
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona,Spain, July 9-13, 2018

ICCFD10-129

Multiblock structured grids for direct numerical
simulations of transonic wing sections

M. Zauner and N. D. Sandham
Corresponding author: m.zauner@soton.ac.uk

University of Southampton, UK.

Abstract: Direct numerical simulations of transitional and turbulent flows around airfoils at
moderate and high Reynolds number require large and complex grids consisting of billions of grid
points. Advances in computational resources towards exa-scale computing (1018 floating point
operations per second) and powerful algorithms that aim to exploit the full potential of modern
high-performance computing architectures allow an increase of size and complexity of such simula-
tions. However, high-order numerical methods for structured curvilinear grids require continuous
metric terms up to the second order of derivatives or higher. An evaluation of the requirements on
grid-generation tools, stressing scalability, precision and flexibility, suggested the need for hand-
crafted grids. In the present contribution, we outline a method based on polynomial functions and
identify the benefits of such techniques for large structured multi-block high-fidelity grid generation
around airfoil geometries, also providing an open-source tool for airfoils with sharp as well as blunt
trailing edges.

Keywords: Grid Generation, Computational Fluid Dynamics, Airfoil, Open Source.

1 Introduction
So far, direct numerical simulation (DNS) of aircraft wing sections is limited to relatively low Reynolds
numbers compared to real flight conditions. As DNS needs to resolve the smallest length scales of tur-
bulent structures (Kolmogorov scales), each spatial dimension needs NL ≈ L

ηm
grid points to discretise a

characteristic length scale L. Assuming homogeneous isotropic turbulence we can write the microscale ηm
as

ηm =

(
ν3

ε

) 1
4

=

(
ν3L

U3

) 1
4

, (1)

where ν, U and ε denote the kinematic viscosity, the characteristic velocity and the dissipation rate, respec-
tively. Hence, the number of grid points in three dimensions scales with the factor

N3
L ≈

 L(
ν3L
U3

) 1
4

3

= Re
9
4

L. (2)

That means to increase the Reynolds number for a DNS by a factor of 16, the grid would be theoretically
512 times larger. Equation (2), based on isotropic turbulence, tends to overestimate the grid size, as the
laminar and potential flow regions do not contain turbulent structures and can have a lower grid resolution.
Nevertheless, the increase of the overall computational costs is still considerable. Since 2003 the Reynolds
number (in this contribution always based on the axial chord length c at zero incidence, unless otherwise
stated) of resolved DNS has risen from Re = 10,000 [1] to Re = 500,000 [2]. Various recent publications,
such as [3], [2], [4], [5] and many more show the challenges, but also the potential of high-fidelity simulations

1

to investigate complex transonic flow phenomena over wings in order to improve the aerodynamic efficiency
and extend the flight envelope for next-generation aircraft at moderate Reynolds numbers.

A new generation of DNS codes, such as OpenSBLI [6], aims to exploit modern high-performance com-
puting architectures more effectively and advance towards exa-scale computing to eventually solve problems
at high Reynolds numbers. DNS of transitional and turbulent flows around airfoils involving the application
of high-order central-difference methods for structured curvilinear grids, require continuous metric terms
up to the second order of derivatives or higher. Otherwise, artificial disturbances are introduced into the
Navier-Stokes equations, increasing the numerical error. Commercial software packages often apply methods
that solve elliptic partial differential equations to increase the smoothness of the grid. Those approaches are
problematic for geometries with a blunt trailing edge in a three-block CH-grid configuration (figure 1), be-
cause the whole grid cannot be described by a single matrix. Furthermore, in a direct numerical simulation,
the grid has to cover a wide range of length scales. On the one hand, it is necessary to resolve boundary- and
shear-layers sufficiently well, whereas on the other hand one does not want to over-resolve the potential flow,
in order to keep the computational efforts as low as possible. Without intervening manually, grid smoothing
algorithms tend to shift points from the highly resolved regions into the freestream region. The memory
requirements to smooth and live-render large DNS grids can be challenging as well. With respect to analyses
of the acoustic field or global instabilities, it is also beneficial to control the spacing in the free-stream region,
avoiding too coarse a grid spacing.

Simulations were carried out by [7], using the predecessor code of OpenSBLI and splitting the compu-
tational domain into three blocks consisting of one C-block (B2) around Dassault Aviation’s V2C airfoil
geometry and two H-type blocks (B1 & B3) enclosing the wake region and outflow. The arrangement of
all three blocks is sketched in figure 1. There are three block interfaces in between B1 and B3, B2 and
B1 as well as B2 and B3. The close up of figure 1 indicates how the interfaces to block 2 are related to
the two corners of the blunt trailing edge. In figure 1, the coordinates of the Cartesian coordinate system
are denoted by x and y in free-stream direction and normal to it, respectively. The curvilinear coordinates
are denoted by ξ and η in the circumferential and radial direction, respectively. Curves that consist of grid
points with constant values of η are called ξ-gridlines, whereas curves of constant ξ-values are denoted as
η-gridlines (grey-dashed curves in figure 1). The large grey arrows indicate the direction of increasing grid
point number. B2 is generated first and then B1 and B3. An evaluation of the requirements on the grid
generation tool, stressing scalability, precision and flexibility suggested the need for hand-crafted grids of the
kind used by [7].

x

y

B1

B3

B2

solid
ξ

η

Figure 1: Segmentation of the grid into three blocks.

2

An in-house tool was developed to generate large high-fidelity grids for airfoils on mainstream single-
core computers or laptops. The grid spacing is described by high-order polynomials, while the gridlines
are generated by a blending procedure. The approach has been successfully tested and applied for DNS at
moderate Reynolds numbers, using grids that consist of more than 10 million points in the 2D x− y-plane.
An optimised grid resolution requires good understanding of the flowfield. More precisely, the user needs to
know critical regions and the length-scales of turbulent structures. This poses a big problem, as it is often not
possible to identify those regions and length-scales beforehand. As we want to reduce the need for extensive
grid studies involving expensive 3D simulations, we apply an error-severity indication tool, developed by [8],
to quantify and compare the quality of grids a posteriori. This approach analyses the Fourier spectrum of
derivative quantities such as vorticity in order to identify grid-to-grid point oscillations that do not decay
with expected rates. Regions can then be identified for more focused grid refinement. The grid analysis and
refinement strategy is discussed in detail by [9].

outer boundary (OB)

Adjust angle of attack

Define/Read in raw geometry

Discretisation of trailing edge (TE)

Discretisation of Contour 1 (C1)
Contour 2 (C2)
Contour 3 (C3)
Contour 4 (C4)

Define wall-angles of η-gridlines (φw)

Create shape of airfoil extension

Discretisation of airfoil extension

Discretisation of corresponding segment at OB

Define angles of η-gridlines along extension

Discretisation of outer boundaries (OB) Top C1
Top C2
Top C3
Top C4

Define η-gridlines at trailing edge
half chord
leading edge

Define a continuous function for the spacing and

Test generation of 2D-grid of B2

Generate 2D-grid of B2

Generate 2D-grid of B1 and B3

C1

C2C4

C3

ϕ

η
-g

ri
d
li
n
e

Preconditioning

Surface grid

Calculate airfoil extension for grid transition

Define outer domain boundaries of B2

Define distribution of points along η-gridlines

2D Grid generation

stretching parameters along the surface

(spacing and stretching)

Figure 2: Flow chart outlining the grid-generation process.

3

−0.10

−0.05

0.00

0.05

0.10

y
[−

]

TE

C3

C4

C1

C2
TE

x [−]

1.0 1.1−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LE
CR

Figure 3: Segmentation of Dassault Aviation’s V2C airfoil.

The full grid-generation process is described in the following section. Figure 2 can be seen as a guideline
of the work flow. It outlines a process consisting of six main steps. After setting the angle of attack and
general parameters regarding the 2D domain size, the airfoil surface and the grid around the trailing edge
is defined. The domain boundaries are discretised in a next step, which is followed by the design of the
η-gridlines. In a final step the full 2D grid is generated and written out. An open-source version of the
grid-generation tool for MatlabTM(discussed in section 3) also follows the structure shown in figure 2.

2 Grid-generation process

2.1 Preconditioning and airfoil surface
In order to keep numerical errors due to the applied interpolation methods low, the raw-input surface geom-
etry of the airfoil is specified with significantly higher resolution compared to the final grid (approximately
20 times higher). In order to increase the flexibility regarding the distribution of grid points, the airfoil is
divided into four sections corresponding to figure 3, labelled as C1, C2, C3 and C4. For the flow cases in
[7], sections C1 and C2 needed to be highly resolved to capture the laminar/turbulent transition process,
whereas sections C3 and C4 allow higher stretching due to the laminar boundary layer. The centre of rota-
tion (CR) to adjust the angle of attack (α) is located at half chord, on the mean chord line (the horizontal
dotted line in figure 3 with y = 0). The reference length is the axial chord length of the airfoil at zero
inclination and independent of the angle of attack. After the airfoil is rotated by an angle of attack (the red
contour in figure 4), it is vertically shifted, so that the leading edge (LE) again coincides with the abscissa
of the Cartesian coordinate system (the green contour in figure 4).

The discretisation of the airfoil starts at the blunt trailing edge (TE). An equidistant distribution of
points (constant spacing) is applied for the linear segment, connecting both corners. The number of grid
points resolving the TE needs to be chosen carefully, as the TE spacing also defines the height of the wall-
closest cell of the η-gridlines containing the corners of the TE. In order to discretise the airfoil, each section
is unwound and the surface distance s is calculated. The distribution of N gridpoints along the unwound
section is defined by a polynomial of 6th order and its derivatives according to

Aξ6+ Bξ5+ Cξ4+ Dξ3+ Eξ2+ Fξ+ G = s(ξ), (3)

6Aξ5+ 5Bξ4+ 4Cξ3+ 2Dξ2+ 2Eξ+ F = ∆s(ξ), (4)

30Aξ4+ 20Bξ3+ 12Cξ2+ 4Dξ+ 2E = ∆s′(ξ), (5)

120Aξ3+ 60Bξ2+ 24Cξ+ 4D = ∆s′′(ξ), (6)

where the spacing and its derivatives are denoted by ∆s, ∆s′, ∆s′′ and ∆s′′′, letters A − G denote the
unknown coefficients and the variable ξ is in the range of ξ ∈ [1, N]. We can now define ∆s and ∆s′ at the
first (ξ = 1) and last point (ξ = N) of the section. In addition we can choose ∆s′′ at the front- or back-end

4

x [−]

1.00.0 0.2 0.4 0.6 0.8

−0.1

0.0

0.1

y
[−

]

α = 4◦

Figure 4: Transformation of the original profile (blue) to an airfoil with 4◦ angle of attack. The purely
rotated profile is described by the red contour, whereas the green contour considers also a translation in
order to have the origin at the leading edge.

as well. The parameter ∆s′′ allows us to fine-tune the spacing independently of other parameters, whereas
∆s and ∆s′ need to agree with adjacent sections. Applying the boundary conditions to equations (3) to (6)
gives a system of seven linear equations that can be written in matrix form as

1 1 1 1 1 1 1

N6 N5 N4 N3 N2 N 1

6 5 4 3 2 1 0

6N5 5N4 4N3 3N2 2N 1 0

30 20 12 4 2 0 0

30N4 20N3 12N2 4N 2 0 0

120i3 60i2 24i 4 0 0 0





A

B

C

D

E

F

G


=



0

s(N)

∆s(1) = ∂s
∂ξ |ξ=1

∆s(N) = ∂s
∂ξ |ξ=N

∆s′(1) = ∂2s
∂ξ2 |ξ=1

∆s′(N) = ∂2s
∂ξ2 |ξ=N

∆s′′(i) = ∂3s
∂ξ3 |ξ=i


(7)

This system can be solved by multiplying the right-hand-side vector by the inverse of the coefficient matrix
on the left-hand-side. The parameter i depends on whether the section’s front- or back-end is fine-tuned
and is set to 1 or N , respectively. After having calculated all unknowns, equation (3) provides a function
for the surface distance s(ξ) of each grid point on that segment. We also know the Cartesian coordinates
of Nraw discrete points on the raw input surface section as a function of the surface distance sraw(ξraw).
Therefore, we can calculate the Cartesian coordinates of the grid points on the surface, applying a cubic
spline interpolation method according to [10]:

x(ξ) = spline{sraw(ξraw), xraw(ξraw), s(ξ)}, ξ ∈ [1, N] and ξraw ∈ [1, Nraw]

y(ξ) = spline{sraw(ξraw), yraw(ξraw), s(ξ)}, ξ ∈ [1, N] and ξraw ∈ [1, Nraw]. (8)

This calculation scheme is also used to allocate the grid points at the outer domain boundaries and along
η-gridlines within the domain. In order to achieve the optimal distribution of grid points, it might take some
iterations to adjust the derivatives of the spacing and the number of points within that section. Due to the
simplicity of the procedure it is possible to compare the changes after each iteration in a simple line plot
as illustrated in figure 5, where only the number of grid points is changed. Furthermore, it is possible to
calculate the spacing that would be needed to comply with wall units that are typical for the applied CFD-
method (DNS, LES, RANS, etc.). The required spacing in the wall-normal direction ∆n can be calculated

5

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1.0

1.5

2.0

2.5
×10−3

x [−]

∆
s

[−
]

NC3 = 400

NC3 = 1200

NC3 = 800

Figure 5: Spacing between grid points in the ξ-direction on the surface of section C3 as a function of x for
different numbers of points.

corresponding to the skin-friction coefficient Cf according to

∆n = ∆y+ · l+ = ∆y+ · ν
uτ

= ∆y+ · ν ·
√

ρ

τw
= ∆y+ · ν ·

√
2

Cf · U2
∞
, (9)

where ∆y+ denotes the spacing in the wall-normal direction normalised by the wall unit l+. In order to fully
resolve turbulent boundary layers in DNS, that spacing should be ∆y+ < 1 at the wall. The spacing in the
wall-tangential direction x+ is usually larger, but depends on the flowfield. In our case we typically aim for
∆x+wall ≈ 5 ·∆y+wall ⇒ ∆s ≈ 5 ·∆nwall. The skin-friction coefficient Cf is often unknown a-priori, but can be
estimated, with open-source wing-design tools like XFOIL [11]. The calculated target distribution can now
be plotted as a function of x on top of the current resolution to support the iterative process of adjusting
the polynomial.

After the whole airfoil surface is discretised, the wall angle ϕw, describing the inclination of η-gridlines
at the wall, is calculated for each section. For wall-normal gridlines, the wall angle would be defined as

ϕw(ξ) = tan−1
(
∂x(ξ)

∂y(ξ)

∣∣∣
η=0

)
. (10)

However, in concave sections in C2, gridlines would intersect with each other. Furthermore, the wall-normal
vectors at the corners are not aligned with the wall-tangential vector of the blunt trailing edge. The wall
angle at the TE corners is chosen to correspond to the angle of attack α, whereas it can be wall-normal near
the leading edge. At x ≈ 0.5 we choose vertical η-gridlines (ϕw ≈ 0). The transition can be accomplished by
high-order polynomials, blending, or a combination of both. On the one hand, polynomials can be defined
precisely at the boundaries and therefore allow segments of the grid to be connected without creating
discontinuities. On the other hand, the shape of high-order polynomials is hard to control. A blending
procedure is a simple way to combine the strength of high-order polynomials at the boundaries with simple
functions that describe the middle pieces. As an example figure 6 illustrates the blending from a wall-normal
ϕw close to the LE (red curve) to vertical gridlines (ϕw = 0) towards the half-chord for section C3. We
assume we have two vectors of the same length, where each discretises a continuous function. For this
example, both vectors have a length corresponding to the resolution NC3 = 400 of the surface section C3
(figure 3). The first vector ϕw,I contains values of the angle corresponding to wall-normal gridlines (the red
curve), whereas the second vector ϕw,II has the same size, but contains only zeros (the green line). In figure
6, both vectors are displayed as a function of their index ξ. A kernel vector Fb is now defined by a polynomial

6

0 400300200100 0 400300200100

0

−0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ϕLE = π/2

ξwall,C3 [−]

ϕ
[r
a
d
],
F
b

[−
]

ξwall,C3 [−]

Figure 6: The blue function for ϕw is calculated by blending the wall-normal angles (red curve) with zero
(green line), applying a polynomial blending kernel Fb according to the black curve. Plot (A) and (B) show
the effect of different blending functions Fb.

function having the same size. The kernel is Fb(1) = 0 at one end and Fb(NC3) = 1 at the other end. In
order get a smooth transition from the values of ϕw,I at the beginning and ϕw,II at the end of section C3,
both vectors are blended according to

ϕ(ξ) = ϕw,I(ξ) + Fb ∗ [ϕw,II(ξ)− ϕw,I(ξ)], with ξ ∈ [1,NC3]. (11)

The kernel Fb defines where exactly and how fast the transition should take place. The effect of changing the
kernel-function is indicated in figure 6 comparing (A) and (B). The blending factor Fb (black curve) in (A)
increases faster than in (B) and therefore the final blue curve approaches the green zero line earlier. As we
aim to keep the η-gridlines as far as possible wall-normal, we try to delay the transition from the red curve
to the green line a bit longer, without overshooting the zero-line too much. Too fast changes of the function
describing φ, or overshooting the zero-line significantly, can again result in gridline intersections. Eventually,
the blue curve in figure 6(B) follows the red curve, corresponding to wall-normal η-gridlines, for longer,
before settling down to zero and meets our requirements perfectly. This blending procedure is frequently
applied during the course of the grid generation, as it enables smooth transitions between constant values,
polynomials or other discretised functions in a simple way. Furthermore, it can be used for fine-tuning.

2.2 Airfoil extension
Towards the outflow of B1 and B3, the grid-design philosophy is to transition the curvilinear gridlines to
horizontal and vertical ξ- and η-gridlines, respectively (i.e. a Cartesian grid). The stretching in the η-
direction in the region close to the interface of B1 and B3 further downstream of the trailing edge is reduced
so that the distribution of grid points is uniform across the wake.

A grid transition region is defined (1 . x . 1.5), where the ξ-gridlines that contain the corners of the
blunt TE (wall-gridline) are designed as smooth extensions of the airfoil profile (the dotted curves in figure
7). The ξ-gridlines transition to horizontal lines. The extensions of the wall-gridlines in the grid transition
zone are designed as high-order polynomials. In the case of the V2C airfoil, both extensions converge.
Blending techniques are applied to better control the shape and limit the unfavourable compression of the
wake segment between both extensions. Towards the end of the grid transition zone, those extensions diverge,
so that the resolution in the wake is as uniform as possible in the η-direction. This is also achieved by an
additional blending procedure. It is noted that the design of those extension gridlines requires a careful
trade-off, as either a too fast transition to horizontal gridlines or an exaggerated compression of the region

7

1.00.980.96 1.02 1.04 1.06

0.07

0.06

0.05

y
[−

]

x [−]

solid

Figure 7: Sketch of a blunt trailing edge illustrating the extension of the contour by ξ-gridlines (dotted lines).

between both smooth extension-gridlines can affect the simulation time-step significantly.
The final gridlines forming the continuous airfoil extension are discretised in the ξ-direction in the same

way as the airfoil surface in section 2.1. The same spacing function (∆ = f(ξ)) is used to allocate the grid
points along the corresponding segments of the outer domain boundaries of B1 and B3.

2.3 Outer domain boundaries of B2

The outer domain boundaries (OB) of B2 consist of a semicircle with a radius of R = 7.5c, centred at
x = 0.5c and y = 0, that is linked by two horizontal lines on both ends to its corner points at x = 1c and
y = ±7.5c (figure 1). The outer boundaries are discretised in the same way as was described for the surface
boundaries. The spacing of each section can be defined independently from the surface, as we ease the
restrictions of linear η-gridlines. Angles ϕOB have to be defined also at the OB in a similar way as done for
ϕw. We can define those angles normal to the outer boundaries, but near x = −7c and y = 0 it is necessary
to blend the angle that is normal to the boundary with an angle corresponding to horizontal η-gridlines in
order to avoid gridline intersections.

2.4 Discretisation of η-gridlines
After defining the wall and outer domain boundaries, the η-gridlines need to be specified. The shape of each
η-gridline is defined in three steps that are illustrated in figure 8. The aim is to find a smooth, contained
transition from a wall-optimised curve (the green curve in figure 8(A)) to a boundary-optimised curve (the
green curve in figure 8(B)). In order to get the wall-optimised curve in figure 8(A), a blending between the
blue line, agreeing with the defined gridline-angle at the wall (ϕw), and a red line, connecting the point
at the wall (I) with the corresponding point at the outer boundary (II) is performed. In figure 8(B), the
outer-boundary optimised curve is calculated in the same way, considering a blue line associated with the
pre-defined angle at the outer boundary (ϕOB). In order to generate the final η-gridline (the magenta curve)
for that specific point on the surface, both green curves are blended again according to figure 8(C). The
discretisation of each gridline is also defined by a polynomial function and involves the same procedures that
are applied at the airfoil surface in the ξ-direction (section 2.1). In order to fine-tune and better control the
distribution of points, each η-gridline can be divided into two sections (representing the near- and far-field).
Each section is again discretised applying polynomial functions that can be connected without creating
discontinuities. This is done for grids in [7], but requires additional iterations of the process.

Representative η-gridlines and all required control parameters (spacing, stretching, etc.) are manually
defined at the trailing edge, half chord and leading edge. Based on those locations, continuous functions
(f(ξ), ξε[1, N]) for each parameter are generated along the wall, the outer boundaries and the airfoil exten-
sions. In the case of splitting the η-gridline into two parts, additional functions for parameters need to be

8

I

III

II

−7

−6

−5

−4

−3

−2

−1

0

−6 −5 −4 −3 −2 −1 0

x [−]

−6 −5 −4 −3 −2 −1 0

x [−]

−6 −5 −4 −3 −2 −1 0

x [−]

y
[−

]

Figure 8: Illustration of the three steps to generate the η-gridlines in block 2.

defined at the interface. Appendix A shows a simple example of how to optimise the distribution of grid
points along η-gridlines.

2.5 2D grid generation
The final grid is generated by looping through all grid points of the airfoil surface in the clock-wise direction,
as indicated by the arrows in figure 1. For each wall grid point, the corresponding η-gridline is generated and
discretised. In order to keep the memory requirements low, each gridline is written out after each iteration.
Although not implemented yet, this process can be fully parallelised. After B2 is generated, B1 and B3 are
created in two steps, looping trough all points along the airfoil-extension gridlines (dotted curves in figure
7) in the positive x-direction. Firstly, the η-gridlines between the convergent-divergent airfoil extension and
the outer boundaries are calculated in the same way as for B2. In order to connect those η-gridlines, a
segment in the passage between the extension gridlines is generated by a blending procedure considering
two lines corresponding to the pre-defined inclination of the η-gridlines along the extension gridlines. For
this connection segment an equidistant spacing is applied that corresponds to the spacing of the first cells
of the adjacent η-gridlines. All three segments are merged and consequently split into two parts according
to B1 and B3. Secondly, after the transition to a Cartesian topology, the η-gridlines are vertical with a
fixed distribution of grid points in the y-direction. Only the spacing in the x-direction changes. The η-
gridlines can be simply copied, by just varying the x-coordinates of each point. Each block is written out as
double-precision ASCII-files. A separate Python- or Fortran-script (depending on the CFD code) compiles
the binary grid file that is read in by the DNS code, corresponding to the spanwise extent and resolution.
The 3D domain is homogeneous and periodic in the spanwise direction.

2.6 Proof of continuity
The continuity of the grid is checked by looking at sensitive metric terms in representative regions of the
domain. Figure 9 shows (∂η/∂y) /∂ξ for the wall-gridline of the V2C profile, including three close-ups of
the corners at the blunt trailing edge (left and right hand side plots) and the leading edge (centre plot). No
discontinuities are presented in this metric term. Finally, figure 10 shows continuity of (∂η/∂y)/∂ξ along the
η-gridline that goes through both corners at the blunt trailing edge. Again, no discontinuities are detected.

3 Open-source software package
The code can be found online in a Github repository (https://github.com/ZaunerM/PolyGridWizZ). A
DOI is assigned to the current release (version 0.0.1-beta)[12]: 10.5281/zenodo.1245598. A fully-parallelised

9

https://github.com/ZaunerM/PolyGridWizZ
https://doi.org/10.5281/zenodo.1245598

ξ [−]

ξ [−] ξ [−]ξ [−]

∂
(∂η ∂y

)
∂
ξ

[−
]

∂
(∂η ∂y

)
∂
ξ

[−
]

Figure 9: The upper plot shows the evolution of (∂η/∂y)/∂ξ along the wall-gridline of the grid around a
V2C profile. The lower plots show close-ups of the sections close to the corners (left- and right-hand side
plots) and around the leading edge (centre plot).

10

y
[−

]

y
[−

]

∂
(
∂η
∂y

)
∂ξ

[−]
∂
(
∂η
∂y

)
∂ξ

[−]

Figure 10: Evolution of (∂η/∂y)/∂ξ as a function of y along the η-gridline going through the trailing edge.
The right hand side plot shows a close-up of the trailing-edge section.

version is planned to be re-written in Python, including supporting features for the design process of poly-
nomial grid-point distributions.

The published beta version is able to read in files containing the raw geometry of an airfoil with blunt or
to sharp trailing edges, or generate NACA four-digit airfoil surfaces (the default is a NACA4412 profile with
a sharp trailing edge). A guide-line is provided at the top of the source code. Some sections require several
iterations to optimise the grid. It is recommended to read through all comments and try to understand the
main operation of each section.

Examples of grids with blunt and sharp trailing edge are included in the release and were tested for direct
numerical 2D simulations using the legacy Fortran version of SBLI[7], and OpenSBLI[6] on CPU and GPU
computing architectures, respectively. The Fortran script BuildGridBinary.f as well as the Python script
convert_hdf5.py build the binary grid files for SBLI and OpenSBLI, respectively.

4 Conclusions
A grid generator for structured multi-block high-fidelity grids has been developed. The presented approach
is straight-forward and has benefits regarding the scalability, flexibility and precision of large grids. The
grid can be subdivided into arbitrary sections (here for example C1− C4 of the airfoil), and discretised by
piecewise continuous polynomials, which allows target-oriented local grid refinement. The precision (order
of continuity of metric terms) of the grids can be easily increased by increasing the order of polynomials that
are used to define spacing-functions, blending-kernels and gridlines. Memory requirements hardly increase
with the size of the grid.

A beta version of the grid generator is available (https://github.com/ZaunerM/PolyGridWizZ) that
can generate grids with continuous metric terms up to second order of derivatives, for airfoils with sharp
as well as blunt trailing edges. This code is considered as a proof of concept rather than a fully-developed
software-package and currently requires user understanding in order to fully exploit its potential. The
source-code contains all the important information for the grid and can be archived in a cheap way and
modified at a later stage. A future fully-parallelised version is planned to be written in Python, including

11

https://github.com/ZaunerM/PolyGridWizZ

features supporting the design process of polynomial grid-point distributions. Proper software-engineering
can significantly improve the user-friendliness and performance of the software package.

All parameters, including the nomenclature, are summarised in appendix B.

Acknowledgements
We acknowledge ARCHER (Leadership grant entitled "Transonic flow over an aerofoil"), EPSRC (grant
EP/M022692/1 entitled "Unsteady aerodynamics of wings in extreme conditions"), UK Turbulence Consor-
tium (grant EP/L000261/1) as well as the Iridis cluster for the computational resources. MZ was supported
by European Commission Horizon 2020 project grant entitled "ExaFLOW: Enabling Exascale Fluid Dynam-
ics Simulations" (671571).

Appendix A
This appendix gives an example for optimising the distribution of grid points along η-gridlines. Figure A.1
shows a screenshot of the MatlabTM grid-generation code with all sections collapsed. In order to generate
the default grid, one can simply run the whole code. It will stop before line 2145. In order to write out the
grid files for block 2, the sections starting at line 2223 need to be executed. After that, depending on a blunt
or sharp trailing edge, the sections beginning at lines 2293 or 2563 need to be executed, respectively. The
default grid is generated for a NACA4412 with a sharp trailing edge. The sections, between line 1539 and
1901 (framed blue in figure A.1) define the distribution of grid points along η-gridlines at three locations
(trailing edge, half chord and leading edge). Three options for the distributions grid points are available
at line 1586 (Style=1 % <– Choose Version 1/2/3). Starting with Style=1, the grid points are allocated
using a single sixth-order polynomial, which is shown by the blue line in figure A.2. Figure A.2(A) shows the
spacing between grid points as a function of η along the η-gridline originating at the leading edge (η = 0)
and ending at the outer boundary (η = 689). While option Style=1 allows the control parameter (second
derivative of the spacing) to be set at the wall, option Style=2 enables fine-tuning at the outer boundary. It
is recommended in both cases to set the control parameter to zero, so that uniform spacing can be maintained
close to the boundaries.

As the boundary layer around the leading edge is generally thin, one might want to reduce the grid
spacing in that region. On the other hand, smaller cells ahead of the stagnation point can affect the time
step significantly. In order to increase the resolution of the boundary layer without limiting the time step,
the stretching near the wall needs to be increased. This can be done easily by splitting the η-gridlines in
two. Selecting Style=3 at line 1586, a preliminary distribution is calculated according to option Style=2.
As a next step, one needs to set the flag at line 1834 to suggest=’t’ so that all derivatives are calculated
at the interface between the two parts of the η-gridline, based on the preliminary distribution function. The
location of the interface can be either set corresponding to a specific wall distance (control_dist) or η
(index). Those derivatives of the preliminary distribution function describe the boundary conditions for the
two polynomials of the divided η-gridline. If no other changes are made, the distributions of grid points
along the η-gridline for option Style=3 correspond to option Style=2.

As we only want to modify the gridlines around the leading edge, we start with the corresponding section
between 1785 − 1890. The interface between the two segments (denoted by index) is set at η = 125,
corresponding to a wall distance of about n ≈ 0.05. To increase the stretching at the wall for the preliminary
function, we reduce the spacing at the outer boundary by 50% (prof_deriv1_top=prof_deriv1_top3*0.5)
and obtain a distribution function according to the grey line in figure A.2(A). As a next step, the derivatives
are calculated at the interface. Setting the draft flag to draft=’t’, we can reset the spacing at the outer
boundary to its original value and reduce the wall spacing by 90%. As soon as the new input file is generated
(that is done in the last section at line 1990), the suggest and draft flags need to be set ’f’. Otherwise, the
wall spacing at the leading edge will be reduced every time the code is executed. Another option would be to
reset the spacings at the wall and outer boundary at the beginning of the code in section I2. Calculating both
polynomial distribution functions for both segments gives us the red lines in figure A.2. The grid spacing
increases rapidly within the first 125 points and then maintains a more or less uniform spacing for the next
200 points, before it increases again towards the outer boundaries. It could be fine-tuned by optimising

12

Figure A.1: Screenshot of the MatlabTM code (collapsed sections).

13

the number of grid points or the derivatives at the interface. Comparing both curves in figure A.2(B),
shows that the number of grid points within n < 0.02 increases by almost a third for the new distribution
function, whereas the grid is significantly coarsened in the incoming freestream region that tends to limit
the simulation time step. As a last step, the position of the interface (index) needs to be changed to the
same value at the center and trailing edge.

η
sp
ac
in
g

η η

w
al
l
di
st
an

ce

Figure A.2: The spacing between grid points (A) and the wall distance of grid points (B) along the η-gridline
at the leading edge are shown as a function of η. The blue and red lines denote distribution functions using
Style=1 and Style=3, respectively. The grey line in plot (A) shows the preliminary distribution that is
calculated in order to obtain the first part of the red line.

Appendix B
This appendix summarises all control parameters. Table B.1 lists all parameters to specify the discretisation
in the ξ-direction along the airfoil surface for the trailing edge (TE) and section 1 (C1) to section 4 (C4).
The ×-symbols indicate the grid segments that are influenced by each parameter. Besides the airfoil sections
C1 − C4, some parameters also influence the airfoil extension (AE), for example. The discretisation of the
trailing edge also defines the wall spacing of the η-gridlines at the corners of the trailing edge. Symbols with
asterisks denote fine-tuning parameters. In the case of 6th-order polynomials only one fine-tuning parameter
can be used per segment. The second column also lists the names of corresponding variables in the open-
source code. Part 1 of table B.2 shows all parameters necessary to discretise the outer boundaries of B2,
whereas part 2 lists all parameters required by the airfoil extension. The outflow boundaries of B1 and B3
are denoted by OF. Table B.3 shows the parameters needed to define an η-gridline (two segments). The
first section contains the number of grid points in both segments (near- and far-field) and the wall distance
of the interface (nc = 0.7 for grids in [7]). The second, third, and fourth sections denote the spacing in
the η-direction and derivatives of the spacing. The spacing-parameters can be defined for several locations
separately. Each location is assigned a number. In the provided version of the code, the parameters are
defined at the trailing edge (#= 1), half chord (#= 2) and leading edge (#= 3). Locations (#= 1) and
(#= 2) are the same for suction as well as pressure side. It should be borne in mind that the wall-spacing
at the trailing-edge corners is defined by the resolution of the blunt trailing edge.

14

Param. Code C1 C3 C4 C2 TE AE ηTE note

NTE NTEw x x Resolution of blunt trailing edge

NC1 Nc1 x No. of grid points in section C1
∆sTEu dsTEu x x ξ-spacing (∂s∂ξ) at upper TE

∆s′TEu ddsTEu x x ∂2s
∂ξ2 at upper TE

∆s′′TEu dddsTEu x∗ ∂3s
∂ξ3 at upper TE

∆sCu dscu x x ξ-spacing (∂s∂ξ) at upper half-chord

∆s′Cu ddscu x x ∂2s
∂ξ2 at upper half-chord

∆s′′Cu dddscu x∗ ∂3s
∂ξ3 at upper half-chord

ϕCu phi_center1 x x Wall angle at upper half-chord

NC3 Nc3 x No. of grid points in section C3
∆sLE dsLE x x ξ-spacing (∂s∂ξ) at LE

∆s′LE ddsLE x x ∂2s
∂ξ2 at LE

∆s′′LE dddsLE x∗ ∂3s
∂ξ3 at LE

NC4 Nc4 x No. of grid points in section C4
∆sCl dscl x x ξ-spacing (∂s∂ξ) at lower half-chord

∆s′Cl ddscl x x ∂2s
∂ξ2 at lower half-chord

∆s′′Cl dddscl x∗ ∂3s
∂ξ3 at lower half-chord

ϕCl phi_center2 x x Wall angle at lower half-chord

NC2 Nc2 x No. of grid points in section C2
∆sTEl dsTEl x x ξ-spacing (∂s∂ξ) at lower TE

∆s′TEl ddsTEl x x ∂2s
∂ξ2 at lower TE

∆s′′TEl dddsTEl x∗ ∂3s
∂ξ3 at lower TE

∗ optional (only one per section can be used)

Table B.1: Summary of the input parameters required to mesh the airfoil surface. The first and second
columns list the parameters and their name in the code, respectively, whereas columns 3 − 7 show, which
sections (according to figure 3) are influenced by each parameter. Column 8 and 9 indicate whether the
parameter impacts the airfoil extension in B1 and B3 or the discretisation of the η-gridlines (here denoted
by ηTE), respectively.

15

Param. Code C1 C3 C4 C2 AE OF note

R rad x x x x Radius of semicircle defining the C-block
∆sTTu dsTEut x x ξ-spacing (∂s∂ξ) at upper corner of B2

∆s′TTu ddsTEut x x ∂2s
∂ξ2 at upper corner of B2

∆s′′TTu dddsTEut x∗ ∂3s
∂ξ3 at upper corner of B2

∆sTCu dscut x x ξ-spacing (∂s∂ξ) at upper half-chord

∆s′TCu ddscut x x ∂2s
∂ξ2 at upper half-chord

∆s′′TCu dddscut x∗ ∂3s
∂ξ3 at upper half-chord

∆sTLE dLE_tan x x ξ-spacing (∂s∂ξ) at (x/y) = (−7/0)

∆s′TLE ddLE_tan x x ∂2s
∂ξ2 at (x/y) = (−7/0)

∆s′′TLE dddLE_tan x∗ ∂3s
∂ξ3 at (x/y) = (−7/0)

∆sTCl dsclt x ξ-spacing (∂s∂ξ) at upper half-chord

∆s′TCl ddsclt x ∂2s
∂ξ2 at upper half-chord

∆s′′TCl dddsclt x∗ ∂3s
∂ξ3 at upper half-chord

∆sTTl dsTElt x x ξ-spacing (∂s∂ξ) at lower corner of B2

∆s′TTl ddsTElt x x ∂2s
∂ξ2 at lower corner of B2

∆s′′TTl dddsTElt x∗ ∂3s
∂ξ3 at lower corner of B2

N3ϕ,t N3tphic x Control Point for approximating angles at outer boundaries
N4ϕ,t N4tphic x Control Point for approximating angles at outer boundaries
ϕt3,c ddphi3t_LEc x Second derivative of the boundary angle at N3tphic
ϕt4,c ddphi4t_LEc x Second derivative of the boundary angle at N4tphic

Nout Nw x Tot. no. of points in ξ of B1 and B3
Nblend Nbuffer x x No. of points for airfoil extension
distblend xTEc_save x x Approx. length of the transition region
Nk Nk x Speed up transition to horiz. grid lines
Fdiv StretchW x x Divergence factor of the wake-region∗∗
∆swt dsTEc x x ξ-spacing at the end of the transition

∆s′wt ddsTEc x x ∂2s
∂ξ2 at the end of the transition

∆s′′wt dddsTEc x ∂3s
∂ξ3 at the end of the transition

xout xOut x x-position of outlet
∆sout dsOut x ξ-spacing at outlet

∆s′out ddsOut x ∂2s
∂ξ2 at outlet

∆s′′out dddsOut x ∂3s
∂ξ3 at outlet

∗ optional
∗∗ Stretching factor that causes the upper and lower airfoil downstream continuation-lines to diverge

Table B.2: Summary of the input parameters required to mesh the outer boundaries (part 1) and to define the
airfoil-extension (part 2). The first two columns list the parameters and code variables, whereas column 3−8
show which grid sections, corresponding to the segmentation of the airfoil surface (figure 3), are influenced
by each parameter. Column 8 and 9 indicate whether the parameter impacts the grid transition region in
the wake of B1 and B3 (AE) or the outflow region (OF), respectively.

16

Param. Code note

NNF Ny1 No. of grid points in the nearfield
NFF Ny2 No. of grid points in the farfield
nc control_dist# Wall distance of nearfield boundary at TE
Nconst,1 const_line Force number of points being on wall-optimised η-line
Nconst,2 const_line2 Force number of points being on OB-optimised η-line
Nblend,LE blend_C Points left & right of LE used for blending φOB
∆nw prof_deriv1_wall# ∆n at the airfoil surface
∆nc prof_deriv1_cont# ∆n at the nearfield interface
∆nb prof_deriv1_top# ∆n at the outer boundary

∆n′w prof_deriv2_wall# ∂2n
∂η2 at the airfoil surface

∆n′c prof_deriv2_cont# ∂2n
∂η2 at the nearfield interface

∆n′b prof_deriv2_top# ∂2n
∂η2 at the outer boundary

∆n′b prof_deriv2_top# ∂2n
∂η2 at the outer boundary

∆n′′w prof_deriv3_wall# ∂3n
∂η3 at the airfoil surface

∆n′′c prof_deriv3_cont# ∂3n
∂η3 at the nearfield interface

∆n′′b prof_deriv3_top# ∂3n
∂η3 at the outer boundary

Table B.3: Summary of the input parameters required to generate η-gridlines. The parameters are defined
for several axial chord positions. A number (represented by the #-symbol) is assigned to each position.

References
[1] S. Bourdet, A. Bouhadji, M. Braza, and F. Thiele. Direct Numerical Simulation of

the Three-Dimensional Transition to Turbulence in the Transonic Flow around a Wing.
Flow, Turbulence and Combustion (formerly Applied Scientific Research), 71(1-4):203–220, 2003,
doi:10.1023/B:APPL.0000014932.28421.9e.

[2] M. Gageik, I. Klioutchnikov, and H. Olivier. Comprehensive mesh study for a Direct Numerical Sim-
ulation of the transonic flow at Rec = 500,000 around a NACA 0012 airfoil. Computers and Fluids,
122:153–164, 2015, doi:10.1016/j.compfluid.2015.08.030.

[3] L. Jones, R. Sandberg, and N. Sandham. Direct numerical simulations of forced and unforced
separation bubbles on an airfoil at incidence. Journal of Fluid Mechanics, 602:175–207, 2008,
doi:10.1017/S0022112008000864.

[4] S. M. Hosseini, R. Vinuesa, P. Schlatter, A. Hanifi, and D. S. Henningson. Direct numerical simulation
of the flow around a wing section using high-order parallel spectral methods. International Journal of
Heat and Fluid Flow, 16, 2016, doi:10.1016/j.ijheatfluidflow.2016.02.001.

[5] P. Balakumar. Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate
Reynolds Numbers. 47th AIAA Fluid Dynamics Conference, (June):1–19, 2017, doi:10.2514/6.2017-
3978.

[6] D. J. Lusher, S. P. Jammy, and N. D. Sandham. Shock-wave/boundary-layer interactions in
the automatic source-code generation framework OpenSBLI. Computers & Fluids, 0:1–5, 2018,
doi:10.1016/j.compfluid.2018.03.081.

[7] M. Zauner, N. De Tullio, and N. D. Sandham. Direct numerical simulations of transonic flow around
an airfoil at moderate Reynolds numbers. Submitted to the AIAA Journal, 2018.

[8] C. T. Jacobs, M. Zauner, N. De Tullio, S. P. Jammy, D. J. Lusher, and N. D. Sandham. An error
indicator for finite difference methods using spectral techniques with application to aerofoil simulation.
Computers & Fluids, 168:67–72, 2018, doi:10.1016/j.compfluid.2018.03.065.

17

[9] M. Zauner, C. T. Jacobs, and N. D. Sandham. Grid refinement using spectral error indicators with
application to airfoil DNS. In Submitted to ECCM-ECFD Conference proceedings, Glasgow, 2018.

[10] C. de Boor. A Practical Guide to Splines. Mathematics of Computation, 34(149):325, 1980,
doi:10.2307/2006241.

[11] M. Drela. XFOIL: An analysis and design system for low Reynolds number airfoils, 1989.
[12] M. Zauner and N. D. Sandham. PolyGridWizZ Beta-version 0.0.1. 2018, doi:10.5281/ZENODO.1245598.

18

	Introduction
	Grid-generation process
	Preconditioning and airfoil surface
	Airfoil extension
	Outer domain boundaries of B2
	Discretisation of -gridlines
	2D grid generation
	Proof of continuity

	Open-source software package
	Conclusions

