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Abstract: A robust numerical framework for the simulation of supersonic combustion is developed.
The highly stiff reacting Reynolds-averaged-Navier-Stokes (RANS) equations are integrated in time
using the extended unconditionally positive-convergent (UPC) implicit method. The iterative
method is highly efficient thanks to a decoupled implicit solution of the mean-flow (Navier-Stokes)
and chemical kinetics model equations, especially when large reaction mechanisms are employed.
To complete the compact structure of the implicit UPC scheme, a diagonal approximation of the
chemical reaction source-term Jacobian is proposed. The performance of the proposed implicit
scheme is evaluated through simulation of supersonic, premixed and non-premixed combustion
test cases. The obtained numerical results agree favorably with experimental measurements, and
monotonic iterative convergence is demonstrated. Finally, the proposed diagonal scheme demon-
strates considerable computational savings with respect to an equivalent scheme that is based on
the full, analytic chemical reaction source-term Jacobian.
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1 Introduction
Combusting flows are commonly found in modern engineering applications, such as high-speed propulsive
systems (e.g., scram-jet engines) and atmospheric re-entry vehicles (RV). However, the accurate simulation
and prediction of these flows presents a significant challenge to computational models, since it requires the
modeling of finite rate chemical kinetics.

Chemically reacting flows may be generally classified based on the Damköhler number, representing the
ratio of characteristic time scales of fluid motion and chemical reactions. When the Damköhler number
is extremely large, chemical reactions progress at an infinitely fast rate, so the chemical composition of
the gas adjusts immediately to changes in the flow, and the gas is assumed to be in chemical equilibrium.
Alternatively, when the Damköhler number approaches zero, the time scale of the fastest chemical reaction
is still considerably larger than that of the fluid motion. Therefore, the chemical composition does not
respond to changes in the flow, and the gas is considered chemically frozen. The limiting cases of frozen
and equilibrium flow are relatively easy to simulate with computational tools. However, most applications of
interest require simulation of flows that are characterized by finite Damköhler numbers. These flows contain
regions where chemical reactions do not reach equilibrium before the gas particles leave the reaction zone
by means of convection. In such regions, the fluid is in a state of chemical non-equilibrium that may affect
the surrounding flow by large density variations and heat release due to chemical reactions. The modeling
of chemical non-equilibrium is considerably more complex, as it requires the calculation of instantaneous
reaction rates from chemical kinetics.
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1.1 Chemically Reacting Flow Modeling
The simulation of chemical non-equilibrium necessitates the use of finite-rate chemistry models to describe
the kinetics of detailed reaction mechanisms. A single, global chemical reaction may qualitatively describe a
complex process. Yet, accurate modeling of that process in a numerical simulation involves a break-down to
numerous elementary reactions. Methane combustion, for example, takes place by a manifold of hundreds
of elementary reactions, chemically equivalent to a single global reaction.

A chemical kinetics model allows to calculate the instantaneous kinetic rates of the elementary reactions
comprising a specific detailed reaction mechanism. Several models usually exist for describing the same
reaction mechanism, varying in accuracy and complexity, where the latter is generally determined by the
number of species and elementary reactions included in the model. This seemingly positive assortment
of models also gives rise to one of the main difficulties in modeling chemically reacting flows - numerical
results being highly sensitive to the choice of chemistry model. In a recent study, Tchuen and Zeitoun1

compared several models for describing chemical reactions taking place in high-speed air flows. They were
able to recognize differences of up to 106 [m3/s] in the forward reaction rates suggested by the models for
dissociation of nitrogen, leading to discrepancies of up to 20% in the shock stand-off distance in a Mach 15
flow past a blunt body. These discrepancies accentuate the importance of testing and choosing appropriate
chemical kinetics models for specific applications.

The need to improve the understanding of complex flow physics drive the development of large detailed
chemical kinetics models. Current state-of-the-art chemical kinetics models for combustion of hydrocarbon
fuels already include more than 500 (!) species [2], each requiring the solution of a separate transport
equation. Due to the fact that computational time increases significantly with the number of modeled species,
modern CFD simulations are limited to either simple fuels, such as hydrogen, methane, and ethylene, that
are described with smaller detailed mechanisms (less than 100 species) or to complex fuels such as propane,
heptane, and JP-8 that are described with reduced mechanisms [3].

1.2 Numerical Difficulties
Chemically reacting flow simulations involve integration of the continuity, momentum, total energy con-
servation, and chemical species mass transport equations, which are partial differential equations (PDE)
consisting of convection, diffusion, and source terms. The numerical integration of the equations governing
such flows may be quite difficult for several reasons.

1.2.1 Numerical Stiffness

First and foremost, the integration of the equations is characterized by high numerical stiffness. A given
set of differential equations is considered numerically stiff when the physical processes described by it (e.g.,
convection, diffusion, and chemical reaction) develop on very different time scales, or equivalently, when the
corresponding eigenvalues of the discretized algebraic equation set vary greatly [4]. Unless properly treated,
numerical stiffness may significantly limit iterative convergence rates of standard numerical methods and
also result in lack of robustness of numerical simulations [5].

The numerical stiffness of the equations governing chemically reacting flows may be attributed to several
factors. First, extremely dense meshing is commonly employed near solid walls to accurately resolve the
thermal and kinetic boundary layers. This clustering of cells near the surface results in formation of highly
stretched cells. As a result, the characteristic time scales of convection and diffusion processes may differ
considerably, and the resulting eigenvalues of the system may be spread over a wide range of values. This
effect may be noted even in certain non-reacting, laminar simulations.

Moreover, finite-rate chemistry and thermal non-equilibrium introduce severe numerical stiffness owing
to the nature of source terms appearing in both models. The source terms representing the production
and dissipation of vibrational energy, and the transformation of species due to chemical reactions, are often
strongly nonlinear and contain time scales that greatly differ from those of the convective and diffusive
terms. In addition, chemical kinetics is characterized by widely disparate time scales related to formation and
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depletion of different species. In high-speed combustion of hydrogen with air, for instance, the characteristic
time scales of hydroxyl (OH) formation are extremely short (∼ 10−8 s), while the characteristic time scales
of water vapor (H2O) formation are relatively long (∼ 10−2 s) [6]. It is this time-scale disparity that leads
to numerical stiffness. To ensure stability and accuracy, any numerical method aimed at solving the NS
equations coupled with chemical species mass and vibrational energy conservation equations should be able
to consistently represent all the different time scales present in the flow. The most simple, yet restrictive
means of complying with this requirement is to limit the allowed time-step by the rate of the fastest chemical
reaction.

Another source of numerical stiffness lies in the boundary conditions for quantities that are nearly singular
near solid boundaries, or admit rapid changes due to wall catalysis. Standard numerical approximation of
near-wall derivatives of these quantities yields a significant error unless the near-wall grid spacing is extremely
fine. Such grid spacing imposes severe restrictions on the maximum allowed local time step due to anisotropy,
further aggravating numerical stiffness.

1.2.2 Computational Complexity

The system of the discrete equations governing chemically reacting flow may be very large, since the equa-
tions are solved for each cell in the computational domain. Furthermore, the inherent coupling between
the equations for various cells, and among themselves, limits the use of parallelization and vectorization
capabilities of modern high-performance computers for these problems. The large number of modeled chem-
ical species, Ns, common in modern kinetics models, adds a substantial load, since the computational costs
involved with implicit schemes for reacting flows normally scale with O(N3

s ). When combined, these features
of chemically reacting flow simulations impose severe requirements on the available computational resources,
especially when traditional implicit schemes are employed.

1.2.3 Positivity

Lastly, in the process of convergence, non-physical solutions, namely negative values of species mass fractions,
which are positive by virtue of the underlying physics, may appear. Loss of positivity of model variables
may occur even in cases where an analytical solution exists and is guaranteed to remain positive [7].

The common technique to avoid non-physical, negative values of chemical species mass fractions is to
employ artificial limiting by either allowing only positive increments, or by locally neglecting corrections that
result in loss of positivity [8, 9]. This indeed guarantees that the iterative solution does not induce loss of
positivity, but in regions where limiting is invoked, convergence rates often deteriorate.

To alleviate some of the numerical difficulties associated with positivity in turbulence models, Mor-Yossef
and Levy [10, 11] presented a loosely coupled implicit time-integration scheme that ensures unconditional
positivity and convergence, thanks to a special design of the implicit operator to form an M-matrix [12].
This method was successfully extended for use with finite-rate chemical kinetics models in this work.

1.3 Implicit Integration Schemes
A common approach for tackling some of the difficulties outlined in the previous subsection involves the
use of implicit time-integration schemes. Chemical reactions generally evolve over characteristic times that
are much shorter than those of the kinetic flow field. As a result, explicit numerical time integration
schemes, which allow time steps proportional to the smallest time scale present in the flow, are inefficient in
computing reacting flows. Instead, implicit schemes, which alleviate the strict time step limitations imposed
due to stability considerations, are extensively used for numerical time integration of the stiff equation set
governing chemically-reacting flows, and the accompanying model equations.

The belief that stiffness is related to the non-linear source terms led to the development of point-implicit
[13] methods, where only the source terms are linearized in time, while the convective and diffusive terms
are solved explicitly. This results in a compact, block-diagonal implicit Jacobian, which essentially rescales
the time scale of chemical production so that it is of the same order as those of convection and diffusion,
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in pseudo-time. Consequently, larger time-steps may indeed be used in cases where stiffness is entirely
dominated by the source terms [14–16]. Unfortunately, in realistic viscous flows, numerical stiffness also
originates from highly stretched grids, and anisotropy due to thin boundary layers. Therefore, the efficient
solution of most flows of interest requires the use of fully implicit schemes, where all the terms are treated
implicitly.

Fully implicit methods are widely used in the context of chemically reacting flows. The lower-upper
symmetric successive over-relaxation (LU-SSOR) implicit scheme [17, 18] is a compact scheme in the sense
that it only requires the inversion of a scalar tri-diagonal implicit operator for the convection and diffusion
terms. However, both the LU-SSOR and its successor, the Lower-Upper Symmetric Gauss-Seidel (LU-
SGS) [19] methods tend to exhibit poor convergence on highly stretched grids [20]. The data-parallel-line-
relaxation (DPLR) method [20] is a massively-parallel extension of the Jacobi line solver, where the inversion
is conducted along lines normal to the wall. The off-diagonal terms are relaxed through a series of parallel
sub-iterations, thus reducing the cost of inverting the implicit operator. This approach is robust for a wide
range of flows; however, its application to supersonic combustion may be limited, as a clear gradient direction
where the off-diagonal terms may be relaxed does not always exist in such problems [21].

In both fully implicit and point-implicit schemes, the derivation of source term Jacobians is necessary.
For arbitrary reaction mechanisms, including three-body reactions with varying third-body efficiencies, this
may result in a large and highly populated implicit operator of size

(
Ns × Ns

)
, where Ns again denotes

the number of modeled species. Since implicit schemes require the inversion of Jacobian matrices at each
time step, the computational cost of implicit reacting flow simulations normally scales quadratically with
the number of species.

To afford simulations involving complex reaction schemes with hundreds of species, simplifications to the
full source Jacobian are constantly sought. Park and Yoon [22] reduced the cost of inverting the source
Jacobian by taking advantage of elemental mass conservation (i.e., sum of all species densities must equal
the density of the fluid). Eberhardt and Imlay [23] proposed a diagonal approximation to the full source
term Jacobian by replacing each diagonal term with the L2 norm of the row, and zeroing the other elements
in the row. This formulation is strictly diagonally dominant and thus stabilizes the numerical solution, at
the account of convergence rates. Edwards24 employed an approximate factorization of the full source term
Jacobian to reduce the cost of the inversion, and Kim et al. [25, 26] have found that employing the diagonal or
lower-triangular portions of the full source term Jacobian yielded better convergence and stability compared
to those obtained with the full Jacobian. However, their findings were highly dependent on the species
ordering, and thus are difficult to extend to arbitrary large reaction mechanisms. Katta and Roquemore
[3] suggested to adopt only the stabilizing (negative) diagonal terms of the source term Jacobian in the
implicit operator. By enhancing the diagonal dominance of the implicit operator, and avoiding the need to
invert an

(
Ns × Ns

)
block matrix at each point, they were able to devise a robust method for simulations

involving large chemical kinetics models. But, obviously, the added diagonal dominance somewhat hampers
convergence rates in some cases. Recently, Lian et al. [27] studied the integration of problems with dominant
source terms and showed improved convergence in RANS simulations with two-equation turbulence models.
A simple manipulation of the positive part of the production term enabled an appropriate implicit treatment
that maintains stability.

Another popular approach to alleviate the stiffness arising from chemical kinetics source terms is operator
splitting [28], where the full chemistry operator is decomposed into a product of simpler operators. Operator-
splitting schemes are usually based on the Strang splitting technique [29], wherein the chemical reaction
source terms are separated from those of convection and diffusion. Such separation enables the use of
relatively large time steps for the advection-diffusion portion of the chemistry model equations, and a robust
solution of advection-reaction ordinary differential equations (ODE) via stiff ODE solvers [30, 31]. However,
this technique does have a few major drawbacks. First, an error term due to splitting appears in the
discretized equations, dependent on the time-step that is chosen for the computation [32]. This error term is
in addition to the temporal and spatial discretization errors. Furthermore, even in a steady state simulation,
growing modes, such as production of radical species, may require a limited time step due to accuracy
requirements instead of stability requirements, thus lowering the advantage of having a large allowable time
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step from stability considerations [33].
Many industrial CFD codes [20, 34, 35] solve the equations governing chemically reacting flow, including

the Navier-Stokes, chemical kinetics, and possibly turbulence model equations, in a coupled manner. Namely,
the turbulence model equations, species mass-conservation, momentum, and total energy equations are all
solved simultaneously, resulting in a large system of equations, typically solved by inverting a block tri-
diagonal matrix of

(
Ns+7

)
×
(
Ns+7

)
-sized blocks (in the case of two-equation turbulence models). Obviously,

this approach incurs heavy computational costs, especially if the modeled reaction mechanism is very large.
Recently, Candler et al. [36] proposed a decoupled implicit method where the chemistry model equations
are solved separately from the Navier-Stokes equations, and only the diagonal portion of the source-term
Jacobian is used in the implicit operator, while the off-diagonal elements are relaxed as described with
the DPLR method. This resulted in a significant decrease in computational costs, given that the decoupled
method converged in roughly the same number of steps as the fully coupled approach. However, as explained
above, the use of the DPLR relaxation process may limit convergence rates in some cases, and is not generally
suitable for combustion applications.

1.4 Scope
In a previous work [37], the unconditionally positive-convergent (UPC) time integration implicit scheme for
turbulence transport equations [10] was successfully extended for use with chemical kinetics models. The
extended UPC scheme ensures unconditional positivity of species mass fractions throughout the simulation.
Consequently, the numerical difficulties associated with loss of positivity are alleviated without requiring
artificial stabilization measures.

This work examines the advantages of a decoupled implicit method where the species mass transport
model equations are solved separately from the Navier-Stokes equations, with regard to the conventional,
fully coupled method, which incurs heavy computational costs, especially if the modeled reaction mechanism
is very large. To maximize the computational savings offered by a decoupled implicit method, simplifications
to the large, highly populated analytic chemical kinetics source term Jacobian are investigated. Special focus
is given to the simulation of non-premixed, supersonic combustion which is considered highly stiff.

2 Governing Equations
In a compact, conservation-law form, the two-dimensional Favre-Reynolds-averaged Navier-Stokes (RANS)
equations for a compressible, thermally perfect and reactive mixture of gases may be expressed in Cartesian
coordinates as follows [38]:

∂Q
∂t

+
∂(Fc −Fd)

∂x
+

∂(Gc − Gd)

∂y
+Φ(Jc − Jd) = S (1)

where Φ = 0 in the general case of planar flow, and Φ = 1 in the special case of axisymmetric flow (in the
axisymmetric case, y denotes the radial direction). The vector Q = {Q,q} is composed of the dependent
variables vector of the mean-flow equations, Q, and of the k−ω turbulence and chemistry model equations,
q (hereinafter cumulatively referred to as model equations). These vectors are given as:

Q =


ρ
ρu
ρv
E

 , q =


ρk
ρω
ρY1

...
ρYNs−1

 (2)

The mixture density is denoted by ρ, the Cartesian velocity vector components are denoted by u and v, and
E denotes the total mixture energy. The turbulent kinetic energy is denoted by k, and the second turbulent
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quantity is denoted by ω, representing the specific turbulent dissipation rate. The variables Ys=1,...,Ns−1

denote the individual chemical species mass fractions.
The convective flux vectors are denoted by Fc = {Fc, fc} and Gc = {Gc,gc}, where Fc and Gc are the
convective flux vectors appearing in the mean-flow equations, and fc and gc are the convective flux vectors
appearing in the model equations. The diffusive flux vectors are denoted as Fd = {Fd, fd} and Gd = {Gd,gd},
where Fd and Gd are the diffusive flux vectors appearing in the mean-flow equations, and fd and gd are
the diffusive flux vectors appearing in the model equations. The heat-flux terms are calculated based on
Fourier’s law, and Fick’s law is employed to approximate the diffusion velocities of individual species.

The axisymmetric source terms are denoted by Jc = {Jc, jc} and Jd = {Jd, jd} where Jc and Jd are
the source term vectors appearing in the mean-flow equations, and jc and jd are the source term vectors
appearing in the model equations.

The mean-flow equations are closed using the equation of state for a mixture of thermally perfect gases
(Dalton’s law of partial pressures), given by:

p = ρR0T

Ns∑
s=1

Ys

Ws
(3)

where Ws is the molecular weight of species s, and R0 is the universal gas constant. The total energy is then
given by:

E =

Ns∑
s=1

ρYshs − p+
1

2
ρ
(
u2 + v2

)
+ ρk (4)

The source-term vector S is represented by:

S =
[
0, 0, 0, 0, Sk, Sω, S1, S2, . . . , SNs−1

]T (5)

where Sk and Sw are the source terms appearing in the turbulence model equations, while Ss=1...Ns−1 are
the source terms appearing in the mass conservation equations of the individual species (chemistry model
equations).

2.1 Thermodynamic and Transport Properties
The viscosity coefficients of individual chemical species were approximated using Blottner’s curve fits. The
species thermal conductivity coefficients were calculated from their viscosity coefficients via the modified
Eucken correction [39], with a Schmidt number of 0.7 as suggested by Reimann and Hannemann40.

In all mechanisms examined in this work, Wilke’s mixing rule was employed to calculate the mixture
viscosity and conductivity [41]. Binary diffusion coefficients between species s and r, Dsr, are calculated
according to the Chapman-Enskog theory, with Lennard-Jones potential and collision integrals from Refs.
[42, 43]. An effective diffusion coefficient for individual species in a mixture is employed according to Ref.
[44].

Nine-term polynomials of temperature are used for calculating the enthalpy, and the heat capacity at
constant pressure of individual species [45]. Most of the above expressions include an explicit or implicit
dependence on the temperature of the mixture, which is not readily available from the conservative variables,
as in the non-reacting case. Instead, the temperature is calculated iteratively from the energy balance (see
Eq. (4)) using a Newton-Raphson procedure.

2.2 Finite-rate Chemistry Model
A reaction mechanism composed of Nr reversible reactions may be generally described by the following
chemical formulae:

Ns∑
s=1

ν′s,qMs

cf,q−−⇀↽−−
cr,q

Ns∑
s=1

ν′′s,qMs ∀ q = 1 . . . Nr (6)
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where ν′s,q and ν′′s,q are the stoichiometric coefficients of species s (represented by the chemical symbol Ms),
acting as a reactant or product in reaction q, respectively. The current study was limited to flows in which
the assumption of laminar chemistry holds. Accordingly, the Arrhenius approach may be used to describe
the mean reaction rates (i.e., based only on mean values of temperature and species mass fractions). The
formula for the mean reaction rate for species s, Ss, appearing in the above mechanism is then given by:

Ss = Ws

Nr∑
q=1

(
ν′′s,q − ν′s,q

) [
cf,q

Ns∏
p=1

(
ρYp

Wp

)ν′
p,q

− cr,q

Ns∏
p=1

(
ρYp

Wp

)ν′′
p,q

]
(7)

where cf,q and cr,q are the forward and reverse rate coefficients of reaction q, respectively. These coefficients
may be expressed in Arrhenius form as cq = AqT

γqe−(Eq/R0T ), where γq and Aq are constants, and Eq is
the activation energy.

Two different models for hydrogen combustion are considered; the first is a detailed, 9-species, 18-step
model by Stahl and Warnatz [46], while the second is the 6-species, 8-reactions abridged Jachimowski
model[47].

2.3 Turbulence Models
The averaging process for the Navier-Stokes equations described above results in some unknown quantities,
for example, the Reynolds stress tensor. Modeling of these unknowns in terms of the averaged variables is
required to close the system of equations. The unknown, Favre-averaged, Reynolds stress tensor is modeled
in this work via the k-ω turbulence model developed by Kok48, which is considered to be topology-free and
was designed to resolve the well-known dependency on free-stream values of ω.

3 Numerical Method
This section describes the spatial and temporal discretizations employed in this work in order to enable the
numerical solution of the continuous equations given in the previous section.

3.1 Finite-Volume Discretization
A conservative cell-centered finite volume methodology is employed to discretize the governing equations
on structured grids. Let Ca denote a control area defined by a quadrilateral grid element, and let ∂Γ
denote the control area boundary, with n = [nx, ny]

T being the outward-pointing unit normal vector to ∂Γ.
Integration of Eq. (1) over Ca, and application of the Gauss theorem results in the following integral form
of the equations:

∂

∂t

∫
Ca

Q dA+

∫
∂Γ

(Hc −Hd) dl =

∫
Ca

(S − Sa) dA (8)

where

Hc = Fcnx + Gcny (9)
Hd = Fdnx + Gdny (10)

are the fluxes normal to ∂Γ and Sa = Φ(Jc − Jd) is the axisymmetric source-terms vector. Let Hc and hc

denote the parts of Hc associated with the mean-flow and model equations, respectively, and let Hd and hd

denote the analogous parts of Hd, so that Hc =
{
HT

c , h
T
c

}T and Hd =
{
HT

d , h
T
d

}T . Next, define

Qi =
1

Ai
·
∫∫
Ca

Q · dA
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as the vector of cell-averaged conservative variables Q inside cell i. Then, decomposition of the line integral
to a sum of flux contributions on each of the four faces neighboring cell i results in the semi-discrete form of
Eq. (8) for a non-deforming grid:

Ai
dQi

dt
= −

∑
j∈N(i)

(
Hcij −Hdij

)
lij + (Si − Sai)Ai ≡ Ri (11)

where the terms Hcij and Hdij
are the discrete convective and diffusive fluxes, respectively, normal to the

interface ij shared by cell i and one of its neighboring cell j, and Si, Sai are the appropriate source-term
vectors of cell i, and Ai is the cell area. The term lij is the face length of the interface ij, and N(i) denotes
the set of cell i’s neighbors (direct face neighbors). The vector,

Ri =
{
RT , rT

}T

i

signifies the right hand side (residual) of the equation set, where R represents the residual of the mean-flow
equations, and r represents the residual of the model equations. The discretization of the various terms (i.e.,
convective and diffusive fluxes and source-terms) appearing in the residual vector is discussed next.

The convective flux vector is computed at the cell interfaces using the AUSM-DV scheme [49]. A higher
order of accuracy is achieved by applying a third-order, upwind-biased MUSCL interpolation method [50,
51], with the van-Albada limiter [52] as a means to suppress oscillations in the solution. The diffusive flux
vector normal to the interface, Hd, is calculated by employing second-order central differencing based on the
diamond-shaped stencil [53].

3.2 Temporal Discretization
Implicit, pseudo-time marching of the discrete mean-flow, and model equations is employed, based on the
first order backward Euler method:

A
∆Q
∆τ

= Rn+1 ≈ Rn +

(
∂R
∂Q

)n

∆Qn, n = 1, 2, . . . (12)

where ∆ = ( )
n+1 − ( )

n is defined as the increment between time levels n and n + 1, ∂R
∂Q is the Jacobian

matrix resulting from linearization of the residual, and ∆τ is the local pseudo-time step, calculated from a
CFL condition, as defined in Ref. [54]. Time-accurate simulations are achieved with dual-time marching.

Eq. (12) may be given in a compact, delta-form as follows:[
A

∆τ
I − ∂R

∂Q

]n
∆Qn = Rn (13)

where I is the identity matrix.
To improve iterative convergence to a steady-state solution, the B2 scheme proposed by Batten et al. [55]

is employed. The B2 scheme is a modified variant of the backward Euler method. Denoting the pseudo-time
integration process given in Eq. (13) by

∆Qn = B1 (Qn,∆τ) =⇒ Qn+1 = Qn +∆Qn (14)

the B2 scheme is defined as two successive modified B1 steps as follows:

1st step : ∆Q∗ = B1 (Qn,∆τ/2) =⇒ Q∗ = Qn +∆Q∗

(15)
2nd step : ∆Q = B1 (Q∗,∆τ) =⇒ Qn+1 = Q∗ +∆Q/2
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As pointed out by Batten et al. [55], the B2 scheme may alleviate convergence difficulties that are associated
with the high-frequency fluctuations of limiters.

3.2.1 Loosely Coupled Time Integration

Eq. (13) is solved using the alternating line symmetric Gauss-Seidel method, in a loosely coupled manner.
Loosely coupled time integration possesses several advantages over a coupled strategy. It is easy to implement
and it provides the enhanced flexibility required to design a stable and efficient scheme for the model
equations. In terms of stability, Wackers and Koren56 showed that at the initial phase of a turbulent flow
simulation, some of the eigenvalues of the linearized, fully coupled implicit operator have a negative real part,
indicating an unstable scheme. In another study, Lee and Choi57 conducted a linear stability analysis and
concluded that there is no clear benefit to using a fully coupled time integration of the mean-flow equations
and two-equation turbulence models over a loosely coupled approach. Moreover, for reacting flows, the
loosely coupled approach offers a potential decrease in computational costs since its convergence properties
were found similar to the fully coupled approach [36], while the cost per-iteration is significantly reduced
thanks to sparsely-populated Jacobian matrices.

According to the loosely coupled approach, the implicit Jacobian is approximated as follows:

(
∂R
∂Q

)
ij

=


[
∂R
∂Q

]
4×4

,
[
�
��

[0]

∂R
∂q

]
4×Nm[

�
��

[0]

∂r
∂Q

]
Nm×4

,
[

∂r
∂q

]
Nm×Nm


ij

(16)

where Nm = Ns − 1 denotes the number of model equations solved.
It is important to note that coupling between mean-flow, and chemistry is only omitted in the process of

deriving the Jacobian matrix, ∂R
∂Q , that appears in the L.H.S (left-hand-side) of the equation set (13), while

the R.H.S (right-hand-side) of the equations remains unchanged. In what follows, the separate, different
implicit treatment of the mean-flow and the model equations is detailed.

3.2.2 Mean-Flow Equations Time Marching

The algebraic set of equations resulting from temporal and spatial discretization of the mean-flow equations
may be written as: [

A

∆τ
I − ∂R

∂Q

]n
∆Qn = Rn (17)

The evaluation of the exact Jacobian ∂R
∂Q , of the high-order, nonlinear explicit operator R is very complicated

and may result in numerical instabilities [58]. To alleviate these difficulties, the common practice is to derive
the Jacobian based on approximate expressions for the convective and diffusive flux terms. In this work, the
contributions to the Jacobian of the mean-flow equations originating from the convective flux, hereinafter
referred to as the “convective Jacobian”, are based on the first-order, Steger-Warming flux function [59].
The choice of a Steger-Warming-based Jacobian is motivated by the study of Amaladas and Kamath60, who
compared the performance of various Jacobians used in conjunction with the AUSM flux. A direct derivation
of the split fluxes given in the Steger-Warming Flux-Vector-Splitting (FVS) scheme, with regard to Qi and
Qj , respectively, is employed. This direct derivation approach was found to provide increased numerical
stability [8] over that obtained when deriving the Jacobians based on the generally inaccurate extension of
the homogeneous property of the analytic inviscid flux, Hc, to the split fluxes, H±

c (i.e., ∂H±
c

∂Q ≈ A±).
To produce a compact stencil containing direct face neighbors only, the contributions to the Jacobian of

the mean-flow equations originating from the diffusive flux, hereinafter referred to as the “diffusive Jacobian”
are obtained by analytic derivation of the thin-layer-based, approximate flux. Moreover, the non-linear
Reynolds-stress tensor that appears in the mean-flow equations is treated implicitly only with regard to its
linear part.
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3.2.3 Model Equations Time Marching

Similar to the mean-flow equations, the algebraic set of the discrete chemistry model equations is given by:[
A

∆τ
I − ∂r

∂q

]n
∆qn = rn (18)

The source terms appearing in the model equations are often strongly nonlinear and contain time scales
that greatly differ from those of the convective and diffusive terms. As a result, the chemical kinetics model
equations are generally highly stiff. Due to this stiffness, a straightforward implementation of the model
equations’ exact Jacobian, ∂r

∂q , usually leads to an unstable scheme that exhibits convergence difficulties.
Therefore, to increase the robustness of the numerical simulation, and to accelerate convergence, a highly-
stable, implicit scheme for the model equations is sought.

The implicit scheme proposed by Mor-Yossef and Levy [10, 11] for two-equation turbulence models, which
guarantees unconditional positivity of the transported variables and convergence of the fixed-point iteration
on the linearized problem, was chosen in this work to tackle the numerical stiffness of the model equations.
The scheme was successfully extended for use with finite-rate chemistry models in a previous work [37].

3.2.4 Implicit Treatment of Source-terms

For a complex reaction mechanism, the direct derivation of chemical kinetics source terms results in a large
and generally dense implicit operator of size (Nm)× (Nm):

∂S
∂q

=


∂S1

∂ (ρY1)
. .

∂S1

∂ (ρYNs−1)

...
∂SNs−1

∂ (ρY1)
. .

∂SNs−1

∂ (ρYNs−1)

 (19)

where Si=1...Ns−1 denotes the chemical kinetics source term appearing in the mass conservation equation
of species i. The inversion of such operators for each cell, and at each time step is often unaffordable
in terms of computational complexity, especially when reaction schemes involving hundreds of species are
employed. Therefore, simplifications to the full source-term Jacobian are sought. Keeping in mind that
the UPC scheme provides diagonal implicit operators for the convective and diffusive fluxes, considerable
savings in both memory and CPU time may be achieved if the implicit operator of the source-term, ∂S

∂q , is
constructed such that it is also diagonal. The following subsections are dedicated to the construction of the
implicit operators.

3.2.5 Chemical Kinetics Source-terms

The analytic derivatives of the chemical kinetics source-terms, Si, with respect to species j density are given
by:

∂Si

∂ (ρYj)
= Wi

Nr∑
k=1

(ν′′i,k − ν′i,k)

ν′j,kcf,k

Wj

(
ρYj

Wj

)ν′
j,k−1 Ns∏

l=1,l ̸=j

(
ρYj

Wl

)ν′
l,k

−

−
ν′′j,lcr,k

Wj

(
ρYj

Wj

)ν′′
j,k−1 Ns∏

l=1,l ̸=j

(
ρYj

Wl

)ν′′
j,k

 (20)

The resulting, full chemical kinetics source-term Jacobian is generally a dense matrix because any modeled
species can theoretically react with all other species. Therefore, approximations of the full chemical source-
term Jacobian have to be considered in order to sustain a diagonal implicit operator. Kim25 and Kim et
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al.26 analyzed the eigenvalues of the full Jacobian in a constant volume reaction of hydrogen and oxygen,
and found that they vary greatly and change sign throughout the simulation. Since the preferable time-
integration method heavily depends on the sign of the eigenvalues of the Jacobian [27, 61], choosing an
appropriate numerical procedure (i.e., explicit or implicit) for integration involving the full Jacobian may
prove to be a difficult task. In contrast, when an approximate Jacobian is used, consisting of either the
lower- or upper-triangular, or the diagonal portions of the full Jacobian, strictly negative eigenvalues appear
throughout the simulation. As demonstrated below, this observation is true in most chemical reaction
mechanisms thanks to the law of mass action resulting in a particular structure of the Jacobian.

For instance, examining a simplified, two-step model describing the combustion of hydrogen and oxygen
[62]:

1. H2 +O2

kf1−−−⇀↽−−−
kb1

2OH

2. 2OH +H2

kf2−−−⇀↽−−−
kb2

2H2O

and applying the law of mass action to calculate the net rate of change of species densities, S, yields:

SO2
= WO2

(
−kf1CH2

CO2
+ kb1C

2
OH

)
(21)

SH2O = 2WH2O

(
kf2C

2
OHCH2

− kb2C
2
H2O

)
(22)

SH2
= WH2

(
SO2

WO2

− 1

2

SH2O

WH2O

)
(23)

SOH = −WOH

(
2
SO2

WO2

+
SH2O

WH2O

)
(24)

where Ci =
ρYi

Wi
denotes the concentration of species i.

By observing Eq. (21) - (24), one can notice that the rate of formation (production) of any given
species depends only on the concentrations of the other modeled species, and that the rate of consumption
(destruction) of that species always depends on its own concentration (among others). As a result, the
diagonal entries of the chemical source-term Jacobian are always negative (at least for the mechanisms
modeled in this work).

Theorem 3.1 Let D̃ ≈
(

∂Si=1...Ns−1

∂(ρY )

)
denote an approximation to the full source-term Jacobian, consisting

of either the lower or upper triangular, or diagonal portions of the full Jacobian, ∂Si=1...Ns−1

∂(ρY ) , then the
eigenvalues of D̃ are necessarily negative.

Proof Since D̃ is triangular, its eigenvalues, λi, are the entries on the main diagonal, D̃i,i [63]. Combined
with the above observations regarding the diagonal entries of the chemical source-term Jacobian, the proof
is complete.

Based on this reasoning, it is advantageous to employ a diagonal or lower-triangular approximation to the
full source term Jacobian for implicit time-integration. Indeed, Kim25 and Kim et al.26 have reported better
convergence and stability characteristics when using lower-triangular approximations, compared to that ob-
tained with the full Jacobian. However, the performance obtained with a triangular approximation is highly
dependent on the species ordering, and is thus difficult to extend to arbitrary large reaction mechanisms.
Moreover, a triangular approximation would hamper the desired block diagonal structure of the implicit
operator. Therefore, a diagonal approximation of the full chemical source-term Jacobian is proposed in this
work, as follows:

D̃ = Diag

(
∂Si=1...Ns−1

∂ (ρY )

)
(25)
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4 Numerical Simulation Results
In this section, the performance of the proposed numerical framework is evaluated through simulation of
several well-known test cases of supersonic combustion. The aim of the tests is to study the convergence
characteristics of the proposed diagonal approximation of the chemical reactions Jacobian, with respect to
the full, analytic Jacobian.

4.1 Supersonic Combustion in a Ramped Duct
The first test case simulated in this work involves the supersonic combustion of a premixed, stoichiometric
hydrogen/air mixture flowing over a 10° viscous ramp. This is a common theoretical test case for supersonic
combustion, with several published sets of numerical results [18, 64, 65]. The free-stream (inlet) conditions
are: M∞ = 4, T∞ = 900K, P∞ = 1 atm, and Re = 2 · 107. The dimensions of the ramp, along with the
(coarse) computational domain are shown in Figure 1. Common grid parameters are given in Table 1. To
avoid an abrupt change in velocity at the boundary layers near the inlet boundary, an inviscid duct with a
length of 0.4 cm was added before the actual viscous duct.

Name Dim. ∆y1 y+

Coarse grid 109 × 101 4× 10−5cm ≤ 0.3
Fine grid 109 × 161 7× 10−5cm ≤ 0.45

Table 1: Ramped-duct computational grid parameters

25 

Cut-line 

1 cm 
(Vis. Wall) 

3 cm (Vis. Wall) 

10° 

2 cm
 

(Inlet) 

0.4 cm 
(Inv. Wall) 

0.4 cm 
(Inv. Wall) 

1.6 cm
 

(O
utlet) 

M=4 
T=900 K 
P = 1 atm 
H2/Air (φ=1) 

Figure 1: Coarse computational grid and set-up used in the simulations of supersonic combustion in a 10°-
ramped duct. — marks the cut-line located 0.13 cm from the lower wall, along which temperature and mass
fractions distributions are reported.

This flow was computed using Stahl and Warnatz’s [46] detailed nine-species, 18-reactions model, as-
suming laminar chemistry (i.e., neglecting turbulence-chemistry interaction). The assumption of laminar
chemistry is valid as the turbulent Damköhler number is extremely small in this case (DaT ≈ 10−5 << 1).
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Nevertheless, the k − ω turbulence model was used to model the effects of turbulence on the mean-flow. In
addition, the effects of viscosity, heat conduction, and species diffusion were also included, resulting in a
computationally intensive simulation.

The myriad of physical phenomena that have to be accurately modeled render this case extremely chal-
lenging. The turbulent boundary layers must be correctly resolved, thus requiring significant clustering of
cells near the duct walls, leading to anisotropy due to highly stretched (aspect ratio ≈ 1500) cells. Proper
resolution of shockwave-boundary layer interactions (SBLI) and accurate capturing of the oblique shock are
also essential to correctly determine the combustion front. Finally, the correct modeling of species diffusion
is imperative for obtaining accurate combustion propagation. The results presented herein were all obtained
with the coarser grid, as it was closer in dimensions to the one that was used by Ju65. Since experimental
data is not available for this case, the results of Ju65 were used as reference for verification purposes.

Numerically obtained iso-pressure contours are shown in Figure 2, and the distributions of temperature
and mass fractions along the cut-line (marked in Figure 1) are given in Figure 3.

−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
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m
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3
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4

·105

Figure 2: Iso-pressure (Pa) contours of supersonic combustion in a ramped duct (coarse grid).

At first, the free stream temperature is not high enough to initiate a reaction, but the combination of
higher temperature in the boundary layer, along with a rise in temperature due to crossing of the oblique
shock, trigger a reaction between hydrogen and oxygen in the vicinity of the lower ramp wall. Both con-
stituents are almost fully consumed in this case. The distributions of temperature and mass fractions along
the cut-line are in good agreement with published results by Ju65. A slight discrepancy in the predicted
level of hydroxyl (OH) radical formation is evident, probably related to the different hydrogen combustion
model (9 species, 33 reactions) that was used in Ref. [65].
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Figure 3: Calculated temperature and mass fraction distributions for the supersonic combustion of H2/Air
in a ramped duct. —, current computation; ◦, numerical results from [65].
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Aside from the strong oblique shock due to the ramp, a weak oblique shock is also formed at the left edge
of the domain (x=0) due to the displacement thickness of the boundary layer. Beyond the oblique shock,
downstream of the ramp corner, the increased temperature and pressure lead to rapid reactions, heat release
and production of radicals. The increased diffusion of those radicals and heat to the cold areas further away
from the ramp wall result in a combustion front that gradually moves away from the wall. The curved
combustion front may be observed in the plots of iso-temperature (Figure 4(a)) and iso-water-vapor fraction
(Figure 4(b)). Also worth noting is the fact that rapid combustion takes place in the boundary layer, even
before the flow reaches the ramp, as indicated by the water-vapor mass fractions. This is a result of the high
kinetic energy of the free-stream flow, which transforms to thermal energy in the boundary layer, ultimately
triggering chemical reactions.

A comparison of convergence histories obtained for this case with the proposed diagonal approximation
and the full, analytic chemical source-term Jacobians is presented in Figure 5. For this case, the diagonal
approach proved to be superior in terms of asymptotic convergence rate and maximum allowed CFL number.
When taking into account the additional computational cost involved in computing the inverse of the dense,
analytic chemical source-term Jacobian at each cell, and in every iteration, the benefit in employing the
diagonal approach is even more accentuated.
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Figure 5: Comparison of convergence histories obtained with the proposed diagonal and full chemical source-
term Jacobians for the case of M = 4, H2/Air supersonic combustion in a ramped duct
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Figure 4: Iso-water-vapor fraction and Iso-temperature contours obtained in simulation of M = 4, H2/Air
supersonic combustion in a ramped duct.
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4.2 Supersonic Diffusion Flame
The second test case is a reproduction of the experiment conducted by Cheng et al. [66], in which measure-
ments of mixing and finite-rate reaction rates were conducted for a non-premixed, supersonic hydrogen-air
diffusion flame. This is a well-known test case of supersonic combustion that has been extensively studied
both experimentally [66] and numerically [67–69].

The experimental setup of Cheng et al.[66] is sketched in Figure 6. Two co-axial jets of vitiated air
(outer) and hydrogen (inner) are mixed in the burner. The vitiated air stream is accelerated through a
converging-diverging nozzle and reaches Mach 2 at a temperature of 1250 K at the entrance to the burner.
Experimental measurements of major species mass fractions (N2 , O2 , H2 , H2O, OH) and of temperature
are available at 7 downstream planes.

from experimental data. Because the molecular
weights of the incoming species differ, setting fluc-
tuations of mass fractions to the same values leads to
errors. Nevertheless, if a particle’s state is known in
terms of molar fractions, mass fractions can easily be
calculated.
Based on the assumption of negligible radical

concentrations, the vitiated air stream contains only
three species (H2O, O2, and N2). As molar fractions
add up to one, neither mean values nor variances are
independent. For example,

!X"N2
2# ! !$XN2 " !XN2#%

2#

! !X"O2
2# # !X"H2O

2 # # 2!X"O2X"H2O#. (22)

If the variances of all three species are known as in
our case, the covariance of any two species can be
determined. With given means, fluctuations, and co-
variance of O2 and H2O, we assume these species to
be bivariate normally distributed according to

P$X̂O2, X̂H2O% !
exp&q$X̂O2, X̂H2O%'

2$!!X"O2
2 #!X"H2O

2 #$1 " %O
2
2,H2O%

,

(23)

where again hats ˆ identify sample space variables,

q$X̂O2, X̂H2O% ! (
1

2$1 " %O
2
2,H2O%

" $X̂O2 " !XO2#%
2

!X"O2
2 #

#
$X̂H2O " !XH2O#%2

!X"H2O
2 #

" 2%O2,H2O

&
$X̂O2 " !XO2#%$X̂H2O " !XH2O#%

!!X"O2
2 #!X"H2O

2 #
,

and where

%O2,H2O !
!X"O2X"H2O#

!!X"O2
2 #!X"H2O

2 #
(24)

is the correlation coefficient.
As molar fractions are limited to the interval

[0; 1], this joint PDF must be cut outside of the
allowed region. This is not really a problem since
fluctuations are small compared with mean values
and the interval, and the probability given by Eq. 23
of finding a state outside the physically sensible re-
gion is consequently very small. Ensembles of parti-
cles which are distributed according to this PDF were
created by transformation of Gaussian random num-
bers [11,44]. Having determined particle properties
of two species in this way, fluctuations of the third
one automatically assume the correct value.

4.2.2. Velocity profiles

Fig. 6 presents mean axial velocity profiles. The
initial two planes of measurements have been omitted
here because experimental data are inconclusive due
to limited spatial resolution. Results for the final three
planes show good agreement between all three cal-
culation schemes and the experiment although max-
imum velocities are slightly overpredicted. This may
be at least in part due to particle lag in the LDA
measurements. Scalar PDF and finite volume calcu-
lations can hardly be distinguished as they rely on the
same two-equation turbulence closure. In this case,
the joint PDF method with its second order descrip-
tion of turbulence yields only marginal differences
compared to the other methods.

4.2.3. Mean and fluctuating composition profiles

To evaluate radial distributions, two characteristic
planes of measurements have been selected for pre-

Fig. 5. Experimental setup by Cheng et al. [2] (dimensions
in mm).

Table 3
Experimental boundary conditions

Hydrogen Vitiated air

Mach number 1 2
velocity 1781 m/s 1397 m/s
static temperature 545 K 1250 K
static pressure 1.12 bar 1.07 bar
composition:
XH2 1 0
XO2 0 0.201
XN2 0 0.544
XH2O 0 0.255

fluctuations:
)!X"O2

2# 0 0.02
)!X"N2

2# 0 0.033
)!X"H2O

2# 0 0.032
)!T"2# 125 K 125 K

15H. Möbus et al. / Combustion and Flame 132 (2003) 3–24

Figure 6: Schematic description of the Cheng et al. [66] supersonic diffusion flame experiment

An axisymmetric flow simulation is conducted, in accordance with the nature of the flow. The converging-
diverging section is not modeled and uniform properties (i.e., velocity and temperature) are assumed through-
out the entrance plane of the hydrogen stream (inner jet). The inner and outer burner lip surface are assumed
adiabatic and non-catalytic. A steady-state simulation is conducted based on experimental observations re-
garding the existence of a quasi-steady flame structure.

This flow was computed using Jachimowski’s reduced model [47], assuming laminar chemistry (i.e., ne-
glecting turbulence-chemistry interaction). The k−ω turbulence model was again used to model the effects
of turbulence on the mean-flow.

The shear layer formed between the hydrogen and vitiated air jets is responsible for the mixing and
subsequent combustion of the flow. The structure of the resulting lifted flame may be seen in Figure 8.

Figure 10 compares the mean temperature and OH mole fraction profiles with the experimental mea-
surements at an axial station of X/D = 43.1. The comparisons with experiment are generally favorable,
considering that accurate simulation of this test case usually requires the use of assumed PDF models [69,
70] which were beyond the scope of the current work.

A comparison of convergence histories obtained for this case with the proposed diagonal approxima-
tion and the full, analytic chemical source-term Jacobians is presented in Figure 11. For this case, both
approaches (i.e., diagonal approximation and full Jacobian) yield similar convergence rates in terms of it-
erations. However, when taking into account the additional computational cost involved in computing the
inverse of the dense, analytic chemical source-term Jacobian at each cell, and in every iteration, a clear
benefit is demonstrated towards the diagonal approach.
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Figure 7: Numerically obtained temperature distribution overlaid by Iso-OH-mass-fraction contours in sim-
ulation of the supersonic diffusion flame
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Figure 8: Comparison of numerically obtained (-) maximum OH mole fractions with experimental measure-
ments (◦) of Cheng et al. [66]
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Figure 9: Comparison of numerically obtained (-) and experimentally measured (◦, [66]) flame properties at
X/D = 43.1 axial position of the supersonic diffusion flame.
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Figure 10: Comparison of convergence histories obtained with the proposed diagonal and full chemical
source-term Jacobians for the supersonic diffusion flame test case

5 Summary
A novel, robust numerical framework for the simulation of supersonic combustion is developed. The itera-
tive solution is highly efficient thanks to the decoupled implicit solution of the mean-flow (Navier-Stokes)
and chemistry model equations, especially when large reaction mechanisms are employed. The diagonal ap-
proximation of the full implicit operator significantly reduces the computational cost, without significantly
affecting stability and convergence rates in steady-state, chemically reacting flow simulations.

Results obtained from the simulation of two-dimensional and axisymmetric, supersonic combustion cases
are presented. The obtained numerical results favorably agree with experimental measurements in the sim-
ulation of a non-premixed supersonic diffusion flame. Finally, The extended UPC implicit scheme, together
with the proposed diagonal approximation of the chemical source-term Jacobian, enables the use of higher
CFL numbers in the premixed combustion test case, and offers a considerable reduction in the computational
time required to obtain iterative convergence, with respect to an equivalent scheme that is based on a full,
analytic formulation of the chemical source-term Jacobian.
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