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Abstract: The arbitrary Lagrangian Eulerian (ALE) framework presented in [Sahin and Guven-
turk, An Arbitrary Lagrangian-Eulerian framework with exact mass conservation for the numerical
simulation of 2D rising bubble problem. International Journal for Numerical Methods in Engineer-
ing, 112:2110-2134, (2017)] has been initially extended to three-dimensional multiphase �ows. In
the present formulation, the governing equations are discretized over the unstructured moving
meshes using the divergence-free side-centered �nite volume formulation with the exact jump con-
ditions across the interface. Therefore, the pressure �eld is treated to be discontinuous with the
discontinuous treatment of density and viscosity. The surface tension term at the interface is
handled as a force tangent to the interface. A special attention is given to the application of
the kinematic boundary condition to be compatible with the local and global discrete geometric
conservation laws (DGCL) as well as the discrete form of the continuity equation in order to con-
serve the total mass of both species at machine precision. The mesh deformation is achieved by
solving the linear elasticity equations with the modi�ed material properties based on the minimum
distance to the interface. Then, the numerical method has been further extended to viscoelastic
multiphase �ows using the approach in [M. Sahin, A stable unstructured �nite volume method for
parallel large-scale viscoelastic �uid �ow calculations. Journal of non-Newtonian Fluid Mechanics,
166:779-791, (2011)]. The resulting algebraic equations are solved in a fully coupled (monolithic)
manner and a one-level restricted additive Schwarz preconditioner with a block-incomplete factor-
ization is utilized within each partitioned sub-domain. The proposed method is initially validated
by simulating the classical three-dimensional benchmark problems of a single rising bubble in a
Newtonian �uid and then it will be applied to a rising bubble in an Oldroyd-B �uid. The mass of
the bubble is conserved and discontinuous pressure �eld is obtained in order to avoid errors due to
the incompressibility condition in the vicinity of the interface.
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1 Introduction

Numerical simulation of viscous multi-�uid �ows with moving boundaries is getting more attention over the
past several decades. These �ows are frequently encountered in nature and industrial applications such as
food processing, targeted drug delivery, drop formation, etc., and the interfacial dynamics has a signi�cant
role for output. The complex behavior of multiphase �ows still posses signi�cant computational challenges.
One of the main di�culties for this type of �ows is that the material properties are discontinuous across the
interface and the shape and the location of the interface, which are time dependent, are not priori known.
In addition, the surface tension should be taken into account, which is a force tangent to the surface and
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it yields a pressure jump across the interface [1]. However, the pressure jump is not due to the surface
tension only but also a consequence of the viscosity jump with nonzero normal derivative of the normal
velocity component at the interface [2]. Therefore, across the interface, these jump conditions have to be
satis�ed accurately. Besides, the numerical algorithm should handle the large distortions at the interface.
Furthermore, the mass of the species has to be conserved during the numerical simulation.

The early numerical algorithms to solve multiphase �ow problems are mainly based on �xed Cartesian
grids [3, 4, 5, 6]. In these algorithms, the density and viscosity jumps, and the surface tension at the interface
are smoothed across the interface to avoid numerical instabilities near the interface [7]. Hence, the interface
has a �nite thickness and is no longer sharp. This assumption yields number of issues. First of all, it
smears out the sharp interface due to the used discrete delta function approach and it is only about �rst-
order accurate for general problems [8]. Besides, the smoothing must be over a few grid cells, resulting in a
relatively �ne mesh or dynamic adaptive mesh re�nement. Furthermore, the large variations in the transport
properties across the interface lead to relatively sti� algebraic systems [9]. An another approach to solve
multiphase �ows is to use the Arbitrary Lagrangian-Eulerian (ALE) formulation [10]. The advantage of the
technique is that the mesh follows the interface and the governing equations are discretized over unstructured
moving meshes. Therefore, the interface is sharply de�ned. However, the numerical discretization requires
that the discrete geometric conservation law (DGCL) [11] should be satis�ed at discrete level.

In the current work, the Arbitrary Lagrangian Eulerian (ALE) approach [12] has been initially extended
to three-dimensions to solve incompressible multiphase �uid �ow problems while satisfying the exact mass
conservation for each species at machine precision. The pressure �eld is treated to be discontinuous across
the interface with the discontinuous treatment of density and viscosity. The discontinuous treatment of
pressure �eld helps us to avoid errors due to the incompressibility condition in the vicinity of the interface.
The surface tension term at the interface is treated as a force tangent to the interface and computed using
the straight line integral of tangent vectors at the interface. The jump conditions are exactly satis�ed across
the �uid-�uid interface. The parasitic currents are found to be very sensitive to the numerical calculation
of normal vectors. Several di�erent normal vector calculation methods have been investigated in order to
reduce the parasitic currents to machine precision in three-dimensions. The nonlinearities related due to
the unknown interface location and the convection terms are treated using several Newtons's sub-iterations.
The resulting algebraic equations are solved in a fully coupled (monolithic) manner and a one-level restricted
additive Schwarz preconditioner with a block-incomplete factorization (ILU) within each partitioned sub-
domains is utilized for the resulting fully coupled system. The multiphase algorithm has also been further
extended to isothermal viscoelastic non-Newtonian �uids by solving the Oldroyd-B �uid equations using an
approach similar to that of [13].

2 Problem Statement

The governing equations for the incompressible multiphase Oldroyd-B �uid �ow in the Cartesian coordinate
system can be written as follows: the continuity equation

−
∮
∂Ωe

n · u dS = 0 (1)

the Oldroyd-B equation

λ

∫
Ωd

[
∂T

∂t
dV + (∇u)> ·T−T · ∇u

]
dV + λ

∮
∂Ωd

[n · (u− ẋ)]TdS = µp

∮
∂Ωd

n · (∇u +∇u>)dS +

∫
Ωd

TdV (2)

the momentum equations

ρ

∫
Ωd

∂u

∂t
dV + ρ

∮
∂Ωd

[n · (u− ẋ)]udS +

∮
∂Ωd

npdS = µs

∮
∂Ωd

n · (∇u +∇u>)dS +

∮
∂Ωd

n ·TdS + ρ

∫
Ωd

gdV (3)

Across the �uid-�uid interface the following jump condition must be satis�ed:

Jµs(∇u +∇u>) + T− pIK · n = −σκn (4)
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Figure 1: Illustration of a rising bubble problem.

In these equations, V is the control volume, S is the control volume surface area, n represents the outward
normal vector, u represents the local �uid velocity vector, ẋ represents the grid velocity, p is the pressure,
T is the viscoelastic extra stress tensor, ρ represents the �uid density, µs and µp represent the solvent
and polymer dynamic viscosities, respectively, λ is the relaxation time, g represents the gravity vector, σ
represents the surface tension coe�cient and κ represents the curvature at �uid-�uid interface.

3 Numerical Results

In order to assess the accuracy of the present ALE algorithm, the benchmark problem of a single rising
bubble Ω2 = Ω2(t) ⊂ Ω in a Newtonian �uid in three-dimensions [14] is initially presented for a cuboid
tank Ω = [0, 1] × [0, 2] × [0, 1]. The computational domain is illustrated in Figure 1. The bubble is lighter
than the surrounding �uid Ω1 = Ω \ Ω2(t). Therefore, the bubble will rise and change its shape due to the
buoyancy e�ects. The material properties of the both �uids are provided in [14] and presented in Table 1.
The physical boundary conditions on the walls are set to no-slip boundary condition.

The quantities such as center of mass, rise velocity and mass conservation are investigated and the results
are compared with the other results available in the literature [14]. For the numerical simulations, 2 di�erent
meshes M1 and M2 are used which are presented together with the meshes provided in [14] in Table 2. The
center of mass can be computed as

Xc(t) = (xc, yc, zc) =

∫
Ω2(t)

xdxdydz∫
Ω2(t)

dxdydz
. (5)

and the rise velocity is given by

Uc(t) = (uc, vc, wc) =
dXc

dt
=

∫
Ω2(t)

∂x
∂t dxdydz +

∮
∂Ω2(t)

x(n · dxdt )dA∫
Ω2(t)

dxdydz
=

∮
∂Ω2(t)

x(n · u)dA∫
Ω2(t)

dxdydz
. (6)

As it may be seen from Figure 2 and Figure 3-[a], the solution shows a relatively good agreement with the
results of NaSt3D. Nevertheless, it is necessary to have a closer look to the curves. A detailed picture of the
results indicates that the mesh M2 gives a relatively more accurate result. However, the results of the mesh
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Figure 2: Time variation of bubble mass center on meshes M1 and M2 and their comparison with the result
of [14] [a] and close-up view [b].

M1 show slight deviation from that of the results from NaSt3D. On the other hand, there is a di�erence
with the rise velocity results of DROPS for both meshes M1 and M2. In addition, the results of OpenFOAM
di�er from all the results and the oscillations can be seen in the rise velocity. The present ALE algorithm
conserves the mass of the both species at the machine precision since it employs the compatible kinematic
boundary condition [12], which is in accord with the local and global geometric conservation laws [11]. The
volume of the bubble can be computed as

Volume =

∫
Ω2(t)

dxdydz =

ne∑
e=1

Ve. (7)

and its variation with time is provided in Figure 3-[b]. The results show that the total mass of the bubble
is conserved at machine precision irrespective of the employed mesh resolution. However, since the bubble
surface is presented by quadrilateral elements with straight edges, the initial bubble volume values di�er
slightly.

Table 1: Physical parameters and dimensionless numbers.

ρ1 ρ2 µ1 µ2 g σ Re Eo ρ1/ρ2 µ1/µ2

1000 100 10 1 0.98 24.5 35 10 10 10

Table 2: Computational meshes and time step used for the simulation of the rising bubble problem.

Mesh hmax hmin ∆t

Present - M1 1/16 1/32 2.5 · 10−3

Present - M2 1/32 1/64 2.5 · 10−3

DROPS 1/4 1/32 2.5 · 10−4

NaSt3D 1/121 1/121 O
(
10−4

)
OpenFOAM 1/256 1/256 1.0 · 10−4
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Figure 3: Time variation of bubble rise velocity on meshes M1 and M2 and their comparison with the result
of [14] [a] and bubble volume variation with time on meshes M1 and M2.

4 Conclusion and Future Work

A parallel fully coupled unstructured ALE algorithm has been implemented for three-dimensional multiphase
�ow problems. The jump conditions across the �uid-�uid interface are exactly satis�ed and the mass of
both species is conserved at machine precision. The nonlinearities related due to the unknown interface
location and the convection terms are treated using several Newtons's sub-iterations. The resulting algebraic
equations are solved in a fully coupled (monolithic) manner and a one-level restricted additive Schwarz
preconditioner with a block-incomplete factorization (ILU) within each partitioned sub-domains is utilized.
The present algorithm has been successfully tested for the classical benchmark problem of a rising bubble in a
Newtonian �uid. The numerical simulations with the Oldroyd-B �uid will be presented during the ICCFD10
conference. In the future, we will consider to use the conservative interpolation method described in [15]
with a octree-based mesh generation algorithm in order to allow remeshing for more complex multiphase
�ow problems.
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