that the reaction rate is a function of the

geometric mean of the translational/rotational temperature and the vibrational temperature.

5-Species Air Model The 5-species air model consists of 5 species, N2, O2, NO, N and O and 5
reactions

N2 +M� 2N +M (r = 1,dissociation)

O2 +M� 2O +M (r = 2,dissociation)

NO +M� N +O +M (r = 3,dissociation) (29)
N2 +O � NO +N (r = 4, exchange)

NO +O � O2 +N (r = 5, exchange)

whereM is a collision partner, which may be any of the species. After following the preceding development,
the species source terms for the 5-species model are

ω̇N2
= MN2

(R1 +R2)

ω̇O2
= MO2

(R2 −R5)

ω̇NO = MNO (R3 −R4 +R5) (30)
ω̇N = MN (−2R1 −R3 −R4 −R5)

ω̇O = MO (−2R2 −R3 +R4 +R5) .

For the purposes of the performance analysis of the reacting gas model in this paper, we consider the
5-species air model, with a single energy equation and no turbulence model, giving 9 equations per mesh
entity (i.e., cell).

2.3 Spatial Discretization
The conservation equations listed in Equation 1 and Equation 14 are currently discretized within SPARC
using a cell–centered finite–volume method on both structured and unstructured grids. The basic control
volume is a cell (Ωc), which is composedß of any number of faces on the boundary of the cell (Γc). The
number of faces depends on the cell topology (six faces for a hexahedron, in the case of structured and
unstructured grids; five faces for a pentahedron, five faces for a pyramid, and four faces for a tetrahedron,
in the case of unstructured grids). A domain Ω may contain any number of cell volumes Ωc that must
be integrated over in order to discretize the equations within the domain. Finite volume methods utilize
the Divergence Theorem to turn the task of integrating the divergence of a vector field over a volume into
integrating the flux of that vector field over a surface. Thus, the integration of these equations is written as∫

Ωc

∂U

∂t
dV +

∫
Γc

(F i(U)−Gi(U)) dAi −
∫

Ωc

SdV = 0 (31)

where dV and dAi are the infinitesimal cell volume and face area vector, respectively. The volume and surface
integrals in equation 31 are approximated by numerical integration. The volume integrals are approximated
for cell c as ∫

Ωc

∂U

∂t
dV ≈ ∂U c

∂t
V c ,

∫
Ωc

SdV ≈ ScV c (32)

and the surface integrals are approximated for the faces f enclosing a cell as∫
Γc

(F i(U)−Gi(U)) dAi ≈
∑
f

(
F f
i (U)ni −Gf

i (U)ni

)
Af (33)

where ni is the unit normal face area vector and Af is the face area.
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Thus, the semi-discrete form of Equation 31 can be written as

∂U c

∂t
V c +

∑
f

(
F f
i (U)ni −Gf

i (U)ni

)
Af − ScV c = 0. (34)

Both the Roe and the modified Steger-Warming scheme are used for upwind evaluation of the inviscid
fluxes. A variable reconstruction procedure is used to obtain second-order accuracy, along with a slope limiter
to control the reconstruction behavior at strong gradients. A simple face averaging of the flow variables is
used for evaluation of the viscous fluxes. Gradients are computed by either a Green-Gauss or weighted
least-squares (WLS) procedure. These gradients are then interpolated to the face integration point and
corrected via a non–orthogonal correction technique. The non–orthogonal correction improves the quality of
the interpolated gradients between highly stretched or highly distorted cells by correcting for the difference
between the face area vector and the vector between the two neighboring cells.

2.4 Time Integration
Time integration of the discretized governing equations is performed via a four-stage explicit Runge-Kutta
integrator or a backward Euler implicit integrator. For implicit solution, Newton’s method is used to solve
the nonlinear equations at each time step. Several linear equation solvers are available to solve the linearized
set of equations, including both relaxation solvers and Krylov solvers. For the performance analysis work
in this paper, we focus on implicit integration with a block tri-diagonal (line-implicit) fixed-point iteration
solver.

2.5 Verification and Validation
SPARC is a relatively new code, having formally begun development in mid-2015. Much of its early devel-
opment was focused primarily on addressing performance portability for the code. In mid-2017 we began a
campaign to establish credibility in SPARC’s simulation abilities, especially for the use cases that are central
to Sandia’s mission. We started, and continue, to do this by following a rigorous verification and validation
process. This work has focused on solution and code verification for canonical problems and code validation
against experimental data. Recent validation work has considered hypersonic double-cone experiments and
HIFiRE-1 experiments, both of which are ground tests conducted in Calspan-University of Buffalo Research
Center’s (CUBRC) shock tunnel. This verification and validation work will be documented in a number of
upcoming papers [9, 10, 11, 12].

3 Performance Portability and Multiple Levels of Parallelism in a
Compressible CFD Code

Sandia National Labs’ primary strategy for achieving performance portability across next-generation com-
puting platforms in application codes centers around a parallel programming model called Kokkos [13, 14].
The Kokkos project provides both a shared-memory parallel programming model, and a C++ library im-
plementation of that model. Applications can use Kokkos to write a single parallel code that builds, runs,
and performs well on a variety of computer architectures with minimal architecture-specific code. These
architectures include GPUs, “many-core” CPUs like Intel Xeon Phi, and traditional multicore CPUs. Its
C++ implementation relies only on standard C++ language features supported by most compiler vendors.

As mentioned in the Introduction, a trend in the new architectures being developed for HPC is to add
more parallelism at the node level. This typically means greater numbers of threads per device as well as
wider vector units. MPI for parallel communication between nodes is still important, but on-node parallelism
is increasingly something that cannot be ignored to fully exploit the potential of these new architectures.
This has given rise to the terminology “MPI+X” when referring to the parallel programming paradigms
of the future, where “X” refers to the on-node parallel strategy/programming model. We employ multiple
levels of parallelism, using MPI for inter-node parallelism, and MPI, threads, and vectorization for on-node
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parallelism. This section discusses how we have structured our algorithms and data to use these multiple
levels of parallelism.

Throughout this section and the rest of the paper, we will use the following terms. For heterogeneous
architectures, we use host to refer to the processing units, usually CPUs, that run the main executable code
and dispatch kernels to the device(s). There may be multiple host CPUs and multiple devices on a single
compute node. The device(s), in this context sometimes referred to as ‘accelerators’, execute kernels. A
kernel is a computational operation that performs some unit of work; in the context of a CFD code, kernels
execute flux integration functions, source term functions, and appear in linear equation solvers, among
others. On an Nvidia GPU, a kernel is associated with a CUDA global function, and threads are launched
to execute the operations on the device. On a CPU or Xeon Phi, a kernel is associated with an OpenMP
parallel region, again where threads are launched to execute the operations on the processors. Threads
may execute independently or in a hierarchical nature, often called thread teams; the later mode introduces
an additional degree of parallelism at the thread level and is distinguished by shared-memory access and
team-level synchronization. Within each thread, operations may be vectorized via SIMD (single-instruction,
multiple-data) instructions, introducing yet another level of parallelism to the operations. Lastly, dispatch
refers to the mechanism by which functions are invocated for execution; this can occur either dynamically
(i.e., at run-time) or statically (i.e., at compile-time).

3.1 High-Level Design
SPARC has the following high-level structure. The Problem class is responsible for orchestrating the solution
to a problem, where this may be a single-physics forward analysis, a coupled-physics forward analysis, or
a more advanced analysis such as sensitivity analysis or solving an optimization problem. The Problem
class creates one or more TimeSolver classes depending on the nature of the analysis. Each TimeSolver
performs an explicit or implicit time integration. Within each TimeSolver is a NonlinearSolver which
is responsible for solving a set of discretized nonlinear equations. The NonlinearSolver calls upon
a Model, e.g., AeroModel, class to compute the discrete residual vector and, if using an implicit time
integrator, the discrete linearization of the residual (i.e., the Jacobian matrix). The Model calls a set of
Algorithm classes which compute physical quantities for the discretization being used. For example, one
such Algorithm computes the inviscid and viscous fluxes and flux Jacobians for the equations outlined in
Section 2.1 over all the faces of a mesh that has been discretized with a cell-centered finite volume method.
The intent of the Algorithm design is to re-use “physics models,” that is gas models and flux functions, for
any given discretization. The Algorithm classes loop over discretization blocks, calling Kernel classes,
which map the work to be done to an on-node parallel construct. In the simplest case, a Kernel implements a
Kokkos::parallel_for. We use a kernel composition approach to pull together a complete set of “physics
models” that are dispatched dynamically (less performant) or statically (more performant and required for
the GPU in our implementation). The topics of dispatch and kernel composition will be discussed more
later in this section. Last in the set of high-level classes is the LinearSolver class, which solves the set
of linearized equations that have been assembled by the NonlinearSolver. As mentioned in Section 2.4,
SPARC typically uses a block tri-diagonal solver for steady-state hypersonics problems and a block Jacobi
solver for unsteady hypersonics problems; these two solvers are available either as natively implemented
solvers in SPARC or performance-portable implementations are available through the Trilinos package
[15]. Additionally, SPARC has an interface to Trilinos’ Krylov solvers and more advanced pre-conditioning
such as multigrid pre-conditioners. The topic of performance-portable linear solvers will be elaborated on
later in this section.

This high-level design description is given to establish context and a nomenclature for the remainder of
this paper. The majority of the work in creating performance portability and introducing multiple-levels
of parallelism happen at the Kernel and LinearSolver levels; the rest of the description was given to
create an overall view of how the code has been structured to get to the point of calling these two important
and fundamental constructs.
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3.2 Data Layout
Data layout is critical for achieving high-performance for any single architecture. When trying to achieve high
performance for multiple architectures, one must have control over the data layout, since the optimal layout
for one architecture (e.g., Xeon Phi) is almost certainly not optimal for another architecture (e.g., GPU). A
distinguishing feature of the Kokkos programming model is that it integrates data layout (via customizable
multi-dimensional arrays called Views) with thread-parallel constructs (such as parallel_for). With
Kokkos, we have the flexibility to modify our data layout and parallel strategy for a given architecture and
to do this at compile time. The ability to do this is key for achieving performance portability.

SPARC supports both unstructured and structured mesh data structures. The unstructured mesh data
structures employ a two-dimensional View for each mesh block with the first dimension being the number of
entities in the block (e.g., cells for a cell-centered discretization) and the second dimension being the number
of state-variables for the given set of equations being solved. Each kernel traverses through the discretization
blocks and performs its operations. Each kernel class for an unstructured mesh implements a function having
the signature

void operator() (int entity_id) const;

where (entity_id) is an index into the entities of an unstructured block, used to retrieve data for the
current entities and for indirect addressing of data for neighboring entities. C++ developers call a class
that implements operator() a functor. In this case, operator() implements one iteration of a for
loop. Functors that implement operator() (IntegerType i) const for any built-in integer type
IntegerType, can serve as the loop body of a Kokkos::parallel_for. When it comes time to assemble
the result of the operations into numerical linear algebra (NLA) data structures, we must deal with the
problem of race conditions inherent to on-node programming models. There are several approaches we can
take to avoid race conditions, some of which are (a) thread locks, (b) atomic operations, and (c) graph-
coloring. Prior work in the literature and our own investigations on the most performant approach across
different architectures led us to choose graph coloring. We perform a 3D graph coloring during initialization
and keep this coloring as long as the mesh does not change. Graph coloring ensures that different threads
will never attempt to write to the same memory location concurrently in an NLA data structure. This means
that we do not need to use atomic operations, which we found to be slower. We also reorder entities within
each color to optimize the memory access pattern.

The structured mesh data structures employ a four-dimensional View for each mesh block. The first three
dimensions denote the index triplet of the structured block entities and the fourth dimension provides the
state-variable storage. Each kernel class for a structured mesh implements a function having the signature

void operator() (int k, int j, int i) const;

where (k, j, i) is an index into a structured block. Traversing a structure grid calls for a triply nested
loop. In our current implementation, we handle this with an outer Kokkos::parallel_for over a single
index, and manually implement a loop-collapse construct for the two inner loops. Recent versions of Kokkos
provide multidimensional parallel_for and parallel_reduce that handle loop collapse automatically,
and also let users easily control optimizations like tiling and loop order. We plan to explore these Kokkos
features in future work. Similar to assembly on an unstructured mesh, we use graph coloring for assembly
into the NLA data structures for a structured mesh. At present, we use a simple even-odd graph coloring,
meaning we traverse through the mesh, one i, j, and k line at a time, with the kernel performing its
operations on the odd-numbered entities first and then traversing through the mesh a second time, with
the kernel operating on the even-numbered entities second. In this case, memory access is stride-1 for the
inner-most i index dimension, stride-i for the middle j index dimension, and stride-ij for the outer-most k
index dimension. As the stride size increases, memory access becomes more costly. This observation will
be recalled later in Section 4 and is a motivation for pursuing a tile-based data layout for structured grids
which breaks data into smaller structured chunks to improve memory access.

For GPU architectures, the customizability of Kokkos’ View data layout is important; we observe
best performance when the four-dimensional arrays used for structured grids takes the layout (k, j, v, i).
This layout places the variable data storage in the second innermost access position and gives a strided or
“coalesced” memory access pattern. This same memory access pattern applies to the two-dimensional arrays
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used for unstructured grids, taking the form (v, i). A typical (k, j, i, v) layout is preferred and used for CPU
and KNL architectures.

3.3 Dispatch
The topic of function dispatch within a kernel was discussed in detail in prior work by the authors [16].
We’ll summarize this topic here because it is an important one when considering design for performance
portability with GPU architectures. Dispatch of a function can occur either dynamically (i.e., at run-time)
or statically (i.e., at compile-time). The next concern is at what level do functions need to be dispatched;
they may be called at a higher level and operate on “worksets” of data or at a lower-level and operate on
individual entities and their data.

We have found it more natural to write our functions at the entity level, such that the evaluation of a
flux across a face or the source term of a cell is considered one at a time. This decision dictated our choice of
dispatch. Regarding the GPU, we needed a strategy to dispatch an object’s function calls from the device.
Dynamic dispatch (i.e., making a virtual function call) on a GPU is possible by constructing the object on
the GPU. This is a necessity because constructing it on the host and copying to the GPU means that it
will exist in a different address space and it will have invalid memory access. Dynamic function dispatch
on the GPU in inner loops is costly, so we avoided this approach. Instead, we opted for static dispatch
via kernel composition. We do this by composing the full object/function hierarchy via C++ templates and
the complete kernel at compile time. Then at runtime, the appropriate kernel is selected and run. While
kernel composition and static dispatch lead to higher-performing code, it comes at the cost of increased build
time. This is an area of concern that has to be continually managed; we’ve opted for an explicit template
instantiation (ETI) approach to manage the combinations of objects/functions that must be chained together
into only the necessary set. This has worked well but compile time and executable size can still get large.
To handle this, on CPU platforms we allow for a mix of static and dynamic dispatch, choosing to use
dynamic dispatch for boundary condition codes where we are less concerned with performance and where
the sheer number of kernels to be composed is large. On GPU platforms, we must use static dispatch and
we are investigating using relocatable device code (RDC) to reduce compile time and executable size; the
performance cost of this has yet to be determined. Given the possibility of mixing static and dynamic
dispatch, we use a Dispatcher class that handles either run-time or compile-time function invocation.
Consider that we want to call the computeFlux() method on a derived class RoeFlux which inherits
from the base Flux class, we have a pointer to RoeFlux’s base class Flux called object and we want
to call the method either statically or dynamically. An example Dispatcher for dynamic dispatch is as
follows

template <bool is_dynamic> struct Dispatcher
{

template <typename Type>
static void computeFlux (Type* object) {

object->computeFlux();
}

};

where the is_dynamic template parameter controls static or dynamic dispatch and for this example Type
is the Flux base class. This first dispatcher simply provides a call through to RoeFlux’s virtual method
computeFlux via the base class object. This is then called with

Dispatcher<true>::computeFlux<Flux>(object);

An example Dispatcher for static dispatch is as follows

template <> struct Dispatcher<false>
{

template <typename Type>
static void computeFlux (Flux* object) {

static_cast<Type*>(object)->Type::computeFlux();
}

};
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where we now have a template specialization for is_dynamic = false. This is called as follows

Dispatcher<false>::computeFlux<RoeFlux>(object);

This statically casts our base class object to a RoeFlux and calls the computeFlux() method directly,
thus avoiding the virtual function call. This former case is more performant on CPU platforms and is our
design pattern for enabling lower-level polymorphism on the GPU.

3.4 Kernels
In SPARC, kernels are the construct that pull together data layout and mesh traversal to dispatch a function
using an on-node parallel pattern (such as parallel_for or parallel_scan). The kernel is given access
to the data arrays and the functions that use that data to do its operations. The parallel pattern being used
ultimately calls the kernel’s operator() functor mentioned in Section 3.2. On CPU architectures, Kokkos
calls OpenMP’s parallel patterns. On GPU architectures, Kokkos calls CUDA global functions. Several
important kernels in SPARC are ComputeResidualVolume and ComputeResidualBC, which compute
inviscid and viscous fluxes and flux Jacobians over the discretization blocks and assemble the results in the
MPI-distributed NLA residual vector and Jacobian matrix.

An example kernel for a structured grid is given in the listing below, which shows the salient features of
the previous discussion.

template <typename Scalar, typename GasModelType, typename KokkosExeSpace>
class ComputeResidualVolumeKernel :

public GasModelKernel<Scalar, GasModelType, KokkosExeSpace>,
public MeshTraverserKernel<ComputeResidualVolumeKernel<Scalar, GasModelType,

KokkosExeSpace>, KokkosExeSpace>
{
private:

typedef MeshTraverserKernel<ComputeResidualVolumeKernel<Scalar, GasModelType,
KokkosExeSpace>, KokkosExeSpace> MeshTraverser;

const Array4D<Scalar> cell_primitive_vars;
...

public:
ComputeResidualVolumeKernel(const StructuredBlock& blk, const

MaterialCompFluid<Scalar>& gasmodel, const Array4D<Scalar>& cell_V, ...) :
GasModelKernel<Scalar, KokkosExeSpace, GasModelType> (gasmodel),
MeshTraverser(blk.kmin, blk.kmax, blk.jmin, blk.jmax, blk.imin, blk.imax),
cell_primitive_vars(cell_V),
...

{ /* constructor code */ }

KOKKOS_FORCEINLINE_FUNCTION
void compute(const Index& k, const Index& j, const Index& i) const
{ /* kernel functor code */ }

void Run() const
{

this->MeshTraverser::Run(); // traverse through the current mesh block,
running the above kernel functor code for each mesh entity

}
}

In this listing, the ComputeResidualVolumeKernel class derives from a GasModelKernel class, which
provides functionality to ensure that data associated with the perfect or reacting gas models is accessible from
the current memory space (host memory or device/GPU memory). ComputeResidualVolumeKernel
also derives from the MeshTraverserKernel, which as previously discussed, provides an architecture op-
timized means of employing a parallel pattern to perform the compute() functor operations on a structured
mesh block. The class constructor initializes its base classes and stores references to needed data arrays; in
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this case an Array4D, which is a wrapper for a four-dimensional Kokkos::DualView. The compute()
functor contains the bulk of the computational operations, possibly making calls to the gas model, com-
puting fluxes, flux Jacobians, etc. This method is decorated with the KOKKOS_FORCEINLINE_FUNCTION
macros, which annotates the method for Kokkos to call in parallel. Lastly, the Run() method invokes
MeshTraverser::Run(), which employs a loop-collapsed parallel_for to call the compute() func-
tor for each mesh entity.

This basic kernel pattern is replicated for each significant computational operation for which we wish to
dispatch operations in a thread-parallel fashion. The majority of SPARC is kernelized in this way and is the
key to portably and performantly executing the core assembly and solve operations on various architectures.

3.5 Linear Solvers
Design for performance portability across architectures in a linear solver follows many of the same principles
as it does for an application code such as SPARC; this requires wise data layout and employing on-node
parallel constructs to effectively use threads and vectorization in a portable way. There are several linear
solver options available to SPARC. Some are implemented natively to SPARC (block Jacobi and block tri-
diagonal solvers) and use OpenMP only. Others are available through the Trilinos package, such as
block Jacobi and block tri-diagonal solvers as well as Krylov solvers. The solver we will focus on here is
the block tri-diagonal solver available through Trilinos’ Ifpack2 [17], which uses BLAS routines from
KokkosKernels. KokkosKernels [18] implements computational kernels for linear algebra and graph
operations using the Kokkos parallel programming model.

On a CPU or KNL, the KokkosKernels block tridiagonal solver uses a single level of threading and
a SIMD-friendly data layout to achieve optimal performance on these devices; the reader is referred to the
paper on this work for further details of the implementation [19]. The key piece of this solver is a compact
data layout that allows for efficient SIMD vectorization on these architectures. On the GPU, the best
performance achieved to date has employed a hierarchical threading strategy and also uses SIMD-friendly
data layout. Work on optimizing for the GPU is ongoing and currently undocumented.

4 Performance Analysis
In this section we present and discuss a performance analysis of SPARC on multiple architectures: traditional
CPUs, many-core CPUs, and GPUs. ARM-based systems are potential alternatives to these three primary
architectures, and NNSA has recently announced the procurement of the world’s largest ARM-based HPC
system, which will be sited at Sandia [20]. However, an ARM system of reasonable scale is not yet available
to us and is not included in this work. Two cases will be considered, both using the “Generic Reentry
Vehicle” (GRV) geometry in a high Mach number flow. The GRV has evolved as useful test problem which
is representative of the aerodynamic and aerothermodynamic analysis use cases Sandia supports. Due to
the sensitive nature of Sandia’s work in aerothermodynamics for reentry, we give no specific details of this
problem other than that we use the finite-volume discretization in SPARC, and we perform a steady-state
analysis using implicit time integration and a block tri-diagonal solver. Additionally, we restrict this work to
consideration of the structured grid discretization; prior performance analysis revealed that the unstructured
implementation performs 10-30% better than the structured implementation [16]. This was attributed to the
linear memory access created during the graph coloring and initialization. As previously discussed, memory
access for the structured implementation is strided in the j and k dimensions which is less optimal; this has
motivated current work on tile-based data layouts for structured grids. The remaining details of the problem
are largely irrelevant to this study since the purpose is to assess the performance portability strategy we
have employed. The first performance analysis case utilizes the perfect gas model discussed in Section 2.1
and the second case utilizes the 5-species air model presented in Section 2.2.

Both a strong and weak scaling study was performed for each of the above two cases. Analysis on
traditional CPU architectures was performed on a Intel Xeon Broadwell (denoted CTS-1/BDW) and on an
Intel Xeon Haswell system (denoted ATS-1/HSW). Analysis on Intel’s Xeon Phi architecture was performed
on an Intel Xeon Phi Knights Landing system (denoted ATS-1/KNL). Analysis on Nvidia GPU architectures
was performed on a multiple testbed systems. The first GPU system, denoted CTS-1/P100, has compute
nodes containing a two Intel Xeon Broadwell processor and two Nvidia Pascal 100 GPUs per host CPU. The
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second GPU system, denoted ATS-2/P100, is similar to actual ATS-2 hardware but is a generation prior; it
has compute nodes with two IBM Power8 CPUs and two P100 GPUs per host CPU. The third GPU system,
denoted ATS-2/V100, has actual ATS-2 nodes, which have two IBM Power9 CPUs and two Nvidia Volta 100
(V100) GPUs per host CPU. All of these systems are a good representation of the HPC landscape available
to the NNSA labs for capacity (moderate scale) and capability (highest scale) computing for the next several
years.

In each plot that follows, the abscissa is the number of compute nodes or GPUs. For CTS-1/BDW and
ATS-1/HSW, each node has two CPUs. For ATS-1/KNL, each node has a single KNL, which were always
run in “quad_cache” mode. This mode treats the HBM as a cache for the main DDR memory. If the problem
fits entirely into HBM, “quad_flat” mode performs slightly better but requires that the nodes be rebooted
into this mode and for this reason is less practical unless the memory requirements for any given problem are
known ahead of time. For any GPU node, we consider the unit of measure to be a single GPU. The ordinate
in these plots is log2 time per time step in seconds. Ideal strong scaling should follow a constant slope line
on these plots. Ideal weak scaling should follow a line of slope 1 (i.e., a horizontal line). The GPU testbed
platforms are fairly limited in size, with the ATS-2 systems having no more than 40 GPUs and the CTS-1
system having 120 GPUs. For CPU and KNL, the legend in each plot has “x threads,” where x is used to
denote the number of threads per rank. For Broadwell and Haswell nodes, we employ 32 ranks per node.
For KNL nodes, we employ 64, 32, and 16 ranks per node with 4, 8, and 16 threads per rank, respectively.

For each scaling analysis, six timings are reported. The first, “Compute Residual: Boundary Terms,” is
the on-node only (i.e., no MPI time included) time taken to compute fluxes and flux Jacobians on the mesh
boundaries and assemble the result into the distributed NLA objects. This is generally a very small fraction
of the total time taken for each time step. The second, “Compute Residual: Interior Terms,” is the on-node
time taken to compute fluxes and flux Jacobians for the interior of the mesh and to assemble the result. For
the assembly phase, this is by far the most compute intensive kernel. The third, “Post Solve Update,” is the
time taken to compute all quantities needed for the “Compute Residual” routines. This includes computing
primitive variables from conserved variables, quantities that are derived from the the primitive variables and
gradients of a subset of these variables, in addition to other small operations. “Post Solve Update” includes
time spent doing MPI communication for primitive variables and gradients. The fourth timing is “Equation
Assembly,” which is the total time taken for a time step minus the linear equation solve time. This captures
any remaining operations not a part of the first three timers. The fifth timing is “Linear Equation Solver,”
which is simply the time taken to solve the set of assembled equations at each time step. Generally speaking,
for the GRV cases considered here, 10-40% more time is spent solving the equations than time is spent
assembling the equations. The sixth and last timer is “Total Problem Solve,” which is the start-to-end time
for each individual time step.

4.1 GRV - Perfect Gas Model
This analysis is similar to the analysis we reported in prior work [16] but with the following important
differences. Prior work did not have all aspects of the code yet implemented and kernelized. This is impor-
tant because we now have nearly all physics models (RANS turbulence, reacting gas models) implemented,
which adds complexity to the kernels; at the time the prior work was conducted the code had a limited
physics simulation capability. Additionally, prior work did not include linear equation solve times for GPU
systems. At the time we did not have a reasonably performant block tri-diagonal solver for GPUs. The
KokkosKernels solver we have now for GPUs is still under active development, and in many regards the
performance shown here for this solver is preliminary.

4.1.1 Strong Scaling

A strong scaling analysis was performed on a 32 million cell multi-block structured grid. Figure 1 shows the
performance for several architectures and MPI rank/thread configurations. The commentary below will be
discussed relative to Haswell and Broadwell results.

Figure 1a shows the boundary term evaluation scaling. We note here that this kernel scales well for
traditional CPUs, does not scale well for many-core CPUs and performs slower and does not scales well for
GPUs. There is very little work to be done for this kernel and the kernel launch time, especially for the
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Figure 1: GRV, perfect gas model, implicit line solver, strong scaling

15



GPU, is not insignificant; it is evident that spreading the work to more devices and launching more kernels
has diminishing returns. This kernel is insignificant in terms of the overall equation assembly time but it
remains to be seen what impact this has at very high node/GPU counts.

Figure 1b shows the interior term evaluation scaling. All architectures are scaling quite well. KNL, for
any threading count, performs ∼ 1.3× slower than HSW/BDW. Other experiences have indicated that the
assembly performance of PDE codes running on for KNL processors benefits more from SIMD vectorization
than it does from threading [21]. For P100, this kernel is ∼ 2× faster than HSW/BDW and for V100, is
∼ 4× faster. This is a rather nice result for this significant kernel running on GPU architectures.

Figure 1c shows combined time of set of kernels that execute after the linear equation solve has taken
place. This is grouped in the total equation assembly time because this is a necessary operation for computing
the linear system to be solved. Because kernel execution and MPI communication time are grouped together
here we cannot delineate the relative timings for each. We can say that this operation is performing ∼ 1.2×
- 1.5× slower on KNL and P100 systems. For KNL, prior work has shown that MPI communication time
goes as increase the thread count (and decrease the MPI rank count), however, gradient computation time
takes ∼ 1.3× longer on KNL than on HSW/BDW. The P100 systems are comparable to KNL, which is likely
results from faster gradient kernel operations but generally slower MPI communication. The V100 result is
∼ 2× - 4× slower than HSW/BDW. We attribute this to the immaturity of the MPI software stack on this
very new hardware.

Figure 1e shows the linear equation solve time. Here we note really good performance and strong scaling
as the node count increase when running solver running on KNL relative to HSW/BDW. The nonlinearity
and poorer scaling at the lower node counts is attributed to the fact that problem does not fit entirely into
HBM, so there is no memory bandwidth benefit. At 16 nodes, this problem fits entirely into HBM and a
significant speedup (∼ 2×) over HSW/BDW is observed. This makes intuitive sense because the solver is
memory bandwidth bound, unlike most assembly operations which are compute bound, an benefit greatly
from HBM. The inclusion of SIMD vectorization also increases the performance of the solver on KNL, which
has wider vector processing units than HSW/BDW. Relative to prior work without vectorization, we have
observed an additional 20-30% increase in performance with vectorization.

Figure 1f shows the total time taken for a time step (the sum of equation assembly time and linear equation
solve time). It is quite interesting, and somewhat unfortunate, that the end-to-end time step timing ends up
being very similar across all of the architectures. For HSW/BDW systems, we feel like the performance is
good overall and nearing optimal performance for the hardware. This statement is fitting since traditional
CPUs have been around for decades and we collectively have been writing our software to perform well on
for these systems. For the newer hardware, the strengths of each end up being offset by the weaknesses.
In the case of KNLs, excellent solver performance is offset by equation assembly time that is about equally
slower than HSW/BDW. The net effect is that end-to-end time on KNL, for this particular problem, is
not noticeably any better than HSW/BDW. We will note that a more solve-dominated problem will give
better performance than HSW/BDW by taking advantage of the fast solves on KNL. SIMD vectorization
of the interior assembly kernels could make a big difference in the overall performance on KNL. In the case
of GPUs, the excellent interior flux evaluation performance is offset by poor scaling of very small kernels
and poor MPI performance. Coupled with modest linear equation solve performance, the net effect is that
end-to-end time on GPUs is modestly slower than the other architectures. Given a completely optimized
GPU solver and better MPI performance, this architecture possibly has the most potential.

4.1.2 Weak Scaling

An assessment of weak scaling (fixed grid size per node or GPU) was performed on the GRV using a sequence
of nested multi-block structured grids, ranging from ∼ 2 million cells to ∼ 2 billion cells. Each grid is an
8× refinement of the previous grid in the sequence. A weak scaling analysis for V100 was not possible; it
was not possible to run the weak scaling problem with 64 GPUs (our system only has 40 V100s) and we
encountered technical difficulties in getting a single V100 case to run. A single V100 data point is shown for
only for the sake of reference.

Figure 2a shows the boundary term evaluation weak scaling. This kernel clearly is not scaling well for
any architecture but this kernel is quite small and overall insignificant.

Figure 2b shows the interior term evaluation weak scaling. Performance relative to each architecture shows
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Figure 2: GRV, perfect gas model, implicit line solver, weak scaling
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the same behavior as in the strong scaling, and the same rationale given there applies here. HSW/BDW
and KNL weak scale very well while the GPU platforms show slightly less than ideal parallel efficiency.

Figure 2c shows the post solver kernels aggregate weak scaling. HSW/BDW performs and scales the best
and the explanation given for the strong scaling of this operation is the same here.

Figure 2e shows the linear equation solve weak scaling. KNL performs best but the architecture that
scales the best here is not evident.

Lastly, Figure 2f shows weak scaling for the end-to-end time step time. Similar to the conclusion given in
for the strong scaling of this problem, all architectures perform about the same. Again, for KNL and GPU,
the strengths and weaknesses roughly offset. It does appear as though the weak scaling parallel efficiency of
HSW/BDW is the best, but bring this problem up to a much higher weak scaling limit is required before we
can definitively make this assertion.

4.2 GRV - 5-species Air Model
This analysis focuses on the performance of the reacting gas model that has been implemented in SPARC. We
use the 5-species air model discussed in Section 2.2 with a single energy equation and no turbulence model.
While the machinery around mesh traversal and data layout is the same as with the perfect gas model, the
computational kernels are considerably more complex.

For this study we reduce the number configurations for each architecture as follows: a) only one thread
per rank for HSW/BDW (the previous study shows now significant impact of using two threads), b) 8 and
16 threads per rank for KNL (these configurations have proven to be the most performant for our code),
and c) only P100 results (unfortunately, problems with the MPI installation prevented us from running this
case on the V100 system).

4.2.1 Strong Scaling

A strong scaling analysis for the reacting gas model was conducted on the same 32 million cell multi-block
structured grid as in Section 4.1.1. We begin with some preliminary comments for all of the plots.

First, for this problem, GPU memory becomes completely saturated at 16 devices. This has a very
dramatic and adverse effect in each of the scaling curves. The reason for this is not entirely understood at
this time.

Second, much of commentary given in Section 4.1.1 for the relative performance between architectures
applies here. We will thus limit the commentary here to only the changes in performance and scaling behavior
between the perfect and reacting gas models.

Figure 3b shows the strong scaling of the interior flux evaluation kernel. The difference between HSW/BDW
and KNL is larger the in the perfect gas model, being ∼ 1.8× slower for KNL. This kernel is compute-bound
even more so than the perfect gas kernel and the slower cores on KNL are likely the reason for the slower
performance. As previously mentioned, SIMD vectorization on KNL may improve the performance. On
P100, this kernel is no faster than HSW/BDW, where as it was ∼ 2× for the perfect gas model. This model
is much more complex and requires the use of temporary variables/arrays. Temporary variables/arrays do
not significantly affect performance on traditional CPUs or many-core CPUs but do have an affect on GPUs,
which are more susceptible to register pressure. We attribute this to reduced performance of this model on
P100. We expect performance on V100 to be much better than P100, as it was in Figure 1b, however we
were unable to run the strong scaling for this case.

Figure 3e shows the solver performance for the GPU to be between that of HSW/BDW and KNL, as was
case in Figure 1e. For the complete time step time, shown in Figure 3f, also we draw the same conclusion
as we did for Figure 1f; the end-to-end time is roughly the same across architectures, owing to the fact that
for KNL and GPU the strengths are almost equally offset by the weaknesses.

4.2.2 Weak Scaling

A weak scaling analysis of the reacting gas model was performed for multi-block structured grids ranging
from ∼ 2 million cells to ∼ 2 billion cells. Figures 4a - 4f show very similar trends as in Figures 2a - 2f.
The performance differences between the perfect gas model and the reacting gas model discussed in the
previous section apply to the weak scaling of this problem. For these reasons, not much new commentary is
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Figure 3: GRV, 5-species/1-temperature gas model, implicit tri-diagonal solver, strong scaling
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warranted. We did get a single V100 run for the coarsest weak scaling grid with 4 GPUs, shown as single,
blue triangle in the plots. Not much can be concluded from this sole data point, however for Figure 4b it
seems to indicate the same observation from the perfect gas model analysis that V100 is ∼ 2× faster than
P100.

5 Conclusion
SPARC is being developed as a performance-portable compressible CFD code to do Sandia’s aerodynamic and
aerothermodynamic modeling and simulation work and to address the challenges posed by next-generation
computing platforms. In this paper, we presented the software design patterns we have adopted to enable the
code to run performantly on present day CPU-based systems (Intel’s Xeon Haswell and Broadwell processors)
as well as many-core architectures (Intel’s Xeon Phi Knights Landing processors) and GPU architectures
(Nvidia’s Tesla P100 and V100). Multiple levels of parallelism are employed by SPARC; MPI is used for
inter-node parallelism and MPI, threads, and SIMD vectorizations (to some degree) are used for on-node
parallelism. Kokkos enables our on-node parallelism strategies to be portable among architectures. At this
point in time, we do not claim to have optimized code for any given architecture and our effort on truly
achieving performance portability is still a work in progress. However, we feel that what we have accomplished
to date is promising. We have a single code base that is running reasonably efficiently on CPUs, KNLs and
GPUs, with some notable highlights: 1) all significant computational kernels for the perfect and reacting gas
models in SPARC have been written with Kokkos and are portable across all architectures, 2) linear equation
solve performance is up to 2× faster for threaded and vectorized KNL than for traditional CPU architectures
and of comparable performance for GPU architectures, and 3) the most expensive equation assembly kernels
are up to 2× faster for P100 GPUs and up to 2× faster for V100 GPUs than for traditional CPU and KNL
architectures. Ongoing and future work focuses on the following: 1) use of SIMD vectorization to improve
the performance of equation assembly and solve for KNL, 2) improvement and optimization of the linear
equation solver for GPU systems, and 3) strategies for improved assembly on GPU systems.
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