
 1

Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona, Spain, July 9-13, 2018

ICCFD10-069

Parallel Preconditioners for Pressure-Velocity Matrix Systems for

Incompressible Flows

Krishna Chandran*

 Corresponding author: kchandrn@iitk.ac.in

 * Dept. of Mechanical Engineering

 Indian Institute of Technology Kanpur, India.
 PINCODE 208016

Abstract: Parallel preconditioners for matrix systems arising from an unstructured

finite volume formulation for the general thermal transport problem are studied with

the primary focus on the CPU time of simulation. The fluid is assumed

incompressible. The pressure, velocity and temperature matrix equations are solved

using a preconditioned-BiCGSTAB algorithm with the matrices represented in the

compressed sparse row format. The pressure matrices are highly ill-conditioned and

require powerful preconditioners. Velocity and temperature matrices being well-

conditioned require computationally inexpensive preconditioners such as the

diagonal preconditioner. Although SGS and ILU preconditioners have better

convergence characteristics, the present work shows that the use of these

preconditioners for well-conditioned matrix could prove detrimental to the overall

simulation time due to its weak parallelizability. Sparse Aproximate Inverse (SPAI)

based preconditioners have better convergence and are highly suitable for parallel

computing and hence is used for the pressure matrix. Parallelization is based on the

OpenMP framework. The relatively high setup time required to compute the

approximate inverse is compensated by tailoring the discretized governing equations

for pressure correction such that the approximate inverse needs to be computed only

once at the beginning of the simulation. The present work shows that this new

formulation enables a computationally inexpensive way of using SPAI

preconditioner which guarantees a superior convergence and an overall reduction in

CPU time when compared with diagonal, SGS and ILU(0) preconditioners.

Keywords: Parallel Preconditioner, Sparse Approximate Inverse Preconditioner,

SIMPLE, Pressure Matrix, Weighted Least Squares Gradient.

1 Introduction

Discretized Navier-Strokes equations generally result in a system of equations which are solved

iteratively depending on the number of grid points used. Unstructured finite volume method which has

acquired wide popularity in large-scale applications result in linear systems for which the matrix

structure may be highly sparse thereby making the iterative solution more difficult. Early finite volume

formulations were based on SIMPLE and its variants [1] which were used to resolve the pressure-

velocity decoupling by using a staggered grid arrangement. However, this approach is inappropriate for

unstructured grid where the pressure and velocity need to be defined at the cell centroid. The smoothing

pressure correction approach [2] is a remedy which eliminates the checkerboard oscillations for pressure

and velocity defined on a non-staggered grid.

mailto:kchandrn@iitk.ac.in

 2

Being implicit in nature the SIMPLE family of algorithms form two types of linear system of

equations (Ax=b), one for velocity and the other for pressure. For heat transfer related problems one

additional temperature matrix resulting from the discretized energy balance equation needs to be solved.

The matrices formed are generally non-symmetric and hence iterative methods such as BiCGSTAB [2]

and GMRES [4] are used. Difficulty in storage arises when the matrix dimension becomes large. Focus

has been shifted towards compressed storage where only the non-zero entries of the matrix are stored.

Compressed Sparse Row [5] is one such storage method where the non-zero entries are stored in a row-

wise manner with additional arrays to store the location of non-zero entries. Unstructured formulation

generally gives rise to matrices which are ill-conditioned with large condition numbers which affects

the speed and accuracy of solution.

Preconditioning of the matrix improves its condition number towards unity. Constructing a good

preconditioner could prove to be computationally expensive. Diagonal/Jacobi preconditioners are the

cheapest of all the preconditioners but effective only for diagonally dominant systems. Gauss Siedel

family of preconditioners such as GS, SGS, SOR and SSOR demand more storage but exhibit an

improvement in the convergence of the iterative solver. ILU class of preconditioners are more robust

with better convergence properties. Both the Gauss Seidel and ILU based preconditioners are weakly

parallelizable. Sparse approximate inverse preconditioners, belong to a class of preconditioners where

the approximate inverse is explicitly computed. The high setup time to find the approximate inverse

should be minimized by highly parallelizable algorithms. Most of the approximate inverse are based on

the Frobenius norm minimization leading to inherent parallelism since each columns of approximate

inverse is computed independently. Difficulty lies in capturing a good sparsity pattern for the

approximate inverse. Grote and Huckle [6] showed an inexpensive way to compute the location of the

non-zero entries of approximate inverse without generating excessive fill-in. Chow and Saad [7]

proposed an algorithm which automatically generates new entries while the excessive fill-in are

controlled following a dropping strategy. The algorithm does not assume an a priori sparsity pattern

hence, the computational complexity reduces but overall computational cost increases in terms of setup

time. The other class of approximate inverse falls in the category of incomplete factorization. Benzi and

Tuma [8] proposed a direct method using a bi-conjugation algorithm for the incomplete factorization.

The method is weakly parallelizable when compared to the minimization problem. Approximate inverse

preconditioners are gaining popularity in GPU architecture. Geveler et al. [9] showed that sparse

approximate inverse preconditioners provides strong smoothing for unstructured grids in GPU

architecture. Akay et al. [10] studied the scalability aspects of various preconditioners based on

topology optimization wherein the continuous removal or addition of the material from the

computational domain leads to a highly ill-conditioned system. The authors showed that for such

problems sparse approximate inverse SAI preconditioner has better scalability than block ILU. The

pressure matrix formed from the pressure Poisson’s equation is generally ill-conditioned and requires

robust parallel preconditioners which give accelerated convergence. Several recent works [11-14]

suggest a growing importance towards the improvement in finding better parallel preconditioners for

the pressure matrix.

 The present work focuses in the accelerated performance of pressure-velocity-temperature matrix

system in terms of overall CPU time of simulation with the implementation of explicit preconditioners

for the matrix systems. SPAI is chosen as the preconditioner for the pressure matrix. When approximate

inverse preconditioners are used it is imperative that in order to have maximum speed up in terms of

CPU time the pressure matrix coefficients should remain constant. In the SIMPLE family of algorithms,

coefficients of the pressure matrix depend on the velocity field within the non-linear iteration. A simple

modification in the pressure correction equation facilitates the approximate inverse to be computed only

once at the beginning of the simulation for the pressure matrix.

2 Numerical methodology
2.1 Discretisation

The governing equations for conservation of mass, momentum and energy for incompressible fluid flow

in the finite volume framework are given in vector notation as:

 3

  0
CS

  u dS = (1)

     

transient convective pressuregradient diffusive bodyforce

. ref

CV CS CV CS CV

dV p dV T T dV
t

   


         
     u u u dS u dS g (2)

   

transient convective diffusive

.p p

CV CS CS

c T dV c T k
t

  

 
  

     
 

  

  u dS dS (3)

Here the symbol Γ in Eqs (1) and (2) is 1 for non-isothermal flows and 0 for isothermal flows. The body

force term is accounted in the momentum equation (2) due to the Boussinesq approximation. Here, u is

the velocity vector and p is pressure field in three dimension. Equation (1) in the discrete form is given

as:

     01 1 1 1 1 1

1

.
Nf

ll l l l l l

p p p p f p ref
f

f

V
p V T T V

t

     




           


u - u u u u dS g (4)

Equation (4) is solved by assuming a pressure field at the previous iteration level value l. The notation

l0 denotes the old time level while subscripts p and f stand for the cell centroid and face values. Higher

order upwinding is used to calculate the convective fluxes [15], being linearized at the previous iteration

level. The temperature in the body force term is assumed the previous iteration level value in the

temperature loop i.e. for every linearized iteration level for velocity and pressure there is an additional

temperature loop. Equation (4) reduces to a system of linear algebraic equations for velocity given as:

  0

1 1

1,2 2
,

1 1

l l
ll l m

P k E k ref P

k

Nk Nk

pk k

k k
pk

V
AP AE p V T T V

t

V V
AP C D AE

t t



 

 



 


        



      
  



 

u u,

u u u,u

u u g u

 (5)

APu
 is the diagonal term and kAEu,

 namely, the sum of convective (
pkCu

) and diffusive (
pkDu

) fluxes

form the off-diagonal terms.

Figure 1. Two neighbouring tetrahedral cells of an unstructured mesh. Points P and E are the cell

centroids of the tetrahedral control volumes A-B-C-D and A-B-D-O respectively. Point ‘f’ falls on

the common face defined by the unit normal n̂ . The discretized equations are constructed for the

control volume A-B-C-D.

The next iteration level for the velocity at (l+1)/2 is obtained by solving Eq. 4 with preconditioned-

BiCGSTAB, a linear iterative solver. The new values of the fluxes are calculated by updating the

previous iteration level values of the velocity with the new one i.e. ul = u(l+1)/2. The governing equation

for pressure is derived by enforcing the mass balance at the new iteration level, namely

 4

  ˆ ˆ
l

f

CS CS f

V
ndS p ndS

AP

 
     

 
 

u

u (6)

Equation (6) is the pressure Poisson’s equation for the pressure correction term p in the integral form.

When discretized, it reduces to another set of linear algebraic equations for pressure correction given

as:

, ,

l

p P p k E k pk

k k

AP p AE p C 
    where ,p p k

k

AP AE  (7)

The diagonal term pAP  and the off-diagonal terms ,p kAE  of the pressure matrix are given as:

2

, ,

1

,
fk

Nk

p k p p k

k

A
AE AP AE

AP
  




 

u

 (8)

The term fkA represents the area of the face k and α is the under-relaxation factor for velocity. The

coefficients of the pressure matrix depend on the velocity field through the term APu
, a sum of transient,

convective and the diffusive fluxes. Generally a weighted averaging which is a 2nd order approximation

is used to evaluate APu
 at the face A-B-D shown in Fig. 1; specifically:

 
   E Pp E

f
E P

AP AP
AP

 


 

u u

u

r r

r r
 (9)

By using Eq.(8) it is seen that the coefficient APu
 will vary across the control surface in Eq. (5) since

the neighbouring value of    
E P

AP APu u . In order to make the pressure matrix coefficients constant

the term APu
 across all the faces should remain the same. This is achieved if the cell centroid value

itself is used as the face value. However, it then becomes a first order approximation. In order to retain

the second order accuracy the gradient  
p

AP u needs to be computed. Since the velocity field is

known, the central coefficient APu
 is also known at every cell centroid location and the coefficient is

now a function of space  AP APu u r . The gradient  
p

AP u is computed using the weighted least

squares gradient approach.

2.1.1 The weighted least squares gradient method

Let  be the central coefficient of the discretized momentum equation (5),  AP  u r . The value of

 at face f is evaluated by expanding the Taylor series at the cell centroid p:

 2

1 1

1 1f f

f p f p

f f

f N N

i if i p f i

r

N N



 

       

  

 
 

r

r

r r r

 (10)

Here f denotes the face, fN denotes the number of faces within a control volume, pr is the position

vector at the cell centroid, fr is the position vector at a cell face centroid. A harmonic average of the

distance from the cell centroid to all the face centroids is taken to make fr constant. Harmonic average

 5

ensures that the
f values are not over-predicted, especially when the mesh cells are skewed. For finding

p the neighbouring cell centroid values of  are used. Let i be the neigbouring cell centroid index,

then the Taylor series expansion at i gives:

         2 2

, , ,i p i p p i p p x i p p y i p p zr x x y y z z r                    r

A functional can be defined as follows [16]:

   
2

, , , , , ,

1

2

, , , ,.... =

1
,

N

i i p x p y p z i i i p x i p y i p z

i

i i p i

i p

w w x y z

w



                
 

    




r r

 (11)

In Eq. (11)
iw are the weights, N denotes the number of neighbouring control volumes. The objective

is to find value of the derivatives
, , ,, ,p x p y p z   by solving the minimization of the functional

 
, , ,, , ,, ,

Ψ Ψ Ψ
min Ψ : 0

p x p y p zp x p y p z  

  
  

  
. The resultant system of equation is solved using the least

squares approach to get the values of the derivatives.

2

,

2

,

2

,

i i i i i i i i p x i i i

i i i i i i i i p y i i i

i i i i i i i i p z i i i

w x w x y w x z w x

w x y w y w y z w y

w x z w y z w z w z

           
     

            
              

   
   
   

 (12)

Once the values of the derivatives are found it is substituted in Eq. (10) to get the  value interpolated

at the face. The computed value at the faces are all the same hence it is taken out of the integral in Eq.

(6). Since the pressure matrix now depends only on the geometrical and the fluid parameters which

remain constant throughout the simulation it is cost effective to compute approximate parallel

preconditioners for the pressure matrix which accelerates the convergence of the iterative solver.

Once the pressure correction field is obtained from Eq. (7) the mass conserving pressure correction term

is calculated as follows:

 0.5m sp p p p p p        (13)

In Eq. (13),
sp is the smoothing pressure correction term and p is evaluated by multidimensional

averaging [2]. The term p eliminates the checkered board oscillations inherent in the collocated grid

formulation. Pressure and velocity at the cell centers are calculated at the new iteration level as:

1l l

mp p p  
 (14)

1 l l

m

V
p

AP

 
  

u

u u (15)

In Eqs. (14) and (15), factors α and β are under-relaxation parameters for velocity and pressure. The

temperature equation (3) is solved once the new iteration level values of velocity are found. The discrete

form of Eq. (3) also forms another set of linear algebraic equation for temperature:

 6

0 ,1, 1 1, 1

,

1 1

l ml m l m

T P T k E k P

k

Nk Nk
p p

T Tpk Tpk T k

k k

V
AP T AE T T

t

c V c V
AP C D AE

t t



 

   

 


 



 
       



 

,

,

 (16)

,Tpk TpkC D are the respective convective and diffusive fluxes. Here m is the iteration loop variable for

temperature. Eq. (16) is repeatedly solved till
1, 1 1,l m l mT T     . Once converged, solution algorithm

is advanced for the new iteration level value. For convergence, two types of residual norms are

evaluated. One is for the non-linear velocity iteration and the other, for mass conservation which is

given by 2

2
p . Both these residuals have to converge below a set tolerance limit for time level

advancement. The overall calculation procedure is summarized in an algorithmic form as follows:

Let l0 and (l+1) be the old and new time levels while l and (l+1)/2 are the old and new iteration levels

during flow calculation within a time step.

1. Prescribe a pressure field at the previous (initial) time level l0. Start iterations with

0 0 01, ,
l l ll l lp p T T  u u for time advancement.

2. Evaluate the face fluxes pkCu and pkDu at faces k. Compute the matrix coefficients kAEu,
and

.APu
Solve Eq. (7) till convergence (tol_u < 1.0e-10) to get the intermediate level velocity field

u(l+1)/2.

3. Update ul = u(l+1)/2. Update nodal values. Evaluate the face fluxes pkC .

4. Compute matrix coefficients ,p k pAE AP , and solve the pressure Poisson equation Eq. (7) till

convergence (tol _ p < 1.0e-10) to get the new pressure corrections. Compute the mass-

conserving pressure correction mp from Eq. (13).

5. Solve Eqs. (14) and (15) and update pressure and velocity at the new time level (l+1).

6. Solve Eq. (16) to get the new iteration level value for temperature at m+1 at the new time level

(l+1).

7. Check for convergence:
1, 1 1,l m l mT T     . If not converged, update old iteration level values

1, 1, 1l m l mT = T  
 and return to step 2.

8. Calculate momentum and mass residuals and check additionally for convergence. If not

converged, update the iteration level values ul = u(l+1), pl = p(l+1) and return to step 2.

9. Update old time level values with the new as 0 0 01 1 1, ,
l l ll l lp p T T    u u Update the nodal

values, return to step 1.

2.2 Preconditioning
Linear systems of equations for the velocity u,pressure correction p and temperature T are given as:

Au u ux = b (17)

p p pA   x = b (18)

T T TA x = b (19)

 7

The velocity matrix Au forms a block-diagonal matrix as shown below:

0 0

0 0

0 0

u uu

v v v

w w w

A

A

A

    
    

    
         

x b

x b

x b

 (20)

Since submatrices uA , vA and wA have identical entries, their eigenvalues are also identical. Fig. 2

shows the sparsity pattern of pressure, velocity and temperature matrices for a mesh size N=513256

cells.

Figure 2. Pressure, velocity and temperature matrix structure for a mesh with N=513256 cells. The dark

area shows the location of the non-zero entries, the rest being zero.

Preconditioning enhances the convergence properties and hence the ease of invertibility of a matrix.

There are three types of preconditioning [17]:

1 1M A M x = b
(21)

1 1AM M 
y = b, x = y (22)

1 1 1 1

1 2 1 2 1 2and M AM M M M = M M   
y = b, x = y (23)

Equations (21-23) define left, right and split preconditioning steps, respectively. Here,
1M 
is the

preconditioner. Only when
1M 
 is explicitly known (example: Jacobi/Diagonal and SPAI) a direct

 8

matrix-matrix multiplication
1M A

or
1AM 
possible, provided that the resultant product matrix does

not become dense. In most cases
1M 
is not explicitly known. Table 1 summarizes the preconditioners

considered in the present work.

Table 1. List of preconditioners reported in the present work with the preconditioner shown in matrix

form

Preconditioner M (Eqs. 21-23)

Jacobi/Diagonal (D) D
Symmetric Gauss-Seidel (SGS)    1 + + D U D D L

Incomplete LU (ILU(0))
I IL U E

SPAI
F

I AM

In Table 1 the first three preconditioners are obtained from splitting the matrix A into its lower L, upper

U and diagonal D form where A L D U   . When a Jacobi preconditioner is used in Eq. (17), the

matrix A becomes diagonally normalized (row scaled), i.e.

1

1

1

D U

A

D L





 
 

  
 
 

 (24)

The ILU class of preconditioners arises from the incomplete factorization of matrix A into its lower and

upper triangular matrices. The complete LU factorization leads to fill-ins in the zero entries of the

original matrix. When these fill-in entries are carefully dropped following a strategy then the

factorization is termed incomplete LU factorization. In ILU(0) factorization all fill-in entries are

dropped to retain the non-zero structure pattern of the original matrix. In MILU, additional computations

are required to form approximate ,I IL U factors of A. The fourth preconditioner is the SPAI or the sparse

approximate inverse preconditioner which also falls in the explicit category of preconditioners. The

approximate inverse is found out by the Frobenius norm minimization [7]. One disadvantage of such

preconditioners is that the setup time requirement i.e. the time required to compute the approximate

inverse matrix, is comparatively higher as the matrix size increases. With the new formulation the setup

time requirement for the pressure matrix preconditioner is negligible compared to the overall simulation

time since it is computed only once at the beginning of the simulation. The modified matrix equation

for pressure is given as:
1 1

p p p p pM A M D 

    ux = b (25)

In Eq. (25) Du
is a diagonal matrix which contains face values  

f
APu of the diagonal terms of the

velocity matrix using the modified equation (10). pA  is dependent of the geometric and fluid properties

which remain constant throughout the simulation.
1

pM 

 is found by Frobenius norm minimization of

2 2

2
1

n

p p j p p jF
j

I A M e A m   



   . Every columns are minimized using a self-preconditioned

minimal residual (MR) iteration [7]. Within every MR iteration it follows a numerical dropping strategy

where only the largest value in the column is retained and the rest of the values are dropped. If the

number of fill-in entries per column are designated by k then SPAI(k) indicates the k number of non-

zero entries per column after k inner MR iteration.

 9

It is well known that explicit preconditioners are highly parallelizable. From Table 1, diagonal and

SPAI preconditioners are explicit and highly parallelizable but diagonal preconditioner has a poor

convergence with any Krylov solver. Since pressure matrix is well known to be highly ill-conditioned

it requires a robust as well as highly parallelizable preconditioners such as SPAI. In the subsequent

sections three problems are carried out with all the listed preconditioners applied on the pressure,

velocity and temperature matrix systems.

3 Results and discussion

Numerical simulations have been carried out on three different geometries. These include mixed

convection inside a 3D double sided lid-driven cavity, unsteady flow past a circular cylinder and

pulsatile flow inside an asymmetric abdominal aortic aneurysm. Convergence characteristics of

pressure, velocity and temperature matrices with the listed preconditioners in Table 1 decide the best

combination of preconditioners which should be chosen to get maximum speed up with respect to the

overall simulation time. An in-house unstructured FVM based code written in C++ is used for the

simulation. A parallel preconditioned iterative Krylov solver (BiCGSTAB) is used as accelerator for

the linear equations. The matrix solver is a general purpose sparse matrix solver and the storage is based

on compressed sparse row format. Under relaxation factors are chosen to provide stability and

acceleration to the iterative solution.

3.1 Mixed convection in 3D double sided lid driven cavity

In a cubical cavity the top and bottom surface are given a uniform velocity U0. The top surface is

maintained at higher temperature THOT=350K and the bottom surface is maintained at a lower

temperature TCOLD=300K. The lateral sides are insulated as shown in Fig. 3. Working fluid considered

is air with Pr =0.71. Steady state results are analysed and a pseudo transient approach is adopted. A

good quality mesh with a total of 513256 tetrahedral mesh cells were used after separately conducting

the grid independence.

Figure 3: Double sided lid driven cubical cavity

Convection patterns for a range of Reynolds number (Re=100, 400 and 1000) and Richardson number

(Ri=0.001, 1, 10) are studied. A Boussinesq approximation is assumed. Fig. 4 shows the temperature

iso-contours at various Reynolds number and Richardson numbers. A low Ri signifies a forced

convection and a high Ri signifies more contribution due to the buoyancy effect. Table 3 shows that the

 10

average Nusselt number (Nuavg) calculated for the top hot surface shows a good match with Ouertatani

[18]. Nuavg is calculated as shown below:

 

 
avg

1 1 COLD

HOT COLD

N
T T

dxdy
Area T

u
T y

 
  

 

Figure 4: Temperature iso conoturs at various Reynolds numbers and Richardson numbers

Figure 5 shows the convergence characteristics of various preconditioners on the velocity and

temperature matrices at Re considered for the study. Since variation in Ri does not alter the coefficients

of both velocity and temperature matrices the convergence characteristic with respect to Ri is

insignificant. Delay in convergence with increasing Re is observed for both velocity and temperature

matrices. ILU(0) shows the best convergence rate for all Re considered, although SGS shows a closer

match with that of ILU(0).

 11

Table 2. Average Nusselt number of the top surface

 Ri=0.001

Present Ref[18]

Ri=1

Present Ref[18]

Ri=10

Present Ref[18]

Re=100 1.79 1.83 1.38 1.35 1.09 1.09

Re=400 3.99 3.96 1.51 1.53 1.14 1.13

Re=1000 7.32 7.28 1.83 1.86 1.15 1.14

Figure 5: Convergence characteristics for various preconditioners with Reynolds number for velocity

(a1, a2 and a3) and temperature (b1, b2 and b3) matrices.

 12

Figure 6 shows the CPU time taken in seconds for the velocity and temperature matrices at various

Reynolds numbers with 20 CPU cores. Fig. 6 shows the opposite of what is expected from Fig. 5.

Diagonal preconditioner shows the best performance in terms of CPU time as it takes the least CPU

time per linear solve when compared to SGS and ILU(0) preconditioner. This shows that the adverse

effect due to poor convergence rate is overcome due to the high parallelizability of diagonal

preconditioner. Since the velocity and temperature matrices remain well conditioned the CPU time

taken per linear solve is insignificant compared to that of pressure matrices. Hence for velocity and

temperature matrices diagonal preconditioner is used.

Figure 6: CPU time taken in seconds per linear solve for (a) velocity and (b) temperature matrices at

various Reynolds numbers with 20 CPU cores

Figure 7: (a) Convergence characteristics and (b) CPU time taken per linear solve for 1 and 20 CPU

cores for pressure matrix. (c) Overall non-linear momentum residual convergence for one non-linear

SIMPLE iteration and (d) overall mass residual convergence for one non-linear SIMPLE iteration

for 20 CPU cores

 13

Figure 7(a) shows the residual convergence with various preconditioners for the pressure matrix for one

linear solve. ILU(0) shows the best convergence rate. SPAI preconditioners with 10 fill-in (SPAI(10))

per column shows a better convergence than 5 fill-in (SPAI(5)) per column. This suggests that as the

level of fill-in increase per column a better convergence rate is achieved. However, this increases the

computational cost of setting up the approximate inverse preconditioner. Fig 7(b) shows the CPU time

taken for 1 core and corresponding time taken for 20 core processors. SPAI(5) and SPAI(10) show the

best parallel efficiency with almost a linear scale up when compared to other preconditioners. There is

a significant difference of around 4 seconds CPU time between SPAI and diagonal preconditioner. It is

evident from Fig. 7(b) that the performance of ILU(0) preconditioner gets deteriorated when applied

over muti-core processors. This is evident from Figs. 7(c) and 7(d) which shows the residual

convergence of momentum and mass for one non-linear SIMPLE iteration which is equivalent to the

time taken per time step. The difference in time is significant since several time steps need to be

progressed to reach the desired solution.

3.2 Laminar flow past a circular cylinder

Unsteady flow past a circular cylinder is studied at Re = 100. The fluid is assumed to be isothermal

(Г=0). Reynolds number is based on the cylinder diameter (D) which is chosen as the length scale. The

length of the domain is 20 cylinder diameter (20D). The width and height of the domain are 10D each

respectively. The circular cylinder is placed at a distance of 5D from the inflow plane. A uniform

velocity U0, is prescribed at the inlet boundary. Neumann boundary condition is prescribed for velocity

at the outflow plane. The lateral walls are given a free slip boundary condition for velocity. For pressure,

Neumann boundary condition is prescribed at the walls and the inflow plane while a Dirichlet boundary

condition is prescribed at the outlet. A high quality mesh with a total of 1.34×106 tetrahedral cells were

used. Fig. 8(a) shows vortex shedding behind the circular cylinder at the prescribed Reynolds number.

Flow periodicity is a salient feature at this Reynolds number and this is brought in Fig. 8(b) which

shows the variation of transverse velocity with time probed at a distance of 1D downstream the cylinder.

The vortex shedding corresponds to a single frequency and the non-dimensional frequency or the

Strouhal number was found to be St = 0.156. This number matches well with St=0.154 reported by

Zhang and Dalton [19] at Re=100.

Figure 8: Flow past a circular cylinder at Re=100: (a) vorticity iso-contours 0.15z   (b)

transverse velocity (v-velocity) signal variation with dimensionless time

 14

Figure 9(a) shows a similar convergence characteristics as for lid driven cavity problem in Fig. 7(a).

ILU(0) still shows a better performance in terms of number of iterations taken to converge below a set

tolerance value. Five fill-in per column SPAI(5) is used here since it was shown in the previous lid

driven cavity problem that the CPU time taken was almost the same for 5 and 10 fill-in entries per

column. The number of entries for ILU(0) and SPAI(5) match as ILU(0) mimics the parent matrix

which has five entries per row since tetrahedral mesh was used. Hence 5 fill-in entries for SPAI makes

it ideal for comparing it with ILU(0). Fig. 9(b) shows that the parallel efficiency and scalability of SPAI

preconditioner is far superior compared to other preconditioners. While for single core CPU ILU(0)

shows superior performance, due to its weak parallelizability both SGS and ILU(0) show poor

performance in multi core CPUs. Figs. 10(a) and 10(b) shows the momentum and mass residual

convergence for 20 CPU cores. As seen from the previous results when SPAI preconditioner is used for

the pressure matrix it is seen that there is a massive improvement in the mass and momentum residual

convergence rate per non-linear SIMPLE iteration.

Figure 9: Pressure matrix for flow past a circular cylinder: (a) Convergence characteristics with

various preconditioners per linear solve (b) CPU time for 1 and 20 cores per linear solve.

Figure 10: (a) Momentum residual and (b) mass residual convergence with CPU time for various

preconditioners. The results are shown for 20 CPU cores for flow past a circular cylinder.

 15

3.3 Pulsatile flow inside an asymmetric abdominal aortic aneurysm (AAA).

Figure 11 shows the layout of an asymmetric abdominal aortic aneurysm. The part resembles a model

of an AAA [20]. The model considered is rigid. The working fluid considered has properties of human

blood. Density (ρ) of the fluid is 1130 kg/m3 and viscosity (μ) is 0.004 Pa-s. The flow is assumed to be

isothermal (Г=0). The tube diameter is 2.16 cm. The flow is considered pulsatile in nature mimicking

the physiological nature of human blood inside abdominal aorta. Fig. 12 shows the inlet and outlet

velocity and pressure waveforms extracted from the data provided in [20]. The extracted waveforms

chosen for the simulation correspond to resting human condition. The peak Re corresponding to the

peak flow rate is found to be Re = 1708. The Womersley number (Wo) corresponding to the cycle time

of 0.85sec was found to be Wo = 15.65.

Figure 11: Layout of asymmetric abdominal aortic aneurysm

Figure 12: (a) Inlet velocity waveform and (b) inlet and outlet pressure waveforms

 16

Figure 13 show the swirling strength of the flow inside the AAA portion corresponding to the cycle

time of 0.3sec. The present numerical results shows a reasonably good match with the experimental

results of Deplano et al. [20]. The swirling strength indicates the location of vortices. The vortices are

formed in the initial phase and it grows larger in size during the deceleration phase. These vortices

remain attached near the inlet section of AAA as shown in Fig. 13 during the positive cycle. When the

flow reverses, these vortices disappear from the inlet section and no such vortices are formed till the

end of the cycle. The formation of vortices inside an aneurysm is important to study since the local

vortices generated during the pulsatile cycle promotes local shearing which may cause tearing away of

inner endothelial wall causing rupture of aneurysm which could be fatal.

Figure 13: Swirling strength inside the asymmetric bulge corresponding to time = 0.3 sec of cycle

time. Right hand side shows the present numerical results and left hand side shows the experimental

results of Deplano et al. [20].

Figure 14: Pressure matrix for asymmetric abdominal aortic aneurysm: (a) Convergence

characteristics with various preconditioners per linear solve (b) CPU time for 1 and 20 cores per

linear solve.

 17

Figure 14 shows the pressure matrix convergence per linear solve with various preconditioners. For

single core CPU ILU(0) preconditioner shows the best convergence characteristics but the CPU time

taken is the worst for ILU(0) precoditioner for multi core (20) CPUs. From Fig. 14 (b) it is evident that

SPAI(5) shows the best speedup per linear solve. Diagonal preconditioner shows the worst convergence

characteristics but due to its high parallelizability it shows a good speed up with multi core CPUs as

shown in Fig. 14(b). Fig. 15 (a) and (b) shows the non-linear momentum and mass residual convergence

per non-linear SIMPLE iteration for 20 CPU cores. The flow being pulsatile in nature, during the initial

cycles a larger magnitude of tolerance limit is imposed for convergence. For the results shown these

tolerance limits are given as 10-6. Once the flow develops the tolerance limits are further reduced. This

strategy saves computational time. SPAI(5) preconditioner is seen to give the best speedup with 20

CPU cores compared to other preconditioners. Diagonal preconditioner shows high fluctuations in its

residual convergence whereas rest of the preconditioners show a smooth, almost monotonic

convergence which is desirable especially during the initial stages of simulation. High fluctuations in

the residual convergence may result in numerical overshoots in the solution which is undesirable. Hence

diagonal preconditioner although it gives faster convergence than ILU(0) and SGS, it may give

undesirable results if the convergence is not smoothed out.

Figure 15: (a) Momentum residual and (b) mass residual convergence with CPU time for various

preconditioners. The results are shown for 20 CPU cores for flow inside asymmetric abdominal aortic

aneurysm.

4 Conclusions

Parallel preconditioners for the pressure-velocity-temperature matrix systems are analysed on a

SIMPLE variant of algorithm applied for incompressible flows. SIMPLE and its variants are well

known for its strong pressure-velocity coupling which makes the coefficients of the pressure matrix

change with the changing velocity field. This makes it difficult or time consuming to find its

approximate that are used as highly parallelizable preconditioners in iterative solvers such as

BiCGSTAB. The interpolation of the central coefficient of the discretized velocity term, which occurs

with the pressure gradient term in the pressure correction equation, with the neighbouring cell centroid

value is what makes the pressure matrix vary with the changing velocity field. The remedy to this

problem is to make the pressure matrix coefficients constant such that the approximate inverse need to

be computed only once at the beginning of computations. Based on the new formulation which assist

 18

parallel preconditioners, simulations are carried out for three problems and the following conclusions

are arrived:

1. The new approach uses a higher order interpolation of the central coefficient of the velocity

term APu
on the faces of the control volume using Taylor series expansion. Weighted least

squares gradient method is used to find the gradient  AP u at the cell centroid. In order to

make APu
on the faces constant, the distance vector Δ fr is made constant by taking the

harmonic average of all the distance vectors from the cell centroid to the face centroid within a

control volume. Hence, the averaged vector Δ fr remains closer to the smallest of all the

distance vectors within the control volume. This ensures stability to the solution by not over

estimating the interpolated value the face. The present results shown are for the 2nd order

interpolated values of APu
 at the face but are not restricted to the same. 3rd order interpolation

could be achieved by estimating  2 AP u at the cell centroid using the same weighted least

squares gradient approach. The new approach has been shown to be stable and is highly suitable

for explicit type parallel preconditioners.

2. Velocity and temperature matrices: Three problems were studied which include i) mixed

convection inside a double sided 3D lid driven cavity, ii) unsteady flow past a circular cylinder

at Re=100 and iii) pulsatile flow inside an asymmetric abdominal aortic aneurysm. For all the

problems considered the velocity and temperature (lid driven cavity) matrices remained well

conditioned. This is due the parabolic nature of the governing partial differential equations.

ILU(0) preconditioner showed the best convergence characteristics but due to its weak

parallelizability it showed poor performance with multi core CPUs. Diagonal preconditioner

was found to give superior performance as it is computationally cheaper and highly

parallelizable when compared to ILU(0) and SGS for multi core CPUs.

3. Pressure matrix: For all the problems considered for the study the pressure matrix was found

to be highly ill-conditioned and requires robust preconditioners. Although ILU(0) again showed

the best convergence characteristics, it showed extremely poor scalability with multi core

CPUs. SPAI based preconditioner is seen to show the best performance with multiple

processors for all the problems.

4. For the overall nonlinear momentum residual and mass residual convergence, a combination of

diagonal preconditioner for velocity and SPAI for pressure showed the best speedup in multi

core CPUs. Although diagonal preconditioners are scalable it showed fluctuating convergence

of momentum and mass residual for pulsatile flow inside abdominal aortic aneurysm problem.

This is highly undesirable since such fluctuations can cause numerical overshoots which may

give unphysical solutions. Hence for pressure matrix robust preconditioners which are also

highly parallelizable such as SPAI are required to produce the desired effect.

 19

Nomenclature

pA  pressure correction matrix

Au block diagonal velocity matrix

APu
central coefficient of velocity matrix

1M 
 preconditioner

p pressure (dimensionless)

p
total pressure correction

mp
calculated pressure correction

sp smoothing pressure correction

Ru, Rp momentum and mass residual vector

u Cartesian velocity vector (dimensionless)

T unknown temperature

Greek symbols

 under relaxation factor for velocity

 under relaxation factor for pressure correction

 = 0 for isothermal flows, = 1 for non-isothermal flows

Abbreviations

SPAI sparse approximate inverse preconditioner

Acknowledgement
All computations for the present work were carried out at the High Performance Computing (HPC

2013) facility of Indian Institute of Technology Kanpur, India.

References

[1] Patankar S. Numerical heat transfer and fluid flow. CRC press. 1980.

[2] Date AW. Solution of transport equations on unstructured meshes with cell-centered

colocated variables. Part I: Discretization. International Journal of Heat and Mass Transfer,

48(6):1117-27, 2005.

[3] Van der Vorst HA. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical

Computing, 13(2):631-44, 1992.

[4] Saad Y, Schultz MH. GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,

7(3):856-69, 1986.

[5] Saad Y. Iterative methods for sparse linear systems. Society for Industrial and Applied

Mathematics. 2003.

[6] Grote MJ, Huckle T. Parallel preconditioning with sparse approximate inverses. SIAM

Journal on Scientific Computing, 18(3):838-53, 1997.

[7] Chow E, Saad Y. Approximate inverse preconditioners via sparse-sparse iterations. SIAM

Journal on Scientific Computing, 19(3):995-1023, 1998.

[8] Benzi M, Tuma M. A sparse approximate inverse preconditioner for nonsymmetric linear

systems. SIAM Journal on Scientific Computing, 19(3):968-94, 1998.

 20

[9] Geveler M, Ribbrock D, Göddeke D, Zajac P, Turek S. Towards a complete FEM-based

simulation toolkit on GPUs: Unstructured grid finite element geometric multigrid solvers

with strong smoothers based on sparse approximate inverses. Computers and Fluids,

80:327-32, 2013.

[10] Akay HU, Oktay E, Manguoglu M, Sivas AA. Improved parallel preconditioners for

multidisciplinary topology optimisations. International Journal of Computational Fluid

Dynamics, 30(4):329-36, 2016.

[11] Löhner R, Mut F, Cebral JR, Aubry R, Houzeaux G. Deflated preconditioned conjugate

gradient solvers for the pressure‐Poisson equation: Extensions and improvements.

International Journal for Numerical Methods in Engineering, 87(1‐5):2-14, 2011.

[12] Hsu HW, Hwang FN, Wei ZH, Lai SH, Lin CA. A parallel multilevel preconditioned

iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a

duct. Computers and Fluids, 45(1):138-46, 2011.

[13] McAdams A, Sifakis E, Teran J. A parallel multigrid Poisson solver for fluids simulation

on large grids. Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, 65-74, 2010.

[14] Segal A, ur Rehman M, Vuik C. Preconditioners for incompressible Navier–Stokes solvers.

Numerical Mathematics: Theory, Methods and Applications, 3(3):245-75, 2010.

[15] Gohil T, McGregor RH, Szczerba D, Burckhardt K, Muralidhar K, Székely G. Simulation

of oscillatory flow in an aortic bifurcation using FVM and FEM: A comparative study of

implementation strategies. International Journal for Numerical Methods in Fluids,

66(8):1037-67, 2011.

[16] Sozer E, Brehm C, Kiris CC. Gradient calculation methods on arbitrary polyhedral

unstructured meshes for cell-centered cfd solvers. 52nd Aerospace Sciences Meeting AIAA

2014-1440, 2014. https://doi.org/10.2514/6.2014-1440

[17] Benzi M. Preconditioning techniques for large linear systems: a survey. Journal of

Computational Physics, 182(2):418-77, 2002.

[18] Ouertatani N, Cheikh NB, Beya BB, Lili T, Campo A. Mixed convection in a double lid-

driven cubic cavity. International Journal of Thermal Sciences, 48(7):1265-72, 2009

[19] Zhang J, Dalton C. A three‐dimensional simulation of a steady approach flow past a circular

cylinder at low Reynolds number. International Journal for Numerical Methods in Fluids,

26(9):1003-22, 1998.

[20] Deplano V, Knapp Y, Bertrand E, Gaillard E. Flow behaviour in an asymmetric compliant

experimental model for abdominal aortic aneurysm. Journal of biomechanics, 40(11):2406-

13, 2007.

https://doi.org/10.2514/6.2014-1440

