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Abstract: We focus on simulating the consequences of material interpenetration, hydrodynamical
instabilities, and mixing arising from perturbations at shocked material interfaces, as vorticity is
introduced by the impulsive loading of shock waves – e.g., as in ICF capsule implosions. In the
coarse grained simulation (CGS) paradigm small scales are presumed enslaved to the dynamics of
the largest, or put in other words, the spectral cascade rate of energy (the rate limiting step) is
determined by the initial and boundary condition constrained large-scale dynamics. CGS includes
classical large-eddy simulation (LES) using explicit subgrid scale (SGS) models, and implicit LES
(ILES) relying on SGS modeling implicitly provided by physics capturing numerics. By combining
shock and turbulence emulation capabilities based on a single (physics capturing) numerics, ILES
provides an effective simulation framework for shock driven turbulent mixing. Beyond the complex
multiscale resolution issues of shocks and variable density turbulence, we must address the difficult
problem of predicting flow transition promoted by energy deposited at the material interfacial
layer during the shock interface interactions. Transition involves unsteady large-scale coherent-
structure dynamics capturable by CGS but not by an unsteady Reynolds-Averaged Navier-Stokes
(RANS) approach based on single-point-closure modeling. We discuss a dynamic blended hybrid
RANS/ILES strategy for applications involving variable-density turbulent mixing applications, and
report progress testing their preliminary implementation for relevant canonical problems.

Keywords: shock driven turbulence, large eddy simulation.

1 Introduction

Simulations of unsteady shock-driven turbulent mixing flows are typically required to capture late-time
states of complex, convectively-driven multi-physics in applications of programmatic interest, such as inertial
confinement fusion (ICF) capsule implosions. The three-dimensional (3D) hydrodynamics depends on initial
conditions (IC) and involves transition to turbulence, non-equilibrium turbulence development and decay,
and relaminarization. Such flow physics can be captured with coarse-grained simulation (CGS) [1], presuming
small-scale flow-dynamics are enslaved to dynamics of the largest scales, and using mixing transition criteria
for macroscopic convergence metrics [2].

CGS includes classical large-eddy simulation (LES) using explicit subgrid scale (SGS) models, and im-
plicit LES (ILES) [3] relying on SGS modeling implicitly provided by physics-capturing numerics. Classical
explicit SGS models are comparable to their implicit counterparts provided by the numerics in the standard
LES practice [4, 5], motivating ILES for high Reynolds-number (Re) shock-driven and convectively-driven
turbulent mixing [1]. Depending on Re, Schmidt and Damkohler numbers, mixed explicit/implicit SGS
models are used for non-convective physics such as backscatter, diffusive mixing, and combustion.

Late-time states depend on IC. Because of IC uncertainties [6], ensemble averaging deterministic CGS
over a suitably complete set of realizations covering the relevant IC variability is often a strategy of choice
– albeit computationally expensive for most 3D turbulent flows of practical interest. We propose to capture
relevant aspects of the flow transition physics using hybrid approaches blending CGS and Reynolds-Averaged
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Figure 1: Sequential ILES/RANS simulations
[9]: RANS is initialized with ILES flow data at
t=0.94ms just before 1st reshock. Coarse grid 3D
RANS is robust and accurate between 1st and 2nd
reshock. 2D RANS tend to be more sensitive to
their IC (at start time) and grid resolution com-
pared with their 3D counterparts; scatter of the
2D results is more pronounced near the new transi-
tional flow event at second reshock as we move out
from near equilibrium flow conditions.

Navier-Stokes (RANS) models [7] – which we envision as a computationally feasible method to represent
ensemble averaging while also addressing the additional degrees of freedom associated with transition and
small-scale dynamics.

2 Problem Statement

A prototypical laboratory shock-tube experiment of interest for ICF involves transitional non-equilibrium
flow at first-shocked and subsequently reshocked (initially-perturbed) material interfaces, relaxing to quasi-
equilibrium decaying turbulence between shock events. Transition can be captured by ILES, but not by
RANS based on single-point-closure modeling [8]. However, RANS on coarser grids – and often reduced
dimension (1D and 2D) – are preferred for engineering and design purposes. RANS are generally based on
slaving enstrophy production to kinetic energy production and to equilibrium turbulence paradigms. There
are outstanding problems in using such RANS for shock-driven turbulence: 1) transitional IC-dependent
flow physics is 3D and non-equilibrium; 2) mechanisms for enstrophy generation are inherently very different
from those underlying energy production.

Notwithstanding its shortcomings, RANS can be effectively used following each transitional event with
suitable initialization. In [9] sequential CGS/RANS hybrid simulation studies were reported for the CEA
shock tube experiments [10], in which ILES-generated data provided physics-based IC to RANS and was also
used as reference for its assessment. We compared state-of-the-art ILES and 3D RANS using the xRAGE
code [11] in the ILES (”clean”) and RANS (”BHR”) versions [13] (e.g., Figure 1 from [9]). We found
that by prescribing ILES generated 3D IC and allowing for 3D convection with just enough resolution, the
computed dissipation in 3D RANS (vs. 2D RANS) effectively supplements the modeled dissipation – rather
than multiple-counting developed-turbulence effects. However, RANS cannot capture well the consequences
of a new subsequent transitional flow event (e.g., 2nd reshock in Figure 1) – where activating CGS again
in some fashion would appear useful. We here propose that the sequential hybrid be continued with a
blended hybrid ILES/RANS strategy [7] – the flow simulation methodology (FSM) (e.g. [14]), and report
progress extending formalism and implementation for the variable-density compressible regimes of interest
in shock-driven turbulent mixing.

It is important to note here that BHR is a RANS simulation approach, and as such it is theoretically
justified and derived to model ensemble flows in which space and time turbulent fluctuations are removed
by the ensemble average. BHR is thus designed to provide ensemble-averaged turbulent quantities and
to be used at relatively coarse resolutions in which prognostic variables are ensemble-averaged, mean flow
quantities. This presents a potential challenge as we mix ILES and BHR for intermediate-to-fine resolutions,
where a suitable blended hybrid implementation may need to be appropriately constrained to ensure that
spurious small-scale contributions from BHR are minimized.

FSM locally blends a high resolution computational strategy with RANS modeling – depending on
how much of the turbulence is resolved at given resolution, providing a sophisticated CGS strategy in-
between. How much dissipation is modeled and how much is computed is decided based on having the
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RANS model locally morph into a CGS SGS model, τCGSij = f(∆/L) τRANSij , where the contribution func-
tion 0 < f(∆/L) < 1 is 0 at the high resolution limit – involving here ILES, and 1 at the low resolution limit
(pure RANS), ∆ is the local grid size, and L is a physical resolution scale. We use strategy proposed by
Germano [15] to generate f dynamically, by using an identity relating total, unresolved and resolved stresses,
and a differential filter as secondary filtering operation [16]. We report our progress developing and testing
our dynamic blended hybrid ILES/RANS.

3 Blended Hybrid LES / RANS

Standards for industrial aerospace and automotive simulations rely on 3D hybrid LES/URANS to drastically
reduce computational costs in full-scale configurations. Hybrid LES/RANS strategies exploit the structural
similarity between equations for computed RANS and LES velocity solutions [7]. Historically, two classes of
hybrid LES/RANS have been considered: zonal and blended. In the zonal approaches, a clear distinction is
made between near-wall (RANS) and detached flow (LES) regions, the most widely used zonal hybrid being
detached eddy simulation, (DES) [17]. With blended hybrid LES/RANS – our focus here – a continuous
application is sought, in which a single turbulence model locally adjusted based on local resolution is used.

The flow simulation methodology (FSM) proposed by Speziale [18] and subsequently pursued in various
forms by others – e.g., [14, 19, 20, 21], seeks to locally blend direct numerical simulations (DNS) and RANS
as function of grid resolution, effectively providing a sophisticated LES strategy in-between. How much
dissipation is modeled and how much is computed is decided based on having the RANS model locally
morph into LES SGS model, in terms of the contribution factor 0 < f(∆/L) < 1 introduced above. The
role of the contribution factor is to damp the contribution of the RANS model, as part of the unsteady
turbulence becomes resolved in the intermediate (LES) regime. The issue of interest is the computation of
the dissipation which, when under-resolved, has to be complemented by the model in the hybrid context. For
sufficiently fine resolution the entire dissipation range is resolved and the RANS contribution should switch
itself off –i.e., f(∆/Lk) → 0 as ∆ → 0. Hence, the original idea in [18] to estimate the distance to DNS
by computing the factor ∆/Lk with Lk being a Kolmogorov length estimate based on the RANS computed
dissipation.

In [18, 14] a contribution function was proposed on a phenomenological basis of the following form,

f(∆/L) = [1− exp(−β∆/Lk)]n

using β = 0.001 and n = 1 , where n controls the steepness of the function and β effectively determines at
what grid resolution the model contribution becomes negligible. Such contribution factors are typically used
for compressible aerospace applications [14]. Similarly, another proposal [19] used,

f(∆/L) = [1− exp(−β′∆2)]m

without reference to a physical length-scale but still retaining ad hoc parameters β′ and m, whereas the
proposal in [20] was,

f(∆/L) = νLES/νRANS ∼ ∆2/S2

where νRANS denotes eddy viscosity, S is a turbulent length scale (both RANS computed), and νLES ∼ ∆2

is typical choice for a Smagorinsky LES SGS model.
As defined above, local grid resolution effectively defines the contribution factor locally driven by eventual

adaptive mesh refinement (AMR) design specifics and/or researcher-provided resolution requirements (cus-
tomarily based on physical and empirical insights). Ideally, LES is Navier-Stokes (NS) based and the smallest
resolved length scale is fixed by a characteristic (grid independent) filter length [23]. However, results are
still dependent on the filter-length chosen. Most typically, well established practical LES relies on filtering
provided by the grid – e.g., [24], and competition between explicit SGS modeling and filtering and their
counterparts provided by the numerics raise seemingly insurmountable issues for under-resolved systems [5]
– which has historically motivated ILES [3]. LES models generated through the blended LES/RANS hybrids
cited above are also grid (or filter length) dependent.
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With empirical aspects on AMR design/use for the problems of practical interest being unavoidable,
small-scale resolution issues need to be carefully addressed and suitably incorporated in hybrid LES/RANS
validation and uncertainty quantification metrics. In what follows, we consider implicit dependence of the
contribution function on grid size ∆ in the context of a dynamic blended hybrid strategy. This is in contrast
with the classical blended hybrid strategies above defining the contribution functions explicitly in terms of
local ∆ in fairly ad hoc fashion,

4 xRAGE-BHR Blended Hybrid Governing Equations

Turbulent mixing of material scalars can be usefully characterized by the length scales of the fluid physics
involved: 1) large-scale entrainment in which advection brings relatively large regions of the pure materials
together, 2) an intermediate length scale associated with the convective stirring due to velocity gradient
fluctuations, and, 3) much smaller scale interpenetration resulting from molecular diffusion. Large-scale
vortices and their interactions play a crucial role in controlling transitional growth and entrainment at
moderately high Re – when convective time-scales are much smaller than those associated with molecular
diffusion. In this limit, the primary concern is with the numerical simulation of the first two processes
above – advection and stirring. Both Navier-Stokes and Euler based ILES are capable of capturing high-Re-
dominating stirring (convectively) driven mixing.

We consider here an ILES strategy based on the Radiation Adaptive Grid Eulerian (xRAGE) code;
xRAGE solves the multi-material compressible conservation equations for mass density ρ, material concen-
trations Yn , momenta ρui and , total energy E [11] – equations immediately following below with f = 0,
with spatial-filtering (overbars) and Favrè- averaging (tildes) reducing to grid-filtered and simply-scaled
values, respectively. We use the Besnard-Harlow-Rauenzahn (BHR) multi-equation RANS framework [25]
to include the effects of turbulence development in the presence of density and pressure gradients, based on
ensemble-averaging the said equations, which results in a new set of equations for the flow variables and
material concentrations – the equations below with f = 1, including closure models and additional transport
equations for the turbulent turbulence length scale, turbulent mass fluxes, density-specific-volume covari-
ance, and Reynolds stress transport. See recent BHR references [26, 27, 13] for more details. For now, we
conveniently use the contribution function f as a formal place-holder scaling factor – to be revisited further
below when discussing blended hybrid strategies in the xRAGE context. Beyond the formal introduction of
f for the Reynolds stress terms in incompressible flow equations in [18], we have extended the use by [14]
for the compressible flow case, now also allowing for multiple-species variable density regimes.

The governing equations for the mean flow are modified by scaling the turbulence model terms by the
contribution function f , as follows,

∂ρ
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In the above, the Favrè-averaged Reynolds stress is defined as

R̃ij =
ρu′′i u

′′
j

ρ
(5)

4



and the turbulent kinetic energy is

K =
Rii
2
, (6)

V.T. in the momenta and energy equations denotes mixture viscous terms. The above equations are supple-
mented with appropriate equations of state. The closure equations are given by the second-moment closure
BHR model and are not modified in our formulation. For more details, refer to [26, 27, 13]. The closure
equations are given by

∂ρR̃ij
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In addition to the primary flow variables, the TKE, turbulent length scale, turbulent mass flux, Reynolds
stress, and density-specific-volume covariance must be initialized [13]. The established BHR running pro-
cedures initialize the specific TKE, turbulent length scale, and turbulent mass flux with suitable uniformly
distributed prescribed constant values. Ideally, the turbulence intensity should be zero, however, this ini-
tialization is difficult to implement numerically and therefore it is customary to start with a reasonably
low non-zero value. The diagonal components of the Reynolds stress tensor are initialized as isotropic and
the off diagonal components are initialized to zero. The initial turbulent length scale is based on material
interface characteristics such as surface perturbations or surface finish. The initial turbulent mass fluxes are
set to zero. The initial density-specific-volume covariance is set to characteristic two-fluid unmixed values
representing the least mixed extrema of the field for the material configuration of interest.

Depending on the system of equations xRAGE-BHR falls back to in the high-resolution limit (f = 0),
there are two different blended hybrids to be considered. Firstly, we consider the high-Re limit with negligible
viscosity effects (V.T. = 0) , and we have xRAGE-BHR falling back to nominally-inviscid Euler-based xRAGE
ILES for (f = 0). In this case, a useful local physical resolution reference length-scale can be a user-provided
Taylor-microscale length estimate. Otherwise, when viscosity effects are not negligible, NS-based xRAGE
ILES is correspondingly generated, and we may need a viscous resolution length scale such as an estimated
Kolmogorov length scale [18].
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5 A Dynamic Contribution Function

Our approach to finding a contribution function f [18, 14] for variable density turbulence simulations using
BHR [25, 26] is largely based on [15]. Define the Favre average of a quantity q as

q̃ =
〈ρq〉
〈ρ〉

. (11)

The Favre averaged Reynolds stress in BHR, equation (7), RRANSij ≡ R̃ij , is

RRANSij =
〈ρu′′i u′′j 〉
〈ρ〉

, (12)

or

RRANSij =
〈ρuiuj〉
〈ρ〉

− ũiũj . (13)

where 〈·〉 is an ensemble average in the RANS sense, or an average in a subspace of statistical homogeneity
in a space - time domain.

Define the analogue to the Favre average at the SGS, or SGS Favre average, of a quantity q as

q̂ =
ρq

ρ
. (14)

where the overbar · · · denotes an implicit grid filter, and e.g. ûi is the resolved velocity in a simulation at a
given resolution. Using this filter we can obtain an expression for the SGS, or un-resolved, Favre averaged
Reynolds stress,

Rsij =
ρuiuj
ρ
− ûi ûj . (15)

To derive an expression for the total stress, multiply (15) by ρ, and average to obtain

〈ρRsij〉 = 〈ρuiuj〉 − 〈ρ ûi ûj〉, (16)

from which we solve for
〈ρuiuj〉 = 〈ρRsij〉+ 〈ρ ûi ûj〉, (17)

where we have assumed statistical consistency of the LES [22], i.e.

〈· · ·〉 = 〈· · · 〉. (18)

Note that in [22], statistical consistency is enforced to derive a dynamic Smagorinsky coefficient, while here
we assume statistical consistency and heavily rely on 18. We will discuss this more later.

Replace (17) in (13), to obtain

RRANSij =
〈ρRsij〉
〈ρ〉

+
〈ρ ûi ûj〉
〈ρ〉

− 〈ρûi〉
〈ρ〉

〈ρûj〉
〈ρ〉

. (19)

Define the resolved Favre averaged stress as

Tij =
〈ρ ûi ûj〉
〈ρ〉

− 〈ρûi〉
〈ρ〉

〈ρûj〉
〈ρ〉

, (20)

and the SGS-Favre average of the SGS stress as

R̃sij =
〈ρRsij〉
〈ρ〉

(21)
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and the total stress becomes
RRANSij = R̃sij + Tij . (22)

Equation (22) is the form that the Germano identity takes in variable density turbulent flows. It states that
the total Favre averaged Reynolds stress RRANSij is equal to the sum of the Favre averaged SGS stress and
the resolved stress.

We make the following assumptions:

• The RANS stress is equal to a RANS model stress, RRANSij = Rmij , and in general, RANS tensor
quantities are equal to RANS model quantities. In other words, we rely on the the model providing
an accurate estimate of the RANS quantities it represents.

• We assume that the RANS model can be used as a function of resolved variables in the
LES context – where eddies are permitted, to represent RANS quantities. The formulation
of the dynamic contribution function relies on RRANSij = Rmij , i.e. it relies on the model Reynolds stress
accurately representing the total Reynolds stress. RANS models are derived to do this by representing
the physics of closure terms as a function of the mean flow in ensemble averaged flows, where eddies
are averaged out. Calculating the RANS model stress Rmij as a function of the resolved flow in a LES
where there are eddies may very well not provide an accurate estimate of the total (RANS) Reynolds
stress. Previous attempts to use a similar hybrid formulation [28] reported use of Rmij as a function of
(time) filtered resolved flow variables for this reason.

• We will interpret R̃sij as the hybrid model stress Rhij that we are after, which can be a combination of
an LES SGS model stress and a RANS closure model stress, as in [29, 28].

• 〈· · ·〉 = 〈· · · 〉, which is a requirement if we want to smoothly transition from LES to RANS.

• In our context, q̂ = q̃ is a primitive variable in the resolved flow.

With these assumptions we have,
Rmij = Rhij + Tij . (23)

We use ILES as high-resolution limit strategy, so there is no explicit LES SGS model. In this way,
the hybrid stress is related to the RANS model stress by

Rhij = f(∆/L)Rmij (24)

where we expect the contribution function f = 0 at the high resolution limit (pure ILES), and f = 1 at the
low resolution limit (pure RANS), 0 ≤ f(∆/L) ≤ 1.

We substitute equation (24) into (23), take the scalar product with a RANS tensor quantity qmij , and
solve for the contribution function to get

f(∆/L) = 1−
qmij Tij

qmijR
m
ij

. (25)

In the original formulation in [15], the RANS model Reynolds stress is used, qmij = τmij , while [29, 28] use the
RANS model strain rate, qmij = Smij .

In our approach, the filter 〈·〉 corresponds to a Helmholtz differential filter [16, 30],

q̂ = 〈q〉 − ∇ · ∆2

c
∇〈q〉. (26)

To evaluate the behavior of the dynamic contribution function derived in this section, we diagnose the
turbulent kinetic energy (TKE). We take the trace of the total stress in (22), after replacing the expression
for the hybrid SGS in equation (24), to obtain

KT = Ku +Kr, (27)
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where KT is the total turbulent kinetic energy, Ku = fKm is the unresolved or SGS (modeled) turbulent
kinetic energy, Km is turbulent kinetic energy from the BHR model, and Kr is the resolved turbulent
kinetic energy. Given the expected behavior of f , KT will be dominated by the resolved Kr at high
resolution simulations with small grid size, while at low resolution, large grid size, KT will be dominated by
the modeled (unresolved) Ku. Thus, as resolution decreases, the simulation relies more on BHR.

6 The Taylor-Green Vortex

The TGV has been used as prototype for vortex stretching, instability and production of small-scale eddies
to examine the dynamics of transition to turbulence based on DNS [31]. The DNS of Brachet et al. [31], was
based on the solution of the incompressible NS equations using spectral methods, and exploited the spatial
symmetries of the TGV to reduce the effective computational cost by a factor of 8. The simulations were
originally performed on a grid of 2563 modes in 1983 [31] – to resolve Re up to Re = 3000, and repeated
with 8643 modes nearly a decade later [32] – to resolve Re = 5000. The TGV case has also been used
to demonstrate how the convective numerical diffusion of certain algorithms can be used to emulate the
dominant SGS physics of transition to turbulence for high (but-finite) Re flows [33].

The TGV configuration considered here involves triple-periodic boundary conditions enforced on a cubical
domain with box side length 2π cm using evenly spaced computational cells. The flow is initialized with the
solenoidal velocity components,

u = Uosin(kox)cos(koy)cos(koz),

v = −Uocos(kox)sin(koy)cos(koz),

w = 0,

and the pressure given by a solution of the Poisson equation for the above given velocity field, i.e.,

p = po + (ρU2
o /16)[2 + cos(2koz)][cos(2kox) + cos(2koy)],

where we further select po = 1.0 bar, mass density, ρ = 1.178kg/m3, Uo = 100m/s and an ideal gas equation
of state for air (corresponding to low Ma, Ma = 0.28). Convenient non-dimensional units are t∗ = koUot,
x∗ = kox; ko = 1 was selected.

For the present TGV analysis the kinetic dissipation rate −dK∗/dt∗ involves the non-dimensionalized
volumetric mean integrated kinetic energy:

K =
1

2

〈 ρuiui〉
〈 ρ〉

, (28)

where the operator 〈〉 is defined for a generic quantity q as

〈q〉 =
1

V

∫
q dxdydz. (29)

The TGV mean enstrophy can be defined by:

Ω = 〈ωiωi〉. (30)

Asymptotic equilibrium (Re independent) dissipation is suggested by Brachet’s TGV kinetic energy
dissipation results included in Figure 2 [31, 32]. The DNS data in Figure 2 shows consistent dissipation
peaks near t∗ ∼ 9, for Re=800, 1600, 3000, and 5000, and the almost indistinguishable results for Re=3000
and 5000 suggest that they may be close to a viscosity independent limit [35]. Whether or not this finite-time
singularity exists for the purely inviscid case remains unsettled and controversial [36]. Characteristic times
at dissipation peaks (as well as wider peaks) are predicted by the DNS results as Re is lowered.

Instantaneous visualizations of the TGV flow dynamics (from [33]) are shown in Figure 3. The snapshots
are based on ray-tracing volume renderings of λ2 – the second-largest eigenvalue of the velocity gradient
tensor [34]. The images display the initial transition to increasingly smaller-scale (organized) vortices and
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Figure 2: Taylor-Green vortex kinetic energy dissi-
pation rate from DNS [31, 32].

Figure 3: Instantaneous TGV visualizations in terms of volume renderings of λ2; hue and opacity maps are
the same for all times; peak vorticity magnitude values (normalized by value at t∗=0) are indicated at the
lower right of each frame.

then to the fully developed (disorganized) decaying worm-vortex dominated flow regime characteristic of
developed turbulence. The fastest decay rate at the dissipation peak (at t* ∼ 9) in Figure 2 depicts the
onset of the inviscid TGV instability and is also associated with peak enstrophy.

CGS strategies have been verified in the TGV context, for a wide range of classical LES and ILES [33].
The mathematical flow simulation model was based on the conservation equations of mass, momentum,
and energy. ILES models tested in [33] examined Euler based nominally inviscid flow (as considered here)
or NS based linear viscous flow. Results of the TGV studies indicated that a Re independent regime is
asymptotically attained with ILES with increasing grid resolution. The observation of earlier transition times
of the dissipation peaks, as well as lower and wider peaks, were predicted by the coarser-grid ILES, a trend
consistently exhibited by the DNS results as the Re is lowered. We also found a consistent correlation between
non-dimensional profiles of mean kinetic energy dissipation rates and mean enstrophy Ω [33, 37]. Peak mean
enstrophy values increase with grid resolution, and the correlation between mean kinetic energy dissipation
and mean enstrophy expected for an incompressible NS fluid with Reynolds number Re is effectively satisfied
– reflecting on the unsteady physical dissipation being captured with ILES.

We use xRAGE to run simulations on uniform resolution meshes with a total number of points of
N3 = 323, 643, 1283, and 2563, respectively. For each case, the initial turbulent length scale in BHR is
initialized at the grid size of the corresponding mesh, So = ∆. The initial BHR specific turbulent kinetic
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Figure 4: Total (solid), resolved (dashed) and modeled (dotted) kinetic energy (scaled) for the TGV simu-
lation at with three meshes: N3 = 322, 643 and 1283, as indicated.

energy is set to Ko = 1× 105 cm2/s2 ∼ 1% of the peak initial K.
In Figure (4) we show the decomposition of turbulent kinetic energy from (27). For all resolutions, before

the onset of turbulence (t∗ = tk0U0 < 5), the total TKE is dominated by the resolved TKE of the 4 vortices
prescribed by the initial conditions. As turbulence develops and enstrophy peaks at t∗ ∼ tk0U0 ∼ 9, when
small scale structures start forming in Figure 3, the resolved TKE becomes smaller and the modeled TKE
becomes larger. After the enstrophy has peaked, at times t∗ = tk0U0 roughly between 9 and 15, we expect
that, at the lowest resolution, the modeled TKE will constitute a larger fraction of the total TKE than
the resolved TKE, while at the highest resolution, the modeled TKE would constitute a smaller fraction of
the total TKE. However, we observe that the modeled TKE becomes larger as resolution increases, while
the resolved TKE remains roughly unaffected by resolution. At later times, the total TKE is dominated
by the modeled TKE, as the resolved TKE approaches zero, irrespective of the resolution we consider here.
Thus, the hybrid formulation would seem to be behaving in the opposite way to what we expect. Indeed, we
observe that at a given point in space and time, the contribution function f is larger at the higher resolution
simulations (not shown here).

In Figure (5), we show corresponding decompositions for the TGV kinetic energy dissipation −dK∗/dt∗,
and for reference, we show the available DNS predictions for the latter. For the finest resolution considered,
2563, the resolved dissipation overpredicts the DNS and peaks somewhat earlier than t∗ ∼ tk0U0 ∼ 9, whereas
the total dissipation is consistent with an LES emulating the Re=1600 DNS case. Likewise, we could argue
that the total dissipation for the 1283 and 643 cases approximately emulate the Re=800 and Re=400 DNS
results, respectively, so that the grid-dependent LES generated with the hybrid strategy appears to behave
similarly to the noted ILES behavior [33, 37] near transition time t∗ ∼ tk0U0 ∼ 9 – as function of an effective
Re increasing with resolution – when compared to the DNS. The results for the coarsest resolution, 323

cannot be explained in this fashion.
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Figure 5: Total, resolved and modeled rate of dissipation of kinetic energy (scaled) for the TGV simulation
at with meshes: N3 = 322, 643, 1283, and 2563 as indicated. Results from available DNS [31, 32] at various
different available Reynolds numbers are shown for reference.

7 Planar Shock Tube

We simulate a planar air/SF6 shock-tube configuration that has been investigated previously in [6]. We use
a domain of size Lx = 80 cm, Ly = Lz = L = 24 cm, in which low (air) and high (SF6) density gases, with
densities of 1.184 ×103 g/cm3 and 6.34 ×103 g/cm3, respectively, are separated by a perturbed interface
located at x = 20 cm. The initial Atwood number of the flow is At = 0.7. The contact discontinuity between
air and SF6 is initially at rest, and is modeled as a jump in density using ideal gases with γ = 1.4 and
γ = 1.076, respectively, with constant pressure. A shocked air region is created at x ≤ 15 cm, upstream of
the interface, satisfying the Rankine-Hugoniot relations for a Mach 1.5 shock. The shock propagates in the
x direction through the contact discontinuity (from the light to heavy fluid). The simulations considered
here stop before the shock is reflected off the right boundary. Periodic boundary conditions are imposed in
the transverse (y, z) directions. The evolution and interaction of the shock and air/SF6 interface are in good
agreement with those of similar reported studies.

Because shocks and turbulence are involved, resolving all relevant physical scales in shock-driven tur-
bulence simulations becomes prohibitively expensive. ILES addresses the difficult issues posed by under-
resolution, by relying on SGS models provided implicitly by physics capturing numerics, providing an ef-
fective strategy combining shock and turbulence emulation capabilities based on a single numerical model.
The surface displacement of the material interface in shock-tube experiments has been typically modeled
using superimposed well-defined spectral modes often combined with random perturbation components. The
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Figure 6: Total, resolved and modeled kinetic energy for the air-SF6 shocktube problem at three resolutions,
as indicated. The initial BHR length scale is fixed at So = 0.1 cm for all simulations.

interface perturbation ψ is defined using a random spectral representation,

ψ =
∑

(Ai cos(2π/Ly(miy + ryi)) cos(2pi/Lz(niy + rzi))) (31)

where

Ai = Γ

(√
m2
i + n2i

)s
, (32)

for i = 1, ..., N , where N is the number of modes used, Γ is chosen so that standard deviation of psi is
equal to the prescribed standard deviation s.d. = 1.0 cm. The perturbation amplitude has a slope s = −2
in spectral space. The wavenumbers are chosen such that 4 ≤ k ≤ 12 with k =

√
k2m + k2n, km = 2πm/L,

kn = 2πn/L, resulting in N = 108 modes.
For the TGV case above, long wavelengths (compared to grid size) are initially involved and smallest

generated length scales are constrained by grid size, so that choosing a variable initial turbulent length scale
in BHR So = ∆ appears meaningful. In contrast, for the shock-tube case, it is natural that So be fixed –
as IC characteristic, and that So and s.d. should be related (e.g., proportional) given that larger interface
perturbations are capable of producing more turbulent flows and So is inversely proportional to the TKE
decay rate in the BHR equations. For historical reasons, So = 0.1 cm. was chosen in the current shock-tube
hybrid implementation.

We run simulations with the hybrid scheme using three uniform resolution meshes, with ∆ = 0.2, 0.4 and
0.8 cm, respectively. The BHR initial specific turbulent kinetic energy is set at Ko = 1×106 cm2/s2, based on
independent, high resolution ILES using an adaptive refinement mesh with 5 levels, with ∆ = 0.05 cm at the
highest resolution level. For each simulation, we diagnose the TKE decomposition in equation (27), shown
in Figure (6). The shock goes over the interface at about t = 1.2× 10−4 s, after which Richtmyer-Meshkov
instability ensues in the proximity of the material interface, generating a mixing layer. The TKE of the flow
peaks at about t = 2.5× 10−4 s, after which it decays. As resolution increases, the total TKE increases, and
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this increase is mainly dominated by increasing resolved TKE, as in the TGV flow simulations. Again, the
increase of modeled TKE with increasing resolution is associated to an increase in the dynamic contribution
function with increased resolution within the mixing region at any point in time (not shown here) – whereas
both should decrease as resolution increases.

8 Discussion

We proposed a dynamic blended hybrid RANS/ILES strategy, and report progress testing its preliminary
implementation for relevant canonical problems involving unsteady variable-density turbulent flows. The hy-
brid approach considered here is based on the FSM [18, 14], locally blending a high resolution computational
strategy with RANS modeling – depending on how much of the turbulence is resolved at given resolution,
and providing a sophisticated CGS strategy in-between. How much dissipation is modeled and how much is
computed is decided based on having the RANS model locally morph into a CGS SGS model, in terms of
contribution function f : 0 < f < 1. Here, at the high resolution limit f = 0, involving ILES, and at the low
resolution limitf = 1, producing a pure RANS closure. We use a strategy proposed by Germano [15, 16] to
generate f dynamically, by using an identity that relates total, unresolved and resolved stresses, an implicit
grid filter as the primary filtering operation and a differential filter as the secondary filtering operation. In
contrast with explicit dependence of the contribution function f on grid size in the classical blended hybrids,
the approach we use here results in an implicit dependence of f on grid size.

We tested the dynamic contribution function by using the hybrid RANS/LES formulation to simulate
two representative flows of interest. For each case we used three or four different resolutions in order the
verify whether the hybrid RANS/LES simulations behaved as expected. In particular, the contribution
function f and the modeled turbulent kinetic energy should be largest in the coarsest resolution simulations,
where the simulation should rely more on BHR, the RANS model. However, we observe the opposite,
that the contribution function f and the modeled turbulent kinetic energy are smallest in the coarsest
resolution simulations, and they are largest at the finest resolution simulations, thus indicating that the
latter simulations rely more on BHR. We speculate that this shortcoming is due to the RANS model,
BHR, being operating on an eddying flow regime – for which it is not designed – thus encountering large
density gradients and consequently producing excessive TKE and too high Reynolds stresses. This makes
the denominator of the second term on the right hand side of equation (25) larger, leading to larger f . A
larger f in the momentum equation (3) leads to more energetic flow, which leads to larger gradients, thus
producing a feedback on f that prevents it from decreasing to smaller values.

Shortcomings of this preliminary implementation of our dynamic blended hybrid reflect on the need to
further constrain the contribution function f to ensure that the RANS BHR terms scaled by f – i.e. the
generated CGS SGS model terms, are themselves physically consistent. This is not needed when proper
behaviors at the coarse and fine resolution limits are enforced through f being explicitly defined in terms of
local grid size ∆. To address this issue, we plan to explore averaging the prognostic variables along directions
of homogeneity in space and/or time before they are used to compute the BHR closure equations, so that
effectively the RANS model operates on mean flow quantities. Further, we will examine the terms in the
Germano decomposition in high resolution simulations to verify that it is plausible to obtain a dynamic
contribution function with expected behaviors from our formulation.
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