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Abstract: Shape optimisation for airframe noise is performed for a cylinder with polygonal cross-
section. Acoustic quantities are derived from a hybrid approach, alimented by the incompressible
solution of the direct Navier-Stokes equations in 2D; solid domain is defined by a Immersed Bound-
ary Method. Optimisation is done with the Particle Swarm Optimisation (PSO) technique and
performed in a cluster where each cost function evaluation is an independent flow simulation. The
precision on the 4 main shape parameters is set to 0.001, consistently with the convergence criteria
in time, grid and swarm. Optimal shapes for minimum drag and minimum acoustic power are
relatively similar. A large range between the optimal shapes is obtained: factor 1.77 for drag and
20 dB for the acoustic power. The reduction of noise is associated with long and bluffer geometries,
while the louder flows are associated with highly interacting shear layers obtained with back facing
triangles. The fluctuating lift is the major quantity to control noise at fixed length, while the
aspect ratio tends to reduce the noise for globally all geometries.
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1 Introduction
The optimisation of a shape for the reduction of the noise generated by a passing flow is performed. The
airframe noise is an important source of acoustical discomfort in modern transportation, notably for rear
mirrors and landing gears. The basics of the noise mechanism can be reduced to an uniform flow and a
cylinder of arbitrary section, described primordially by the interaction of generated vortex street and the
solid walls. Directly associated with the fluctuation of aerodynamic efforts, its comprehension is coupled
with topics such as vibration and energy harvesting.

The problem of the cylinder wake is secular in aerodynamics and it has been extensively studied since
the fundamental works of Strouhal and Karman. Despite many efforts performed for its description, models
still relay highly in empiricism [1], and are focused mainly in circular and square cylinders. Qualitative, and
most importantly, quantitative estimations of the influence of the shape in the wake structure are extremely
sparse.

To look more clearly to the fundamental traits of a geometry that make it quieter or louder, a shape
optimisation is performed. Notable applications of optimisation for fluid dynamics problems are available on
the literature (see the recent contributions of [2] and [3] for instance), however they are often associated with
numerical solution under strong hypothesis or surrogate functions and have aerodynamic quantities as the
main objective. Current approach is based on a direct Navier-Stokes calculation, whereas the precision of the
technique and its realistic detachment prediction, a low Reynolds regime is imposed. In many experiments
such as [4, 5, 6], the frequency associated with lift fluctuations remains the principal peak of the noise spectra
at high Reynolds even if the Strouhal number can undergo a slight increase. Thus, the use of low Reynolds
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regime is relevant not only for the study of the wake dynamics close to the onset of the fluctuations, but also
for a greater range of flows.

A robust meta-heuristic optimisation routine based on swarm intelligence, Particle Swarm Optimisation
(PSO), is implemented. The hybrid evaluation of the noise production is assessed by an analytical formula
derived from the Curle’s analogy [7] and serve as the output of the objective function (a complete flow
evaluation).

The global optimisation procedure thus combines PSO with DNS embedding IBM associated with an
analytical formula which directly estimates acoustic power from aerodynamic quantities. It was described in
details in [8]. In the present study, attention is focused on enlarging the range of the outputs introducing a
new parametrisation of the shape, which is here based on four vertex connected with straight segments and
freely moving on the sides of a rectangle. Moreover, a careful description is included of what the settings
are so that global precision is coherent and leads to relatively robust optimisations in spite of errors and
uncertainties at each stage (e. g. grid refinement, optimisation convergence...).

The paper is present as follows. Second section contains the description of the solver (2.1), the numerical
setup and the mesh and domain independence studies (2.2). On Section 3, the optimisation technique and
the parametrized geometry are detailed. Results of the application of the optimisation procedures for optimal
drag and noise power are assembled on Section 4. General discussions and conclusion finalize the document
on Section 5.

2 Aeroacoustic methodology and qualification

2.1 Acoustic power estimation
An aeroacoustic analogy is used in this study. The hybrid solution is aimed to provide a criteria for the
optimisation, on this case, the acoustic power W of the total, tonal noise emission by the flow over a body
is selected. It is deduced from Curle’s solution for a compact source in 2D, as given by [9]:

W =
π

16
dρ0U

3
∞ St M2(2C ′D

2 + C ′L
2) (1)

where W is the acoustic power (integral of the acoustic intensity over the observer circle of arbitrary radius),
ρ0 is the density in the propagation medium, U∞ is the upstream velocity, d its the main cross section. The
Strouhal number St is based on U∞, d, and the main frequency of lift fluctuations. Noting c0 the sound
velocity, M = U∞/c0. C ′D and C ′L are the period’s root mean square (RMS) of the fluctuations of the drag
(F1) and lift (F2) coefficients, defined per unit length:
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The flow is numerically predicted by direct solution of the incompressible Navier-Stokes equations (DNS)
using incompact3d. The solver uses a 6th order centered finite differences scheme in space (degraded on
borders) and 3rd order explicit Runge-Kutta scheme in time. More details are available in [10].

Solid domain is modelled by an Immersed Boundary Method (IBM) [11] where a forcing term f is added
to the momentum equation:

∂u

∂t
+ uj

∂ui

∂yj
= − ∂

∂yj
[pδij − τij ] + f with f(y, t) = −ε(y)

[
ω2
n

∫
u(y, t)dt+ 2ζωnu(y, t)

]
(3)

where ωn = 50 is the natural frequency and ζ = 1 is the damping coefficient of the second order controller
that forces a null velocity everywhere ε is non zero, values selected from [12]. No interpolation correction is
used to adjust the geometry walls. A remarkable advantage of this approach is that the sum of the forcing
terms applied to the solid domain gives directly the resulting aerodynamic forces acting on the obstacle,
that is, CD and CL. Any arbitrary solid shape is modelled with the modification of the ε matrix in the
same Cartesian grid, an extremely advantageous asset for the use of this technique in optimisation, where
hundreds to thousands of geometries must be studied.
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2.2 Numerical Setup and Validation
The present analysis is performed with Reynolds number Re = U∞d/ν of 150, where ν is the kinematic
viscosity. The small Reynolds number is mandatory so the physics of the problem can be reproduced in a
2D simulation, however, for the wide range of geometries that are considered in the optimisation, there are
no warranties that the flow is always well described without the third dimension. For this regime, both drag
and lift are close to sinusoidal signals, so the flow periods are defined from consecutive lift peaks. The final
simulated period statistics (CD, CL and St) are used for the analysis presented on this paper. In order to
compute Equation 1, the Mach number is arbitrarily set to 0.1, without any consequence on the comparisons
between shapes in the same conditions.

Uniform velocity is set inflow, while a convection condition is set outflow; lateral boundaries are defined
with free slip condition. Mesh is uniform in flow direction and stretched in transverse direction, with grid
points concentrated in the center. Flow initial condition is uniform and equals inlet velocity, u1 = U∞ and
u2 = 0, for the complete domain including the solid elements. No disturbance is added, once the transient
from the IBM elements are sufficient to give onset to the flow periodicity. A scheme of the domain is presented
in Figure 1. Lateral boundaries are fixed at 20d for a blockage ratio of 5%, based on [13].
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Figure 1: Scheme of numerical domain.

Domain and mesh independence tests are performed for both upstream and downstream distances of
the vertical boundaries (Xu and Xd, respectively) and element size (number of grid elements). Not only to
quantify the consistency of the numerical setup, this study is also aimed to reduce both memory and time
requirements for the use of the DNS simulations for an stochastic optimisation that requires the evaluation
of thousands of cases, while correctly representing the physics of the problem.

The tests are performed with an arbitrary symmetrical shape of height d and length 2d, composed by
half ellipse at the leading edge (y1 ≤ −0.1L) and two second degree polynomials on trailing edge, enabling
C1 and C2 continuities with the ellipse. The solid domain is the set of grid points that are inside the selected
closed contour, defined by ones on the ε(y) matrix. The use of a non-canonical geometry for this step is
justified by the intended use of its conclusions, once there is no restriction of the geometry that is going to
be observed when running the optimisation.

2.2.1 Domain convergence

The domains analysis is performed for different streamwise extensions, with a variable number of grid points
to maintain the elements’ size constant. The number of mesh points in both transverse and flow direction is
chosen as a multiple of small prime factors + 1 for a better performance of the spectral solution of the Poisson
equation, consequently, they are the parameters that defined the selected test distances. Mesh elements are
of size (∆y1,∆y2) = (1.953, 1.125)× d/100 at y2 = 0, and timestep duration is of ∆t = 0.0042d/U∞, with a
Courant number of CFL = 0.21; calculation stops at 40,000 timesteps (t = 170× d/U∞).

Simulations are performed for asynchronous variations of Xu and Xd, being the complementary distance
fixed at an arbitrary level issued from previous testing. These evaluations are based on the hypothesis that
the effect of the modification of a boundary location is independent of the position of the other for the chosen
complementaries (Xu = 12d and Xd = 18d). Results are presented on Figure 2 for the variables of interest
(mean drag |CD| and fluctuating lift C ′L). Other aerodynamic quantities present in the aeroacoustical model
are also analysed, but not graphically presented here for compactness.
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Figure 2: Influence of domain upstream and downstream distances on fluctuating lift and mean drag. Arrows
point to the selected configurations.

Asymptotic curves are obtained for both Xu and Xd, similarly to the results for circular section by
Posdziech and Grundmann [14]. Simultaneously, it is observed that an increase in those two reduces the
levels of fluctuating lift and drag. The order is not similar for mean drag and Strouhal number: they are
monotonically increasing for Xu and monotonically decreasing for Xd. According to this tendency, variations
of the actual boundaries distances from the section edges caused by the modifications of the length of the
geometries in the optimisation procedures are always advantageous, once they are smaller than the value
used in the convergence tests (L ≤ 2d).

Inflow distance has more influence in the flow response due to the modification of upstream conditions
in the presence of the obstacle, even at large Xu. The obtained curves confirm that the selected fixed value
for the complementary distance are coherent in terms of flow physics.

For a precision of about 1%, the selected values for the final domain are Xu = 11d and Xd = 14.31d,
what represents a mesh of 1297 × 513 grid points. Simulations are performed for the selected domain and
the final result is compared to the extrema of the domain study, as presented on Table 1.

Table 1: Aerodynamic quantities’ errors between the final domain and the most extended boundaries.

case Xu/d Xd/d ∆|CD| ∆C ′L ∆C ′D ∆St
Xu max 22.0 18.0 -3.2% -1.2% -13.5% -0.8%
Xd max 12.0 33.0 -1.1% -0.5% -10.4% -0.4%

Final domain has higher level for all quantities, as indicated on Figure 2, albeit the discrepancies are
relatively small. The fluctuating drag has an elevated offset (order of 10%) provoked by its low order O(-4)
and thus has a insignificant influence in the aeroacoustical result. Once the domain is defined, further steps
are performed for reducing the calculation time.

2.2.2 Mesh convergence

When comparing the element size, the ratio between number of elements in streamwise and spanwise direc-
tions is maintained, thus, the elements are isotropically contracted or expanded. A total of 5 meshes are
tested, being number 4 the mesh used on the domain study and number 5 the most refined. The timestep
physical duration is modified to guarantee numerical convergence, and the number of timesteps is chosen to
achieve at least 225×d/U∞ of physical time, within which the comparisons are performed. Figure 3 presents
the results for fluctuating lift and mean drag.

For the presented quantities, there is a maximum offset of 1.2% for C ′L and 3.3% for |CD|, when compared
to the most refined grid. There is a 8.5% deviation for C ′D and 0.4% for the Strouhal number. The small
impact of the mesh refinement can be associated to the flow regime, because once the Reynolds number is
small, the flow presents very large boundary layers that are less influenced by small oscillations in the solid
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Figure 3: Influence of mesh refinement in fluctuating lift and mean drag. Tags indicate the number of
elements in flow and transverse directions, respectively, and arrows point to the selected configuration.

elements size and position. Observed fluctuations may be associated with the modifications of the dynamic
of the solid domain by the consistent change in the number of solid points, once the finite difference scheme
is unchanged and there are no interpolations on the obstacle wall.

Following the behaviour of the global coefficients, a similarly good result is also obtained when spanwise
velocity profiles are compared, as showed on figure 3. The mean and RMS velocity profiles at y1 = 0 of the
last 2 simulated periods are presented for meshes 2 and 5.
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Figure 4: Influence of mesh refinement in mean (left) and RMS (rigth) velocity profiles at y1 = 0.

Profile comparisons at upstream (y1 = −5d) and downstream (y1 = +5d and y1 = +10d) positions are
performed similarly to the analysis executed at the central spanwise axis (y1 = 0). Considering all 4 profiles,
there are a maximum deviation of 1% for the mean velocity and of 8× 10−3×U∞ for RMS velocity profiles.

In a search for a compromise between time consumption and physical representativeness, mesh number
2 is selected. For the chosen space discretisation, there are about 25 elements by diameter in y1 and 50 in
y2. There is a slight loss in accuracy, however, for an equal flow time and CPU conditions, calculation time
is reduced to 2.5% of the one obtained with mesh number 5. For 50,000 timesteps, an average CPU time of
2 hours is needed for a single simulation.

Though similar accuracy could be obtained with even coarser meshes, the corresponding geometrical
precision would be reduced leading to the fact that relatively large modifications of parameters would be
irrelevant for the solver. The consistency of the optimisation depends on the fact that variations of the
theoretical geometry are well represented in the solver, even if the difference in the aeroacoustic answer is
not significant, respecting the physics of the cost function.
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2.2.3 Time convergence

Once the domain and the mesh are fixed, further analysis must be performed to check in time convergence.
Figure 5 illustrates drag evolution and the convergence of the period aerodynamic quantities, based on the
relative error of the 10 points moving average. A convergence of 0.01% is observed for the quantities of
interest at t = 300 × d/U∞. The Strouhal number does not oscillate after t = 150 × d/U∞, what can be
explained by the limits in the technique used for determining it (inverse of a lift period, maximum precision
being the duration of a timestep), and obtained errors after that time are either null or of the order of the
machine precision.
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Figure 5: Time evolution of drag coefficient for different meshes (left) and time convergence of mean drag,
fluctuating drag and lift and acoustic power for the final domain, with mesh 4 (right).

Convergence in time is also regarded for the different meshing configurations from the previous studies.
Apart from differences in time required for the settlement of the periodic wake structure, as noted on Figure
5, there is no significant variation of convergence errors or convergence time as a function of either the
domain size or the discretization level.

2.2.4 Validation

Based on mesh and domain independence studies, final mesh (Xu, Xd = 11d, 14.31d and a grid of 649 ×
257 points) is used for a validation procedure against literature values for 40,000 timesteps (t = 288 ×
d/U∞). Simulations are performed with canonical geometries at different lengths and Reynolds numbers.
The mean drag of a circular cylinder and RMS lift of rectangular cylinders are compared with literature
values [15, 14, 16, 17] and presented on Figure 6.
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A positive offset between current results and literature tendency is present in almost all points, at both
graphs, and so it is for the Strouhal number and the drag fluctuation (not shown here). The elevated levels
are a result of the choices made in the previous sections, where a shorter and coarser mesh would result
in higher aerodynamic quantities. Although the limited precision for individual cases characterization, the
trends are maintained and there is a global good fit when confronted to literature data.

In summary, considering the performed study and settings, all the results presented here are acknowl-
edgedly slightly over estimated, at the order of 1 to 5%. However, even with the limited accuracy that is
obtained, these small oscillations are negligible when confronted to the elevated differences that are searched
in an optimisation routine. Once the trends are shown to be respected, the use of the proposed numerical
setup is considered adapted to the current application where the results are basically going to be compared
with each other.

3 Optimisation framework
Once the solver is well defined, the optimisation algorithm is implemented. As the cost function is relatively
expensive, care with the choice of the technique and its settings and the geometry parametrization is taken.
Details of those two steps are presented next.

3.1 Optimisation method
Optimisation is performed using the stochastic Particle Swarm Optimisation method, introduced by Kennedy
and Eberhart [18]. It is based on the social behaviour of individuals. At each iteration T , the positions of
the current best results for the objective/cost function at the individual (pi) and swarm (gi) levels are used
as targets, along with the previous iteration velocity (vi,T ). The corresponding vectors from current location
(xi,T ) in the design space are weighted and summed to give the following position (xi,T+1). The location
of the best values are updated and the process continues until swarm convergence. The considered ratios
of each contribution (individual best, global best and last velocity) are regulated by cognitive (c1), social
(c2) and inertial (cw) factors, respectively. For the first 2 components, at every iteration and direction,
independent and uniformly distributed between [0,1] random factors r1 and r2 are used. The later’s role is
to avoid convergence to local minima and to push the algorithm for further investigation of the design space.

xi,T+1 = xi,T + cwvi,T + c1r1(pi − xi,T ) + c2r2(gi − xi,T ) (4)

The gbest topology is used, what means that all particles communicate with the swarm from the beginning
to the end of the optimisation. It is a rather robust configuration, but less adapted in the case of several
local minima. Particles that leave the design space are simply repositioned to the optimisation domain edge,
with no modification in its velocity. More strategies concerning the use of PSO are reported on [19].

Preliminary tests were performed to select the optimisation parameters for a similar test case ([8], sym-
metrical bluff body composed by 4 Bézier curves). Based on discrete 2D response surfaces and canonical
benchmark functions in low dimension (Michalewicz in 2D and 3D), the values of cw = 0.6 and c1 = c2 = 1.2
are selected for their good success rate at lower number of iterations/function evaluations. Although they
vary slightly from the reported best on the literature [20, 19], the selected values were more adapted for
the projected response function at a low dimension. Similar analysis were performed with the number of
elements in the swarm: for a compromise between the calculation time, that is the number of iterations,
and the intended calculation precision, 36 particles are used for each optimisation run (independently of the
number of dimensions of the design space). Starting positions are either equally distributed points in the
design space (grid of 3× 3× 2× 2) or randomly distributed using Latin Hypercube Sampling (for 5 degrees
of freedom and re-runs).

Maximum number of iterations is fixed at 30, value also based in previous empirical testing, and optimisa-
tion stops when swarm stagnation is achieved. The selected criteria for stagnation is the average distance of
the particles, quantified by the sum of the Euclidean distances of an arbitrary particle to the other members
of the swarm divided by the number of particles; calculation is halted if this value is smaller than 0.001.

The optimisation is performed in a cluster where each flow simulation is single cored, and for every
iteration, the n agents are evaluated simultaneously. The optimiser environment is coded on Python, and
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the parallelism is done with the MPI standard using the mpi4py package [21]. Every iteration takes about
3 hours to be completed, and an average of 96 hours is necessary when the maximum number of iterations
are performed.

Although the response surface is not discrete, limitations regarding the element size constraint the results
as noted on section 2.2.2. According to previous tests, geometrical resolution is at the order of 0.001d, what
traduces to the fact that for of any parameter, variations smaller than 0.001 will not result in a different
solid domain. Consequently, to avoid unnecessary simulations, at the time the solver is called, the values of
the geometrical parameters are rounded to the third decimal. In the case of recurrent calls to a previously
simulated configuration, the former result is reused in the optimisation routine.

Though convergence of aerodynamic quantities in time are measured in real-time for each simulation, it
was observed that the behaviour is errant when different geometries are compared, leading to premature or
retarded simulations stops when convergence criteria is used. To avoid an excessive number of idle processors
in the optimization run, rather than defining a stop criteria, the number of flow cycles is constant for all cases
and sufficient for a good convergence (t = 360 × d/U∞, up to 50 lift cycles). According to the convergence
curve presented on Figure 5, obtained precision of time solution is at order of 0.010%.

3.2 Parametrized geometry
Final component of the shape optimisation routine is the geometry. A low order parametric approach is
employed, where a fine control of geometrical characteristics is not possible. This choice is coherent both
with the chosen optimizer and to the fact that small nuances of the geometry are not relevant for the final
flow equilibrium for the regime in study, as presented in section 2.2. In that sense, consequential shape
modifications are expected in the search of geometries that present extreme aeroacoustical quantities.

Test geometry is a polygonal section, defined by 4 control points positioned in the edges of a circumscribing
rectangle. With respect to the parametrisation used in [8], we aim at enlarging the varieties of aeroacoustic
answers, here enabling non-zero mean lift and a simpler flow dynamics by fixing detachment at edges.

The dimensional parameters are the height d and the aspect ratio AR = L/d; four non-dimensional
parameters, each in [0,1], define the distance of a control point and the origin of its containing edge in
the outer rectangle, always in the axis direction: upstream edge ratio (ku), downstream edge ratio (kd),
top edge ratio (kt) and bottom edge ratio (kb), as illustrated in 7, and define a point in the design space
P4 = (ku,kd,kt,kb) for a selected rectangle (d, AR). Different combinations of those 4 parameters produce
triangles, rectangles, lozenges or any other polygonal section with 4 edges. Once the height is fixed for
constant blockage ratio, optimisations are performed up-to 5 dimensions.

L

d

kbL

kddkud

ktL

Figure 7: Scheme of the parametrized geometry (left) and examples of the possible geometries: P4 = (1.0,
0.5, 1.0, 0.0), center, and P4 = (0.0, 0.5, 0.0, 0.0), right.

Due to the nature of the parametrization, there are at least two points in the design space that produce
the same geometry when shape is mirrored in y1 axis, and would produce the same aeroacoustical outcome,
only with reverse mean lift, for example, P4 = (0.5; 0.3; 0.2; 0.0) and P4 = (0.5; 0.7; 0.0; 0.2). This
property guarantees that there are at least 2 global minimums, what is not accounted in the conception of
the optimisation routine. The effects of having such characteristic in the response surface is not checked and
there is no inspection step to avoid that such duplicates are evaluated twice.
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4 Results
In the search to investigate the mechanisms associated with the tonal noise generated by a flow, shapes
that present both the minimum and the maximum values are of interest. Therefore, for different quantities
(|CD|, C ′L and W ), optimisation routine was employed for minimisation and maximisation (minimizing the
inverse).

Besides the use of PSO, a technique already more adapted to complex response function than gradient
based optimisers, there are no extra efforts to mitigate the chances to converge in local minima, such as more
restraining topologies. For some optimisations performed for this study, there were clear indications that the
obtained geometries were not the global minimum, either from the attained value or from the related form.
In those cases, the optimisation was relaunched from the beginning and the final value was compared to the
previous answer and only the best (the values that are considered global minima or maxima) are presented.

Pairs of optimal shapes and their corresponding aerodynamic quantities are listed on Table 2, where the
cost/objective value are in bold; the normalized acoustic power, Wa = W/(dρ0U

3
∞), is presented. Graphical

representation of the obtained shapes is available at Figure 8, while flow and geometry aspects are discussed
on the following sections.

As can be seen on the obtained geometrical parameters, at least 2 of the 4 edge ratios were always on
the limits of the design space (either 0 or 1). It is observed that, after a few iterations, these final values are
already selected and the search is reduced to a 3D or 2D design space. In terms of the optimisation procedure,
the search for the best response is facilitated, however, it shows that the choice of the parametrization may
be poor, once only a part of the variables retain the control of the cost function. In terms of the physics of
the problem, it means that for a fixed height, the angle of the facing edge is the least significant in both the
noise and the mean drag characteristics of an obstacle.

Table 2: Optimisation results.

objective AR ku kd kt kb |CL| |CD| C ′L C ′D St Wa × 105

min |CD| ∗ 1.000 0.113 1.000 0.000 1.000 0.153 1.274 0.220 0.017 0.180 1.72
max |CD| ∗ 1.000 0.946 0.000 0.000 0.882 1.614 2.259 0.458 0.127 0.181 8.60
min C ′L

∗ 1.000 0.935 0.000 1.000 0.000 -0.038 1.288 0.210 0.013 0.174 1.52
max C ′L

∗ 1.000 1.000 0.275 0.000 0.242 0.391 2.258 1.058 0.201 0.171 40.17
min Wa

∗ 1.000 0.959 0.000 1.000 0.000 -0.005 1.311 0.211 0.010 0.171 1.50
max Wa

∗ 1.000 1.000 0.285 0.000 0.201 0.330 2.233 1.055 0.195 0.172 40.22
min Wa

+ 2.000 1.000 0.111 0.956 0.000 -0.062 1.127 0.101 0.002 0.165 0.33
max Wa

+ 1.100 1.000 0.279 0.000 0.234 0.331 2.117 1.066 0.186 0.164 38.79
∗: fixed AR; +: AR as a parameter in the optimisation, AR ∈ [0.5, 2.0].

Obtained values for rectangles at different lengths are presented on Table 4 and serve as a reference for
comparison with the optimal sections. Due to the symmetry, mean lift is null, so omitted from the table.

Table 3: Aerodynamic quantities for a rectangular section.

AR |CD| C ′L C ′D St Wa × 105

0.500 1.895 0.572 0.077 0.193 12.83
1.000 1.347 0.223 0.011 0.167 8.63
2.000 1.138 0.119 0.002 0.164 0.45
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(a) (b)

Figure 8: Optimal geometry at fixed AR = 1.0, dotted line is the containing rectangle. (a) minimum |CD|
(dashed line) and maximum |CD| (solid line); (b) minimum C ′L (thick dashed line) and W (thin dashed line)
and maximum C ′L (thick solid line) and W (thin solid line).

4.1 Mean drag
The resulting extrema of drag are associated with fairly different geometries. A range of ∆[CD| that equals
73% of the drag of the square cylinder is obtained. Although the viscosity effects are not negligible for the
selected flow conditions (Sheard at al. [15] presented that 21% of the drag was from the viscous shear tensor
for a square cylinder at the same regime), pressure forces remain the major influence of the drag. From a
preliminary analysis, the obtained velocity fields do not vary much, thus viscous efforts are not discussed
here. The pressure field for the optimal pair and the square are illustrated on Figure 9.
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Figure 9: Mean pressure field for (a) minimum drag shape, (b) square and (c) maximum drag shape. Pressure
coefficient contour, interval of 0.1. Continuous line for positive, dashed line for negative and dotted line for
null.

Minimum drag geometry, Figure 9.a, is a slightly distorted square, with the bottom edge elevated at
the upstream portion. The resulting flow is slightly asymmetrical, and when compared to the rectangle the
mean drag is reduced by 5.4%. There is a decrease in the surface submitted to the frontal over pressure, and
once the bottom edge normal has a component in the streamwise direction, the depression on this edge also
contributes to drag reduction.

The biggest drag in encountered for a flat plate like geometry, Figure 9.c. The changes in the level
of vorticity are small, however, the modification in the disposition of the vortex in the wake created an
important depression zone downstream of the section that overcomes the reduction on the pressure on the
upstream face. It’s known that the drag only increases with the angle of attack of a plate, however, at a
constrained aspect ratio, this is the biggest angle possible.

For the latter shape, the result is doubted due to the reduced number of solid points, with some horizontal
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slices (in the streamwise direction) of the body having only one solid element. The numeric scheme is of
order 6, so downstream parts of the flow were being directly influenced by the flow upstream of the obstacle,
what is non-physical. To check the consistency of the solution, simulation is re-run with mesh 4, where slices
with single or double solid elements only exist in extreme upper part of the discrete shape. There are no
significant changes in the flow, but small variations in the aerodynamic quantities are obtained: -2.6% of
mean lift, -9.4% of mean drag, +0.9% of RMS lift and + 21.9% of RMS drag and -0.7% of St. However,
specially for the aimed quantity, the original value are of the same order and consistently higher than the
minimum, reinforcing that the optimisation result and the numerical setup are reasonable.

4.2 Fluctuating lift and acoustic power
As presented on Table 2, minimum/maximum RMS lift and acoustic power are searched independently. As
noted on their geometrical parameters and aerodynamic results, the obtained geometries are quite similar,
see Figure 8, and aeroacoustical differences may be considered within the precisions of the calculations. Thus
only the results for the acoustic power are going to be described in details. Even so the answer are virtually
identical, it is noted that the RMS lift is still better when it is the objective function than when the latter is
the acoustic power, and vice versa, and this constitutes a sign of the success of the optimisation procedures.

The similarity of these result corroborates with the fact that the transverse fluctuations of the flow,
incorporated in the fluctuating lift, are the most important element in the description of the tonal noise of
2D bluff bodies. Based on the equation used as the acoustic model on this work, remaining variables are the
Mach number, C ′D and St. The compressibility effects (M) are unchanged between the geometries due the
use an incompressible source at fixed flow conditions. For the second variable, it remains one order lower
than the fluctuating lift. Interestingly, when comparing the minimum and the maximum, the increase of C ′D
is as twice as big. That means that even if the drag contribution to the noise remains small, it has a wider
range and thus is more affected by modifications in the obstacle’s shape. For the St number, there is a really
small variation of its value for the set of geometries evaluated in this study, what can be associated with
the fixed height and the limitations regarding geometry modification. Due to those constraints, the width
of the wake, the main feature to control its frequency [22], is only moderately modified, keeping St rather
unchanged (around 0.17± 0.1).

It is important to note that both fluctuating quantities followed the same trend as the mean drag.
However, as can be noted on the listed results, there is no direct association between them, being the drag
for the minimum acoustic power higher than the minimized drag.

Vorticity snapshots for both minimum and maximum and the rectangle of same aspect ratio (square) are
presented at Figure 10.

Similarly to the previous minimizing geometry, the minimum W is associated with a deformed square.
For this case, the upper edge is lowered at the upstream portion, close to a mirrored version of the previous
case. The obtained answer is only -0.37 dB quieter than the square, and is likely to be associated with a
small increase of viscous dissipation on the top of the obstacle provoked by the enlargement of the boundary
extension, what reflects in slightly weaker vortex.

The geometry that amplifies the noise power is a back-facing triangle. The interaction of both mixing
layers is increased, what results in shorter recirculation and formations lengths, and simultaneously stronger
vortex, as presented on Figure 10.c. The interaction of those structures with the walls of the obstacle causes
larger C ′D and C ′L, while the Strouhal number is only slightly modified. The wake remains symmetrical, but
the symmetry axis is angled towards the upper boundary. This would must certainly modify the directivity
of the sound, but the evaluation of this aspect of the acoustical field is not available from the tools used in
this work and does not affect the total acoustic power.

Optimisations of the acoustic power at 5 degrees of freedom (DoF) are also performed, for the AR in [0.5;
2.0], and the obtained shapes are illustrated on Figure 11.a. As for the previous cases, a deformed rectangle
is obtained for minimum W , for the longest geometry possible. In this case, the deviation is on the other
sense, at the downstream portion of the bottom edge. From the observation of vorticity fields of the shape
with minimal noise and the rectangular section of AR = 2.0, it is believed that, at that length, the small
modifications in the lateral edge’s angle are close to insignificant when compared to the effect of the length
itself and further investigation of that influence are performed.

Figure 11.b illustrates the obtained acoustic power for all the points evaluated in the 2 optimisation
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Figure 10: Snapshots of vorticity for (a) minimum acoustic power shape, (b) a square and (c) maximum
acoustic power shape, interval of 0.3 U∞/d. Continuous line for positive and dashed line for negative.

runs with the aspect ratio as a parameter and partially reproduces the values obtained for rectangular
sections presented at Section 2.2.4. There’s a clear association between the length and the acoustic power,
indicating that it’s rather a global trend, independent of the form of the geometry, that can be associated
to the reduction of the interaction between the mixing layers and the weakening of the vortex by viscous
dissipation for longer sections. We may also conclude that the rectangles are already fairly optimal sections
in terms of noise production.

The maximum noise is obtained with another triangle, but not in the minimum aspect ratio. The
resulting length is a compromise between flow fluctuations and the available surface to transform that in
lift oscillations, similarly to the behaviour noted by Inasawa et al. [17]. It must also be pointed out that
the alterations of the aspect ratio were capable of substantially modifying the frequency of the wake, thus,
provoking a larger discrimination between the minimum and the maximum noise than what was obtained at
fixed AR.

As can be seen on table 2, the maximum noise obtained for the 5 DoF optimisation (Wa = 38.79× 10−5)
is lower than the value obtained ate fixed length (Wa = 40.22 × 10−5). As clarified previously, some
optimisations are believed to converge to local minima, and it was the case for the maximum noise. The
same configuration was optimized 3 times, starting for a design space of AR ∈ [0.5; 2.0] for the aspect ratio
for the first two runs and [0.75; 1.25] for the final one, and even so the final result is clearly not the global
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Figure 11: Acoustic power for different geometries as a function of their length. Dots include all the
geometries evaluated for the 5 DoF optimisations and square makers are for rectangles.

minimum. The obtained misbehaviour contributes to the conclusion that, for every geometry (associated to
an specific P4 coordinates point), there is a unique length that maximizes the noise, in such a way that there
are multiple local minimum in the design space. Besides the use of a different swarm topology, a re-setting
of the number of particles, total number of iterations and the optimisation coefficients could ameliorate the
result.

Even for a very limited set of tested geometries at a fixed blockage ratio, globally, a ratio of 2 for the
mean drag and a rapport of 20 dB for the noise is observed between the extrema. Modifications of the upper
and lower edges are the most active in terms of the aerodynamic and aeroacoustic answers. Although the
large range, all the obtained results are originated by similar wakes.

5 Conclusions
An optimization routine based on a stochastic technique is presented for tonal noise of a compact source.
The geometry is an infinite span cylinder with a polygonal section modelled by an IBM approach; the
acoustics is calculated by a single formula model issued from a Curle’s analogy, alimented by the results of
an incompressible aerodynamic solver at Re = 150.

The feasibility of the performed optimisation procedure relays fundamentally on the robustness of both
the optimizer (PSO) and the IBM. In that way, the management of the tested geometries was possible without
direct interference after both optimisation and flow simulation settings were defined in careful preliminary
studies. Simultaneously, the use of an hybrid acoustic model that is capable of representing the acoustic
from global flow statistics was an essential component of the proposed framework.

From the obtained optima, it is clear that the key to reduce the noise production is to decrease the
strength and the interaction between the top and bottom shear layers in the wake of a bluff body, such that
long or bluffer geometries, therefore, the ones where the interactions of the mixing layers is reduced, are
the ones with smallest C ′L and consequently lower acoustic power. The result is aligned with the canonical
experiment with a splitter plate by Roshko [23] and its repercussions. At fixed height and length, that
reduction was obtained with small increase of one of the lateral edges of the geometry and thus increase
viscous dissipation of the forming vortex. From tests with a modifiable length, the aspect ratio is concluded
to be the most important factor for reducing the noise. On the other way, maximum acoustic power is
associated with back facing triangles, where the effect is inverted: more interaction between the layers and
stronger vortex on the wake.

A correlation between the acoustic power and the mean drag is also implied, being the biggest drag always
associated with a large C ′L and vice-versa, what is believed to be due to the association of base suction and
wake instability [1]. The Strouhal number oscillates unsubstantially, as it’s more associated with the wake
width, a property relatively fixed from the geometrical constraints used on this work.

Another interesting comportment that outlays with the associations of mean drag and fluctuating lift, is
that, when one of them is aimed, the other may not be the optimal at the end of the optimisation. Setting
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the square as reference, when aiming for minimum noise there is a reduction of 2.7% of the drag. Oppositely,
when searching for minimum drag, there is a 0.23 dB increase of acoustical noise. Although this conclusion
is limited to the regime and the characteristics of the test geometry, this is a rather dangerous trend, once
the aeroacoustic is most commonly neglected in face of the drag, that touches directly the aerodynamic
performance.

It is observed that, under the limitations of both the space discretization and the geometry complexity,
modifications that increase or decrease the acoustic emission are fundamentally associated with modifying
the RMS lift. Besides the known fact that it’s the fundamental fuel for bluff body noise, the incapacity of the
geometry to influence the other parameters in the acoustic model at the same impact, such as the Strouhal
number and the fluctuating drag, is an important conclusion regarding not only the acoustics, but eventual
applications on energy harvesting.
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