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Abstract: Parallel preconditioners for matrix systems arising from an unstructured 

finite volume formulation for the general thermal transport problem are studied with 

the primary focus on the CPU time of simulation. The fluid is assumed 

incompressible. The pressure, velocity and temperature matrix equations are solved 

using a preconditioned-BiCGSTAB algorithm with the matrices represented in the 

compressed sparse row format. The pressure matrices are highly ill-conditioned and 

require powerful preconditioners. Velocity and temperature matrices being well-

conditioned require computationally inexpensive preconditioners such as the 

diagonal preconditioner. Although SGS and ILU preconditioners have better 

convergence characteristics, the present work shows that the use of these 

preconditioners for well-conditioned matrix could prove detrimental to the overall 

simulation time due to its weak parallelizability. Sparse Aproximate Inverse (SPAI) 

based preconditioners have better convergence and are highly suitable for parallel 

computing and hence is used for the pressure matrix. Parallelization is based on the 

OpenMP framework. The relatively high setup time required to compute the 

approximate inverse is compensated by tailoring the discretized governing equations 

for pressure correction such that the approximate inverse needs to be computed only 

once at the beginning of the simulation. The present work shows that this new 

formulation enables a computationally inexpensive way of using SPAI 

preconditioner which guarantees a superior convergence and an overall reduction in 

CPU time when compared with diagonal, SGS and ILU(0) preconditioners. 
 

Keywords:    Parallel Preconditioner, Sparse Approximate Inverse Preconditioner, 

SIMPLE, Pressure Matrix, Weighted Least Squares Gradient. 

 

1     Introduction 
 

Discretized Navier-Strokes equations generally result in a system of equations which are solved 

iteratively depending on the number of grid points used. Unstructured finite volume method which has 

acquired wide popularity in large-scale applications result in linear systems for which the matrix 

structure may be highly sparse thereby making the iterative solution more difficult. Early finite volume 

formulations were based on SIMPLE and its variants [1] which were used to resolve the pressure-

velocity decoupling by using a staggered grid arrangement. However, this approach is inappropriate for 

unstructured grid where the pressure and velocity need to be defined at the cell centroid. The smoothing 

pressure correction approach [2] is a remedy which eliminates the checkerboard oscillations for pressure 

and velocity defined on a non-staggered grid. 
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Being implicit in nature the SIMPLE family of algorithms form two types of linear system of 

equations (Ax=b), one for velocity and the other for pressure.  For heat transfer related problems one 

additional temperature matrix resulting from the discretized energy balance equation needs to be solved. 

The matrices formed are generally non-symmetric and hence iterative methods such as BiCGSTAB [2] 

and GMRES [4] are used. Difficulty in storage arises when the matrix dimension becomes large. Focus 

has been shifted towards compressed storage where only the non-zero entries of the matrix are stored. 

Compressed Sparse Row [5] is one such storage method where the non-zero entries are stored in a row-

wise manner with additional arrays to store the location of non-zero entries. Unstructured formulation 

generally gives rise to matrices which are ill-conditioned with large condition numbers which affects 

the speed and accuracy of solution.  

Preconditioning of the matrix improves its condition number towards unity. Constructing a good 

preconditioner could prove to be computationally expensive. Diagonal/Jacobi preconditioners are the 

cheapest of all the preconditioners but effective only for diagonally dominant systems. Gauss Siedel 

family of preconditioners such as GS, SGS, SOR and SSOR demand more storage but exhibit an 

improvement in the convergence of the iterative solver. ILU class of preconditioners are more robust 

with better convergence properties. Both the Gauss Seidel and ILU based preconditioners are weakly 

parallelizable. Sparse approximate inverse preconditioners, belong to a class of preconditioners where 

the approximate inverse is explicitly computed. The high setup time to find the approximate inverse 

should be minimized by highly parallelizable algorithms. Most of the approximate inverse are based on 

the Frobenius norm minimization leading to inherent parallelism since each columns of approximate 

inverse is computed independently. Difficulty lies in capturing a good sparsity pattern for the 

approximate inverse. Grote and Huckle [6] showed an inexpensive way to compute the location of the 

non-zero entries of approximate inverse without generating excessive fill-in.  Chow and Saad [7] 

proposed an algorithm which automatically generates new entries while the excessive fill-in are 

controlled following a dropping strategy. The algorithm does not assume an a priori sparsity pattern 

hence, the computational complexity reduces but overall computational cost increases in terms of setup 

time. The other class of approximate inverse falls in the category of incomplete factorization. Benzi and 

Tuma [8] proposed a direct method using a bi-conjugation algorithm for the incomplete factorization. 

The method is weakly parallelizable when compared to the minimization problem. Approximate inverse 

preconditioners are gaining popularity in GPU architecture. Geveler et al. [9] showed that sparse 

approximate inverse preconditioners provides strong smoothing for unstructured grids in GPU 

architecture. Akay et al. [10] studied the scalability aspects of various preconditioners based on 

topology optimization wherein the continuous removal or addition of the material from the 

computational domain leads to a highly ill-conditioned system. The authors showed that for such 

problems sparse approximate inverse SAI preconditioner has better scalability than block ILU. The 

pressure matrix formed from the pressure Poisson’s equation is generally ill-conditioned and requires 

robust parallel preconditioners which give accelerated convergence. Several recent works [11-14] 

suggest a growing importance towards the improvement in finding better parallel preconditioners for 

the pressure matrix. 

      The present work focuses in the accelerated performance of pressure-velocity-temperature matrix 

system in terms of overall CPU time of simulation with the implementation of explicit preconditioners 

for the matrix systems. SPAI is chosen as the preconditioner for the pressure matrix. When approximate 

inverse preconditioners are used it is imperative that in order to have maximum speed up in terms of 

CPU time the pressure matrix coefficients should remain constant.  In the SIMPLE family of algorithms, 

coefficients of the pressure matrix depend on the velocity field within the non-linear iteration. A simple 

modification in the pressure correction equation facilitates the approximate inverse to be computed only 

once at the beginning of the simulation for the pressure matrix. 

 

2     Numerical methodology 
2.1    Discretisation 

The governing equations for conservation of mass, momentum and energy for incompressible fluid flow 

in the finite volume framework are given in vector notation as: 
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Here the symbol Γ in Eqs (1) and (2) is 1 for non-isothermal flows and 0 for isothermal flows. The body 

force term is accounted in the momentum equation (2) due to the Boussinesq approximation. Here, u is 

the velocity vector and p is pressure field in three dimension. Equation (1) in the discrete form is given 

as: 
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Equation (4) is solved by assuming a pressure field at the previous iteration level value l. The notation 

l0 denotes the old time level while subscripts p and f stand for the cell centroid and face values. Higher 

order upwinding is used to calculate the convective fluxes [15], being linearized at the previous iteration 

level. The temperature in the body force term is assumed the previous iteration level value in the 

temperature loop i.e. for every linearized iteration level for velocity and pressure there is an additional 

temperature loop. Equation (4) reduces to a system of linear algebraic equations for velocity given as: 

  0

1 1

1,2 2
,

1 1

l l
ll l m

P k E k ref P

k

Nk Nk

pk k

k k
pk

V
AP AE p V T T V

t

V V
AP C D AE

t t



 

 



 


        



      
  



 

u u,

u u u,u

u u g u

 

       (5) 

APu
 is the diagonal term and kAEu,

 namely, the sum of convective (
pkCu

) and diffusive (
pkDu

) fluxes 

form the off-diagonal terms.  

 

Figure 1. Two neighbouring tetrahedral cells of an unstructured mesh. Points P and E are the cell 

centroids of the tetrahedral control volumes A-B-C-D and A-B-D-O respectively. Point ‘f’ falls on 

the common face defined by the unit normal n̂ . The discretized equations are constructed for the 

control volume A-B-C-D. 

 

The next iteration level for the velocity at (l+1)/2 is obtained by solving Eq. 4 with preconditioned-

BiCGSTAB, a linear iterative solver. The new values of the fluxes are calculated by updating the 

previous iteration level values of the velocity with the new one i.e. ul = u(l+1)/2. The governing equation 

for pressure is derived by enforcing the mass balance at the new iteration level, namely 
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Equation (6) is the pressure Poisson’s equation for the pressure correction term p in the integral form. 

When discretized, it reduces to another set of linear algebraic equations for pressure correction given 

as: 
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The diagonal term pAP  and the off-diagonal terms ,p kAE  of the pressure matrix are given as: 
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The term fkA represents the area of the face k and α is the under-relaxation factor for velocity. The 

coefficients of the pressure matrix depend on the velocity field through the term APu
, a sum of transient, 

convective and the diffusive fluxes. Generally a weighted averaging which is a 2nd order approximation 

is used to evaluate APu
 at the face A-B-D shown in Fig. 1; specifically: 
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By using Eq.(8) it is seen that the coefficient APu
 will vary across the control surface in Eq. (5) since 

the neighbouring value of    
E P

AP APu u . In order to make the pressure matrix coefficients constant 

the term APu
 across all the faces should remain the same. This is achieved if the cell centroid value 

itself is used as the face value. However, it then becomes a first order approximation. In order to retain 

the second order accuracy the gradient  
p

AP u needs to be computed. Since the velocity field is 

known, the central coefficient APu
 is also known at every cell centroid location and the coefficient is 

now a function of space  AP APu u r . The gradient  
p

AP u is computed using the weighted least 

squares gradient approach. 

 

2.1.1 The weighted least squares gradient method 

 

Let  be the central coefficient of the discretized momentum equation (5),  AP  u r . The value of 

  at face f is evaluated by expanding the Taylor series at the cell centroid p: 
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Here f denotes the face, fN denotes the number of faces within a control volume, pr is the position 

vector at the cell centroid, fr is the position vector at a cell face centroid. A harmonic average of the 

distance from the cell centroid to all the face centroids is taken to make fr constant. Harmonic average 
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ensures that the
f values are not over-predicted, especially when the mesh cells are skewed. For finding 

p  the neighbouring cell centroid values of   are used. Let i be the neigbouring cell centroid index, 

then the Taylor series expansion at i gives: 
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In Eq. (11) 
iw  are the weights, N denotes the number of neighbouring control volumes. The objective 

is to find value of the derivatives 
, , ,, ,p x p y p z   by solving the minimization of the functional
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squares approach to get the values of the derivatives. 
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Once the values of the derivatives are found it is substituted in Eq. (10) to get the  value interpolated 

at the face. The computed value at the faces are all the same hence it is taken out of the integral in Eq. 

(6). Since the pressure matrix now depends only on the geometrical and the fluid parameters which 

remain constant throughout the simulation it is cost effective to compute approximate parallel 

preconditioners for the pressure matrix which accelerates the convergence of the iterative solver. 

          

Once the pressure correction field is obtained from Eq. (7) the mass conserving pressure correction term 

is calculated as follows:  

 0.5m sp p p p p p            (13) 

In Eq. (13), 
sp  is the smoothing pressure correction term and p is evaluated by multidimensional 

averaging [2]. The term p  eliminates the checkered board oscillations inherent in the collocated grid 

formulation. Pressure and velocity at the cell centers are calculated at the new iteration level as: 

1l l

mp p p    
       (14) 

1  l l

m

V
p

AP

 
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u

u u         (15) 

In Eqs. (14) and (15), factors α and β are under-relaxation parameters for velocity and pressure.  The 

temperature equation (3) is solved once the new iteration level values of velocity are found. The discrete 

form of Eq. (3) also forms another set of linear algebraic equation for temperature: 
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,Tpk TpkC D  are the respective convective and diffusive fluxes. Here m is the iteration loop variable for 

temperature. Eq. (16) is repeatedly solved till
1, 1 1,l m l mT T     . Once converged, solution algorithm 

is advanced for the new iteration level value. For convergence, two types of residual norms are 

evaluated. One is for the non-linear velocity iteration and the other, for mass conservation which is 

given by 2

2
p . Both these residuals have to converge below a set tolerance limit for time level 

advancement. The overall calculation procedure is summarized in an algorithmic form as follows: 

 

Let l0 and (l+1) be the old and new time levels while l and (l+1)/2 are the old and new iteration levels 

during flow calculation within a time step. 

1. Prescribe a pressure field at the previous (initial) time level l0. Start iterations with

0 0 01,  ,
l l ll l lp p T T  u u for time advancement. 

2. Evaluate the face fluxes pkCu and pkDu  at faces k. Compute the matrix coefficients kAEu,
and

.APu
Solve Eq. (7) till convergence (tol_u < 1.0e-10) to get the intermediate level velocity field 

u(l+1)/2.  

3. Update ul = u(l+1)/2. Update nodal values. Evaluate the face fluxes pkC . 

4. Compute matrix coefficients ,p k pAE AP ,  and solve the pressure Poisson equation Eq. (7) till 

convergence ( tol _ p  < 1.0e-10) to get the new pressure corrections. Compute the mass-

conserving pressure correction mp from Eq. (13). 

5. Solve Eqs. (14) and (15) and update pressure and velocity at the new time level (l+1). 

6. Solve Eq. (16) to get the new iteration level value for temperature at m+1 at the new time level 

(l+1). 

7. Check for convergence: 
1, 1 1,l m l mT T     .  If not converged, update old iteration level values 

1, 1, 1l m l mT = T  
 and return to step 2. 

8. Calculate momentum and mass residuals and check additionally for convergence. If not 

converged, update the iteration level values ul = u(l+1), pl = p(l+1) and return to step 2. 

9. Update old time level values with the new as 0 0 01 1 1,  ,
l l ll l lp p T T    u u  Update the nodal 

values, return to step 1. 

 

2.2 Preconditioning  
Linear systems of equations for the velocity u,pressure correction p and temperature T are given as: 

Au u ux = b   (17) 

p p pA   x = b   (18) 

T T TA x = b  (19) 
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The velocity matrix Au  forms a block-diagonal matrix as shown below: 

 

0 0

0 0

0 0

u uu

v v v

w w w

A

A

A

    
    

    
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x b

x b

x b

 (20) 

Since submatrices uA , vA and wA  have identical entries, their eigenvalues are also identical. Fig. 2 

shows the sparsity pattern of pressure, velocity and temperature matrices for a mesh size N=513256 

cells. 

 

 

Figure 2. Pressure, velocity and temperature matrix structure for a mesh with N=513256 cells. The dark 

area shows the location of the non-zero entries, the rest being zero. 

Preconditioning enhances the convergence properties and hence the ease of invertibility of a matrix. 

There are three types of preconditioning [17]: 

1 1M A M x = b   
(21) 

1 1AM M 
y = b,    x = y  (22) 

1 1 1 1

1 2 1 2 1 2and  M AM M M M = M M   
y = b,    x = y    (23) 

Equations (21-23) define left, right and split preconditioning steps, respectively. Here, 
1M 
is the 

preconditioner. Only when 
1M 
 is explicitly known (example: Jacobi/Diagonal and SPAI) a direct 
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matrix-matrix multiplication 
1M A

or 
1AM 
possible, provided that the resultant product matrix does 

not become dense. In most cases 
1M 
is not explicitly known. Table 1 summarizes the preconditioners 

considered in the present work. 

 

Table 1. List of preconditioners reported in the present work with the preconditioner shown in matrix 

form 

Preconditioner M  (Eqs. 21-23) 

Jacobi/Diagonal (D) D  
Symmetric Gauss-Seidel (SGS)    1 +  + D U D D L  

Incomplete LU (ILU(0)) 
I IL U E  

SPAI 
F

I AM  

In Table 1 the first three preconditioners are obtained from splitting the matrix A into its lower L, upper 

U and diagonal D form where A L D U   . When a Jacobi preconditioner is used in Eq. (17), the 

matrix A becomes diagonally normalized (row scaled), i.e. 

1

1

1

D U

A

D L





 
 

  
 
 

 (24) 

The ILU class of preconditioners arises from the incomplete factorization of matrix A into its lower and 

upper triangular matrices. The complete LU factorization leads to fill-ins in the zero entries of the 

original matrix. When these fill-in entries are carefully dropped following a strategy then the 

factorization is termed incomplete LU factorization. In ILU(0) factorization all fill-in entries are 

dropped to retain the non-zero structure pattern of the original matrix. In MILU, additional computations 

are required to form approximate  ,I IL U  factors of A. The fourth preconditioner is the SPAI or the sparse 

approximate inverse preconditioner which also falls in the explicit category of preconditioners. The 

approximate inverse is found out by the Frobenius norm minimization [7]. One disadvantage of such 

preconditioners is that the setup time requirement i.e. the time required to compute the approximate 

inverse matrix, is comparatively higher as the matrix size increases. With the new formulation the setup 

time requirement for the pressure matrix preconditioner is negligible compared to the overall simulation 

time since it is computed only once at the beginning of the simulation. The modified matrix equation 

for pressure is given as: 
1 1

p p p p pM A M D 

    ux = b          (25) 

In Eq. (25) Du
is a diagonal matrix which contains face values  

f
APu  of the diagonal terms of the 

velocity matrix using the modified equation (10). pA   is dependent of the geometric and fluid properties 

which remain constant throughout the simulation. 
1

pM 

  is found by Frobenius norm minimization of 

2 2

2
1

n

p p j p p jF
j

I A M e A m   



   . Every columns are minimized using a self-preconditioned 

minimal residual (MR) iteration [7]. Within every MR iteration it follows a numerical dropping strategy 

where only the largest value in the column is retained and the rest of the values are dropped. If the 

number of fill-in entries per column are designated by k then SPAI(k) indicates the k  number of non-

zero entries per column after k inner MR iteration.  
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It is well known that explicit preconditioners are highly parallelizable. From Table 1, diagonal and 

SPAI preconditioners are explicit and highly parallelizable but diagonal preconditioner has a poor 

convergence with any Krylov solver. Since pressure matrix is well known to be highly ill-conditioned 

it requires a robust as well as highly parallelizable preconditioners such as SPAI.  In the subsequent 

sections three problems are carried out with all the listed preconditioners applied on the pressure, 

velocity and temperature matrix systems. 

 

3     Results and discussion 

Numerical simulations have been carried out on three different geometries. These include mixed 

convection inside a 3D double sided lid-driven cavity, unsteady flow past a circular cylinder and 

pulsatile flow inside an asymmetric abdominal aortic aneurysm. Convergence characteristics of 

pressure, velocity and temperature matrices with the listed preconditioners in Table 1 decide the best 

combination of preconditioners which should be chosen to get maximum speed up with respect to the 

overall simulation time. An in-house unstructured FVM based code written in C++ is used for the 

simulation. A parallel preconditioned iterative Krylov solver (BiCGSTAB) is used as accelerator for 

the linear equations. The matrix solver is a general purpose sparse matrix solver and the storage is based 

on compressed sparse row format.  Under relaxation factors are chosen to provide stability and 

acceleration to the iterative solution. 

3.1 Mixed convection in 3D double sided lid driven cavity 

In a cubical cavity the top and bottom surface are given a uniform velocity U0. The top surface is 

maintained at higher temperature THOT=350K and the bottom surface is maintained at a lower 

temperature TCOLD=300K. The lateral sides are insulated as shown in Fig. 3. Working fluid considered 

is air with Pr =0.71. Steady state results are analysed and a pseudo transient approach is adopted. A 

good quality mesh with a total of 513256 tetrahedral mesh cells were used after separately conducting 

the grid independence. 

 

Figure 3: Double sided lid driven cubical cavity 

 

Convection patterns for a range of Reynolds number (Re=100, 400 and 1000) and Richardson number 

(Ri=0.001, 1, 10) are studied. A Boussinesq approximation is assumed. Fig. 4 shows the temperature 

iso-contours at various Reynolds number and Richardson numbers. A low Ri signifies a forced 

convection and a high Ri signifies more contribution due to the buoyancy effect. Table 3 shows that the 
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average Nusselt number (Nuavg) calculated for the top hot surface shows a good match with Ouertatani 

[18]. Nuavg is calculated as shown below: 

 

 
avg

1 1 COLD

HOT COLD

N
T T

dxdy
Area T

u
T y

 
  

   

 

 

Figure 4: Temperature iso conoturs at various Reynolds numbers and Richardson numbers 

 

Figure 5 shows the convergence characteristics of various preconditioners on the velocity and 

temperature matrices at Re considered for the study. Since variation in Ri does not alter the coefficients 

of both velocity and temperature matrices the convergence characteristic with respect to Ri is 

insignificant. Delay in convergence with increasing Re is observed for both velocity and temperature 

matrices. ILU(0) shows the best convergence rate for all Re considered, although SGS shows a closer 

match with that of ILU(0). 
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Table 2. Average Nusselt number of the top surface 

 Ri=0.001 

Present              Ref[18] 

Ri=1 

Present           Ref[18] 

Ri=10 

Present            Ref[18] 

Re=100 1.79                     1.83 1.38                     1.35 1.09                      1.09 

Re=400 3.99                     3.96 1.51                     1.53 1.14                      1.13 

Re=1000 7.32                     7.28 1.83                     1.86 1.15                      1.14 

 

  

 
Figure 5: Convergence characteristics for various preconditioners with Reynolds number for velocity 

(a1, a2 and a3) and temperature (b1, b2 and b3) matrices. 

 



 12 

Figure 6 shows the CPU time taken in seconds for the velocity and temperature matrices at various 

Reynolds numbers with 20 CPU cores. Fig. 6 shows the opposite of what is expected from Fig. 5. 

Diagonal preconditioner shows the best performance in terms of CPU time as it takes the least CPU 

time per linear solve when compared to SGS and ILU(0) preconditioner. This shows that the adverse 

effect due to poor convergence rate is overcome due to the high parallelizability of diagonal 

preconditioner. Since the velocity and temperature matrices remain well conditioned the CPU time 

taken per linear solve is insignificant compared to that of pressure matrices. Hence for velocity and 

temperature matrices diagonal preconditioner is used. 

 

 
Figure 6: CPU time taken in seconds per linear solve for (a) velocity and (b) temperature matrices at 

various Reynolds numbers with 20 CPU cores 
 
 

 
Figure 7: (a) Convergence characteristics and (b) CPU time taken per linear solve for 1 and 20 CPU 

cores for pressure matrix. (c) Overall non-linear momentum residual convergence for one non-linear 

SIMPLE iteration and (d) overall mass residual convergence for one non-linear SIMPLE iteration 

for 20 CPU cores 
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Figure 7(a) shows the residual convergence with various preconditioners for the pressure matrix for one 

linear solve. ILU(0) shows the best convergence rate. SPAI preconditioners with 10 fill-in (SPAI(10)) 

per column shows a better convergence than 5 fill-in (SPAI(5)) per column. This suggests that as the 

level of fill-in increase per column a better convergence rate is achieved. However, this increases the 

computational cost of setting up the approximate inverse preconditioner. Fig 7(b) shows the CPU time 

taken for 1 core and corresponding time taken for 20 core processors. SPAI(5) and SPAI(10) show the 

best parallel efficiency with almost a linear scale up when compared to other preconditioners. There is 

a significant difference of around 4 seconds CPU time between SPAI and diagonal preconditioner. It is 

evident from Fig. 7(b) that the performance of ILU(0) preconditioner gets deteriorated when applied 

over muti-core processors. This is evident from Figs. 7(c) and 7(d) which shows the residual 

convergence of momentum and mass for one non-linear SIMPLE iteration which is equivalent to the 

time taken per time step. The difference in time is significant since several time steps need to be 

progressed to reach the desired solution. 

 

3.2 Laminar flow past a circular cylinder 

Unsteady flow past a circular cylinder is studied at Re = 100. The fluid is assumed to be isothermal 

(Г=0). Reynolds number is based on the cylinder diameter (D) which is chosen as the length scale. The 

length of the domain is 20 cylinder diameter (20D). The width and height of the domain are 10D each 

respectively. The circular cylinder is placed at a distance of 5D from the inflow plane. A uniform 

velocity U0, is prescribed at the inlet boundary. Neumann boundary condition is prescribed for velocity 

at the outflow plane. The lateral walls are given a free slip boundary condition for velocity. For pressure, 

Neumann boundary condition is prescribed at the walls and the inflow plane while a Dirichlet boundary 

condition is prescribed at the outlet. A high quality mesh with a total of 1.34×106 tetrahedral cells were 

used. Fig. 8(a) shows vortex shedding behind the circular cylinder at the prescribed Reynolds number. 

Flow periodicity is a salient feature at this Reynolds number and this is brought in Fig. 8(b) which 

shows the variation of transverse velocity with time probed at a distance of 1D downstream the cylinder. 

The vortex shedding corresponds to a single frequency and the non-dimensional frequency or the 

Strouhal number was found to be St = 0.156. This number matches well with St=0.154 reported by 

Zhang and Dalton [19] at Re=100. 

 

 
Figure 8: Flow past a circular cylinder at Re=100: (a) vorticity iso-contours 0.15z   (b) 

transverse velocity (v-velocity) signal variation with dimensionless time 
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Figure 9(a) shows a similar convergence characteristics as for lid driven cavity problem in Fig. 7(a). 

ILU(0) still shows a better performance in terms of number of iterations taken to converge below a set 

tolerance value. Five fill-in per column SPAI(5) is used here since it was shown in the previous lid 

driven cavity problem that the CPU time taken was almost the same for 5 and 10 fill-in entries per 

column. The number of entries for ILU(0) and SPAI(5) match as ILU(0) mimics the parent matrix 

which has five entries per row since tetrahedral mesh was used. Hence 5 fill-in entries for SPAI makes 

it ideal for comparing it with ILU(0). Fig. 9(b) shows that the parallel efficiency and scalability of SPAI 

preconditioner is far superior compared to other preconditioners. While for single core CPU ILU(0) 

shows superior performance, due to its weak parallelizability both SGS and ILU(0) show poor 

performance in multi core CPUs. Figs. 10(a) and 10(b) shows the momentum and mass residual 

convergence for 20 CPU cores. As seen from the previous results when SPAI preconditioner is used for 

the pressure matrix it is seen that there is a massive improvement in the mass and momentum residual 

convergence rate per non-linear SIMPLE iteration. 

 
 
 

 
Figure 9: Pressure matrix for flow past a circular cylinder: (a) Convergence characteristics with 

various preconditioners per linear solve (b) CPU time for 1 and 20 cores per linear solve. 
 
 
 
 
 

 
Figure 10: (a) Momentum residual and (b) mass residual convergence with CPU time for various 

preconditioners. The results are shown for 20 CPU cores for flow past a circular cylinder. 
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3.3 Pulsatile flow inside an asymmetric abdominal aortic aneurysm (AAA). 

Figure 11 shows the layout of an asymmetric abdominal aortic aneurysm. The part resembles a model 

of an AAA [20]. The model considered is rigid. The working fluid considered has properties of human 

blood. Density (ρ) of the fluid is 1130 kg/m3 and viscosity (μ) is 0.004 Pa-s. The flow is assumed to be 

isothermal (Г=0). The tube diameter is 2.16 cm. The flow is considered pulsatile in nature mimicking 

the physiological nature of human blood inside abdominal aorta. Fig. 12 shows the inlet and outlet 

velocity and pressure waveforms extracted from the data provided in [20]. The extracted waveforms 

chosen for the simulation correspond to resting human condition. The peak Re corresponding to the 

peak flow rate is found to be Re = 1708. The Womersley number (Wo) corresponding to the cycle time 

of 0.85sec was found to be Wo = 15.65. 

 

 
Figure 11: Layout of asymmetric abdominal aortic aneurysm 

 

 
Figure 12: (a) Inlet velocity waveform and (b) inlet and outlet pressure waveforms 
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Figure 13 show the swirling strength of the flow inside the AAA portion corresponding to the cycle 

time of 0.3sec. The present numerical results shows a reasonably good match with the experimental 

results of Deplano et al. [20]. The swirling strength indicates the location of vortices. The vortices are 

formed in the initial phase and it grows larger in size during the deceleration phase. These vortices 

remain attached near the inlet section of AAA as shown in Fig. 13 during the positive cycle. When the 

flow reverses, these vortices disappear from the inlet section and no such vortices are formed till the 

end of the cycle. The formation of vortices inside an aneurysm is important to study since the local 

vortices generated during the pulsatile cycle promotes local shearing which may cause tearing away of 

inner endothelial wall causing rupture of aneurysm which could be fatal. 

 

 
Figure 13: Swirling strength inside the asymmetric bulge corresponding to time = 0.3 sec of cycle 

time. Right hand side shows the present numerical results and left hand side shows the experimental 

results of Deplano et al. [20]. 

 

 
Figure 14: Pressure matrix for asymmetric abdominal aortic aneurysm: (a) Convergence 

characteristics with various preconditioners per linear solve (b) CPU time for 1 and 20 cores per 

linear solve. 
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Figure 14 shows the pressure matrix convergence per linear solve with various preconditioners. For 

single core CPU ILU(0) preconditioner shows the best convergence characteristics but the CPU time 

taken is the worst for ILU(0) precoditioner for multi core (20) CPUs. From Fig. 14 (b) it is evident that 

SPAI(5) shows the best speedup per linear solve. Diagonal preconditioner shows the worst convergence 

characteristics but due to its high parallelizability it shows a good speed up with multi core CPUs as 

shown in Fig. 14(b).  Fig. 15 (a) and (b) shows the non-linear momentum and mass residual convergence 

per non-linear SIMPLE iteration for 20 CPU cores. The flow being pulsatile in nature, during the initial 

cycles a larger magnitude of tolerance limit is imposed for convergence. For the results shown these 

tolerance limits are given as 10-6. Once the flow develops the tolerance limits are further reduced. This 

strategy saves computational time. SPAI(5) preconditioner is seen to give the best speedup with 20 

CPU cores compared to other preconditioners. Diagonal preconditioner shows high fluctuations in its 

residual convergence whereas rest of the preconditioners show a smooth, almost monotonic 

convergence which is desirable especially during the initial stages of simulation. High fluctuations in 

the residual convergence may result in numerical overshoots in the solution which is undesirable. Hence 

diagonal preconditioner although it gives faster convergence than ILU(0) and SGS, it may give 

undesirable results if the convergence is not smoothed out. 

 

 
Figure 15: (a) Momentum residual and (b) mass residual convergence with CPU time for various 

preconditioners. The results are shown for 20 CPU cores for flow inside asymmetric abdominal aortic 

aneurysm. 

 

4     Conclusions 
 

Parallel preconditioners for the pressure-velocity-temperature matrix systems are analysed on a 

SIMPLE variant of algorithm applied for incompressible flows. SIMPLE and its variants are well 

known for its strong pressure-velocity coupling which makes the coefficients of the pressure matrix 

change with the changing velocity field. This makes it difficult or time consuming to find its 

approximate that are used as highly parallelizable preconditioners in iterative solvers such as 

BiCGSTAB. The interpolation of the central coefficient of the discretized velocity term, which occurs 

with the pressure gradient term in the pressure correction equation, with the neighbouring cell centroid 

value is what makes the pressure matrix vary with the changing velocity field. The remedy to this 

problem is to make the pressure matrix coefficients constant such that the approximate inverse need to 

be computed only once at the beginning of computations. Based on the new formulation which assist 
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parallel preconditioners, simulations are carried out for three problems and the following conclusions 

are arrived: 

1. The new approach uses a higher order interpolation of the central coefficient of the velocity 

term APu
on the faces of the control volume using Taylor series expansion. Weighted least 

squares gradient method is used to find the gradient  AP u  at the cell centroid. In order to 

make APu
on the faces constant, the distance vector Δ fr  is made constant by taking the 

harmonic average of all the distance vectors from the cell centroid to the face centroid within a 

control volume. Hence, the averaged vector Δ fr remains closer to the smallest of all the 

distance vectors within the control volume. This ensures stability to the solution by not over 

estimating the interpolated value the face. The present results shown are for the 2nd order 

interpolated values of APu
 at the face but are not restricted to the same. 3rd order interpolation 

could be achieved by estimating  2 AP u at the cell centroid using the same weighted least 

squares gradient approach. The new approach has been shown to be stable and is highly suitable 

for explicit type parallel preconditioners. 

2. Velocity and temperature matrices: Three problems were studied which include i) mixed 

convection inside a double sided 3D lid driven cavity, ii) unsteady flow past a circular cylinder 

at Re=100 and iii) pulsatile flow inside an asymmetric abdominal aortic aneurysm. For all the 

problems considered the velocity and temperature (lid driven cavity) matrices remained well 

conditioned. This is due the parabolic nature of the governing partial differential equations. 

ILU(0) preconditioner showed the best convergence characteristics but due to its weak 

parallelizability it showed poor performance with multi core CPUs. Diagonal preconditioner 

was found to give superior performance as it is computationally cheaper and highly 

parallelizable when compared to ILU(0) and SGS for multi core CPUs. 

3. Pressure matrix: For all the problems considered for the study the pressure matrix was found 

to be highly ill-conditioned and requires robust preconditioners. Although ILU(0) again showed 

the best convergence characteristics, it showed extremely poor scalability with multi core 

CPUs. SPAI based preconditioner is seen to show the best performance with multiple 

processors for all the problems.  

4. For the overall nonlinear momentum residual and mass residual convergence, a combination of 

diagonal preconditioner for velocity and SPAI for pressure showed the best speedup in multi 

core CPUs. Although diagonal preconditioners are scalable it showed fluctuating convergence 

of momentum and mass residual for pulsatile flow inside abdominal aortic aneurysm problem. 

This is highly undesirable since such fluctuations can cause numerical overshoots which may 

give unphysical solutions. Hence for pressure matrix robust preconditioners which are also 

highly parallelizable such as SPAI are required to produce the desired effect. 
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Nomenclature 

pA    pressure correction matrix 

Au  block diagonal velocity matrix 

APu  
central coefficient of velocity matrix 

1M 
 preconditioner 

p  pressure (dimensionless) 

p  
total pressure correction 

mp  
calculated pressure correction 

sp  smoothing pressure correction 

Ru, Rp momentum and mass residual vector 

u  Cartesian velocity vector (dimensionless) 

T  unknown temperature 

Greek symbols 

  under relaxation factor for velocity 

  under relaxation factor for pressure correction 

  = 0 for isothermal flows, = 1 for non-isothermal flows 

Abbreviations 

SPAI sparse approximate inverse preconditioner 
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