
 1

Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona, Spain, July 9-13, 2018

ICCFD10-057

GPUs Accelerated Three-Dimensional RANS Solver for

Aerodynamic Simulations on Multiblock Grids

M. T. Nguyen*, P. Castonguay**, E. Laurendeau***

Corresponding author: minh-tuan.nguyen@polymtl.ca

* Postdoctoral fellow, Department of Mechanical Engineering, Polytechnique Montréal,

Montreal, Quebec, Canada.
** Engineering Specialist, Advanced Aerodynamics Department, Bombardier

Aerospace, Montreal, Quebec, Canada.
*** Professor, Department of Mechanical Engineering, Polytechnique Montréal,

Montreal, Quebec, Canada.

Abstract: In this paper, graphical processing units (GPUs) are leveraged to accelerate Bombardier’s

Full Aircraft Navier-Stokes Solver (FANSC), a finite volume, cell-centered RANS flow solver for

multiblock structured grids. The efficiency of different parallel smoothers on GPUs is studied, in the

context of solving the RANS equations with a non-linear full approximation storage (FAS) multigrid

scheme. Many variants of parallel red-black Gauss-Seidel and Jacobi solvers are investigated and their

efficiency compared against sequential algorithms such as the lower-upper symmetric Gauss-Seidel

solver on both CPUs and GPUs. Parametric studies on three-dimensional aircraft configurations are

performed to identify the optimal smoothers and determine the optimal number of smoothing iterations

on each multigrid level. The results show that the best runtime with the GPU code is obtained using a

weaker smoother with more sweeps per multigrid level whereas the best runtime with the CPU code is

obtained using a stronger smoother with fewer sweeps per multigrid level. Despite using a weaker

smoother and therefore more iterations to converge to the final solutions, the GPU accelerated code is

significantly faster than the CPU code.

Keywords: GPU, Multigrid, Implicit smoothers, RANS.

1 Introduction

In the past few years, Graphical Processing Units (GPUs) have increasingly played an important role

in the world of high performance computing (HPC) due to their higher floating-point throughput,

memory bandwidth and power efficiency compared to traditional CPU processors. In the field of

Computational Fluid Dynamics (CFD) and more specifically external aerodynamics, many groups have

successfully leveraged GPUs to accelerate simulations. The most impressive results have been obtained

when accelerating high-order methods, which are well suited for GPUs due to their high ratios of

floating point operations to memory operations. For example, Castonguay et al. [1] showed that using

a high-order, compressible viscous flow solver for unstructured grids, very high computational

throughput can be achieved. On a cluster where each node was equipped with 2 Intel Xeon x5670 and

1 Tesla C2070, their CPU+GPU code running on 16 nodes achieved almost a one order of magnitude

speedup compared to the CPU-only code running on the same number of nodes. Other researchers have

shown similar levels of performance when leveraging GPUs to accelerate high-order methods [2].

Although high order schemes have the potential to reduce the computational cost of simulations when

 2

low error levels are required, they are generally less robust and require much effort to implement

compared to low order schemes. Additionally, the use of low order schemes (usually 2nd order of

accuracy) is more widely used in industrial applications due to their excellent robustness for a vast

range of applications and their efficiency when engineering levels of accuracy are required. Fortunately,

even low-order methods are well-suited for GPUs. The high number of mesh points required to

accurately simulate flows over complex geometries leads to a large amount of parallelism that can be

exploited on GPUs. Furthermore, since the performance of most low-order CFD codes is limited by the

memory subsystem, they can benefit from the high memory bandwidth of GPUs. For these reasons,

many researchers have successfully leveraged GPUs to simulate fluid flows using low order schemes

and showed dramatically improved performance compared with conventional CPU implementations

[3-6].

Unfortunately, several studies compared the performance of CPU and GPU codes using identical

algorithms, which were often chosen to favor the GPU code. For example, many studies relied on the

use of explicit schemes which are rarely used in low-order CFD codes used for production [7, 8]. In

fact, many production codes rely exclusively on implicit methods where linear solvers are required and

where sequential algorithms such as Gauss-Seidel and Incomplete LU (ILU) are used.

In this study, GPUs are leveraged using the parallel programming language CUDA to accelerate

Bombardier Full Aircraft Navier-Stokes Solver (FANSC). The original version of FANSC uses many

sequential algorithms such as the lower-upper symmetric Gauss-Seidel (LUSGS) solver used as a

smoother in the non-linear multigrid scheme [9]. Those sequential algorithms are inefficient on

massively parallel architectures such as GPUs. The main objective of this work is to study and identify

parallel algorithms that are efficient on GPUs and have the potential to replace the sequential ones.

More specifically, the efficiency of different smoothers in the context of solving the RANS equations

with a non-linear multigrid scheme is studied. For example, many variants of red-black Gauss-Seidel

and Jacobi solvers are developed and their efficiency studied on both CPUs and GPUs. Parametric

studies for three-dimensional (3D) wing configurations are carried out to determine the optimal settings

for GPU and CPU codes in terms of the type of implicit smoothers and the number of sweeps to use

within each multigrid level (MG) sequence.

2 Bombardier’s Full Aircraft Navier-Stokes Code (FANSC)

The flow solver used in this work is FANSC, which solves the RANS equations on multi-block

structured grids [10] using a second-order, cell centered finite-volume method with a matrix dissipation

scheme (MATD) [11]. The mean-flow governing equation can be expressed as

𝑉

𝜕𝑾𝑐

𝜕𝑡
= −𝑹(𝑾𝑐), (1)

where 𝑾𝑐 = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝑝𝐸] is the average state vector of conservative flow variables in the cell

with volume 𝑉 and 𝑹 is the residual vector which includes contributions from the convective, viscous

and dissipative fluxes. The subscript c denotes that the flow states are written using conservative

variables. In this work, the steady-state equations are considered and pseudo-time stepping is not used,

hence the temporal derivative in equation (1) is omitted. The flow states can be updated using inexact

Newton iterations

[

𝜕�̅�

𝜕𝑾𝑐
]

𝑛

𝛿𝑾𝑐
𝑛+1 = −𝑹(𝑾𝑐

𝑛), (2)

where

 𝛿𝑾𝑐
𝑛+1 = 𝑾𝑐

𝑛+1 − 𝑾𝑐
𝑛. (3)

and [
𝜕�̅�

𝜕𝑾𝑐
] is an approximation of the true Jacobian matrix [

𝜕𝑹

𝜕𝑾𝑐
]. More specifically, a first order

discretization of the dissipation fluxes and the thin-shear layer (TSL) approximation of the viscous

 3

fluxes are used when constructing [
𝜕�̅�

𝜕𝑾𝑐
]. To accelerate the convergence to the steady-state solution, a

Full Approximation Storage (FAS) multigrid scheme [12] with W-cycles is employed in a recursive

manner. On each grid level, the linear system in equation (2) is solved approximately using a fixed

number of iterations of a smoother such as Jacobi or Gauss-Seidel on each block of the mesh. The

description of different types of implicit smoothers that work efficiently on CPU and GPU architectures

will be discussed in the next section 3.

The Spalart–Allmaras (SA) one-equation turbulence model [13] is employed. The discretization of SA

equation analogously follows [13] in which the advection terms are discretized using a first order

upwind scheme and the central finite difference method is used to discretize the diffusive terms. The

non-linear turbulence transport equation is solved separately from the mean flow equations in a

segregated approach. The SA equation is solved only on the finest grid. The turbulence effect of eddy

viscosity is transferred to the coarse levels through a restriction process. To solve the linear system that

arise when using Newton’s method on the SA equation, an alternating direction implicit (ADI) scheme

is used for the CPU code while a Jacobi solver is used for the GPU code.

3 Implicit smoothers

In this section, various solvers used as smoothers in the non-linear multigrid scheme are summarized.

They consist of many sequential algorithms such as the lower-upper symmetric Gauss-Seidel (LUSGS)

that work efficiently on CPU architectures and many variants of Gauss-Seidel and Jacobi solvers that

are efficient on GPUs. The approximate Jacobian matrix [
𝜕�̅�

𝜕𝑾𝑐
] can be written as:

[

𝜕�̅�

𝜕𝑾𝑐
] = [𝐷𝑐] + [𝐿𝑐] + [𝑈𝑐], (4)

where [𝐷𝑐] represents the diagonal terms of the matrix, [𝐿𝑐] the upper triangular terms and [𝑈𝑐] the

lower-triangular terms. The diagonal, upper and lower block of approximate Jacobian matrix are given

as follows:

[𝐷𝑐]𝑛 =

1

2
|𝐴𝑐|

𝑖+
1
2

+
1

2
|𝐴𝑐|

𝑖−
1
2

+ 𝐴𝑐𝑖+
1
2

𝑣 + 𝐴𝑐𝑖−
1
2

𝑣 , (5)

[𝑈𝑐]𝑛 =

1

2
𝐴𝑐𝑖+

1
2

−
1

2
|𝐴𝑐|

𝑖+
1
2

− 𝐴𝑐𝑖+
1
2

𝑣 ,
(6)

[𝐿𝑐]𝑛 = −

1

2
𝐴𝑐𝑖−

1
2

−
1

2
|𝐴𝑐|

𝑖−
1
2

− 𝐴𝑐𝑖−
1
2

𝑣 .
(7)

where |𝐴𝑐|, 𝐴𝑐 and 𝐴𝑐
𝑣 are the absolute, convective and the viscous flux Jacobian, respectively.

The LUSGS smoother when applied to equation (2) involves executing the following two steps for a

fixed number of sweeps

 [𝐷𝑐]𝑛𝛿𝑾𝑐
𝑘+1/2

= −𝑹(𝑾𝑐
𝑛) − [𝐿𝑐]𝑛𝛿𝑾𝑐

𝑘+1/2
− [𝑈𝑐]𝑛𝛿𝑾𝑐

𝑘 , (8)

 [𝐷𝑐]𝑛𝛿𝑾𝑐
𝑘+1 = −𝑹(𝑾𝑐

𝑛) − [𝑈𝑐]𝑛𝛿𝑾𝑐
𝑘+1 − [𝐿𝑐]𝑛𝛿𝑾𝑐

𝑘+1/2
.

The diagonal block matrixes are first inverted and their inverse is stored in memory. To reduce the

storage overhead, the upper and lower block of the flux Jacobian matrices are computed on the fly.

Unlike in the original presentation of Jameson and Yoon [14] , no approximation is made regarding the

spectral radius of the approximate Jacobian matrix. Although there is parallelism available during the

forward and backward sweeps for all cells where i+j+k is constant, the sweeps are accomplished

following the natural order to improve cache reuse.

A variant of the LUSGS approach described above was proposed by Rossow [15] and will be denoted

LUSGS-PRIM. Rossow shows that by writing the approximate Jacobian matrix using primitive

variables 𝑾𝑝 = [𝜌, 𝑢, 𝑣, 𝑤, 𝑝] instead of the conservative variables 𝑾𝑐, the calculation of off-diagonal

terms in the Jacobian matrix is greatly simplified. The multi-symmetric sweep for LUSGS-PRIM are

described in equation (9).

 4

[𝐷𝑝]

𝑛
𝛿𝑾𝑝

𝑘+1/2
= − [

𝜕𝑾𝑝

𝜕𝑾𝑐
] 𝑹(𝑾𝑝

𝑛) − [𝐿𝑝]
𝑛

𝛿𝑾𝑝
𝑘+1/2

− [𝑈𝑝]
𝑛

𝛿𝑾𝑝
𝑘 ,

[𝐷𝑝]
𝑛

𝛿𝑾𝑝
𝑘+1 = − [

𝜕𝑾𝑝

𝜕𝑾𝑐
] 𝑹(𝑾𝑝

𝑛) − [𝑈𝑝]
𝑛

𝛿𝑾𝑝
𝑘+1 − [𝐿𝑝]

𝑛
𝛿𝑾𝑝

𝑘+1/2
.

(9)

where [
𝜕𝑾𝑝

𝜕𝑾𝑐
] represents the transformation matrix from the conservative into primitive variables. The

diagonal, lower and upper block of the flux Jacobian matrix in primitive variables are defined as

[𝐷𝑝] = [

𝜕𝑾𝑝

𝜕𝑾𝑐
] [𝐷𝑐] [

𝜕𝑾𝑐

𝜕𝑾𝑝
],

[𝐿𝑝] = [
𝜕𝑾𝑝

𝜕𝑾𝑐
] [𝐿𝑐] [

𝜕𝑾𝑐

𝜕𝑾𝑝
],

[𝑈𝑝] = [
𝜕𝑾𝑝

𝜕𝑾𝑐
] [𝑈𝑐] [

𝜕𝑾𝑐

𝜕𝑾𝑝
].

(10)

One significant disadvantages of the LUSGS algorithms given by equations (8) and (9) is that they are

sequential. In other words, the change in the state variable of one cell can only be calculated once the

change in the state variable of the previous cell is known. Sequential algorithms are not suited for GPU

architectures and hence, alternative to these schemes were sought for. The simplest parallel smoother

will be denoted by LUJACOBI-PRIM and involves using pointwise Jacobi iterations based on primitive

variables. The change in the primitive variables is computed as

[𝐷𝑝]

𝑛
𝛿𝑾𝑝

𝑘+1 = − [
𝜕𝑾𝑝

𝜕𝑾𝑐
] 𝑹(𝑾𝑛) − [𝐿𝑝]

𝑛
𝛿𝑾𝑝

𝑘 − [𝑈𝑝]
𝑛

𝛿𝑾𝑝
𝑘 . (11)

With the LUJACOBI-PRIM scheme, each cell can be treated independently, which makes it very well

suited for GPUs. Another parallel variant of the LUSGS-PRIM smoother can be written as

[𝐷𝑝]

𝑛
𝛿𝑾𝑝

𝑘+1/2
= − [

𝜕𝑾𝑝

𝜕𝑾𝑐
] 𝑹(𝑾𝑛) − [𝐿𝑝]

𝑛
𝛿𝑾𝑝

𝑘 + [𝑈𝑝]
𝑛

𝛿𝑾𝑝
𝑘−1/2

,

[𝐷𝑝]
𝑛

𝛿𝑾𝑝
𝑘+1 = − [

𝜕𝑾𝑝

𝜕𝑾𝑐
] 𝑹(𝑾𝑛) − [𝑈𝑝]

𝑛
𝛿𝑾𝑝

𝑘+1/2
+ [𝐿𝑝]

𝑛
𝛿𝑾𝑝

𝑘 .

(12)

Here, the contributions of lower and upper flux Jacobian are taken from the previous symmetric sweep.

The smoother described by equation (12) will be referred to as Lagged-LUSGS-PRIM. With this

smoother, dependencies within the forward and backward sweeps are removed, hence each step is data

parallel.

Despite the fact that the LUJACOBI-PRIM and Lagged-LUSGS-PRIM smoothers are parallel, they are

considered weak smoothers compared with LUSGS-PRIM. Another parallel variant of the LUSGS-

PRIM smoother can be obtained by updating the cells following the red-black check board pattern

shown in Figure 1-a, instead of following the natural numbering of the cells. This pattern allows the

computation of 𝜕𝑾𝒑 in parallel for all cells of the same color using Jacobi iterations. This smoother

will be referred as RB-PRIM.

(a) RB-PRIM (b) RB-LINE-K-PRIM (c) RB-PLANE-JK-PRIM

Figure 1: Various types of Red-Black schemes.

The native implementation of red-black Gauss Seidel (Figure 1-a), however, suffers from the poor

Plane i

Plane i-1

j

k

Plane i+1

j
Plane i

Plane i-1

j

k

Plane i+1

Plane i

Plane i-1

j

k

Plane i+1

 5

memory access pattern for GPU architectures. Indeed, 32 consecutive threads in a warp access the data

with a stride of two for both load and store operations and which leads to a waste of the available

bandwidth.

Several optimization techniques have been suggested to improve the access patterns of red-black Gauss-

Seidel iterations including the reordered pattern combined with the reuse data via the shared memory

or read only texture memory [16]. However, these techniques were not considered since they would

have negatively impacted the performance of other functions in FANSC. In this study, the data access

pattern is improved by coloring the grid lines and the grid planes following the red-black pattern, as

shown in Figure 1b) and 1c). As for the traditional check-board red-black GS smoother, all cells of the

same color are updated simultaneously. These smoothers, although potentially weaker than the

checkboard red-black Gauss-Seidel, have more efficient memory access patterns. They will be referred

to as the red-black line Gauss-Seidel smoother based on primitive variables (RB-LINE-PRIM) and the

red-black plane Gauss-Seidel smoother based primitive variables (RB-PLANE-PRIM).

The efficiency of RB-LINE-PRIM and RB-PLANE-PRIM smoothers is highly dependent on the

orientation of the lines and the planes. The RB-LINE-I-PRIM smoother corresponds to the case where

the red and black lines are aligned with the i-direction, the RB-LINE-J-PRIM smoother when lines are

aligned with the j-direction and the RB-LINE-K-PRIM smoother when lines are aligned with the k-

direction. Similarly, the RB-PLANE-JK-PRIM smoother corresponds to the case where the red and

black planes are the jk-planes, the RB-PLANE-IK-PRIM smoother where the planes are the ik-planes

and the RB-PLANE-IJ-PRIM smoother where the planes are the ij-planes. Figure 1b) illustrates the cell

coloring for the RB-LINE-K-PRIM smoother in which the red-black lines follow the k direction. Figure

1(c) shows the RB-PLANE-JK-PRIM in which the odd and even jk-planes (i = const) are colored in red

and black. In FANSC, the data is stored following the natural numbering of the cells, hence only the

RB-LINE-I-PRIM and RB-PLANE-IJ-PRIM have efficient memory access patterns. An efficient

memory access pattern can be achieved with the other line and plane smoothers by swapping the i-j-k

indices prior to running the case. The impact of the choice of i-j-k directions on the convergence of the

RANS solver will be revisited in section 5.

Table 1 summarizes the smoothers that will be studied for the CPU and GPU codes. Although there

are many more linear solvers that can be used to solve the linear system in equation (2), the ones

presented here are simpler to implement and as shown in the next sections, can be effective smoother

in a non-linear multigrid algorithm for the RANS equations.

 Table 1. Implicit smoothers for CPU and GPU codes

CPU code GPU code

1. LUSGS-PRIM

2. LUSGS

3. LUJACOBI-PRIM

4. Lagged LUSGS-PRIM

1. LUJACOBI-PRIM

2. Lagged LUSGS-PRIM

3. RB-LINE-PRIM

4. RB-PLANE-PRIM

5. RB-PRIM

4 GPU Implementation

FANSC is parallelized on either multi-core CPUs or GPGPU. For the CPU code, the coarse-grain

parallelism is implemented using the Message Passing Interface (MPI), and the implementation details

are discussed in reference [17]. The CUDA programming language is used to implement the GPU

version of FANSC. The simulations presented in this study were run on the Tesla K20 GPU that

comprises a single chip GK110 with 13 streaming multi-processors (SMs) where each SM features 192

CUDA cores for a total of 2496 CUDA cores. The Tesla K20 GPU has a peak double precision floating

point performance of 1.17 Tflops and a peak memory bandwidth of 208 Gb/s with ECC enabled. The

CPU simulations were run on compute nodes each equipped with 2 Xeon E5-2670 v1 CPUs. The peak

memory bandwidth per compute node for the CPUs is 102.4 GB/s. A summary of the hardware

specifications for the CPUs and GPUs used in this study is presented in Table 2.

 6

Table 2. Summary of the hardware specifications for the CPUs and GPUs used in this study

 Xeon E5-2670 CPU Kepler K20 GPU

Number of CPUs/GPUs per

computing node
2 2

Performance per CPU/GPU
2.6GHz, 8 cores, 16

threads

0.706 GHz, 13 SMs, 192 CUDA

cores/SM

Theoretical peak performance per

node
332.8 GFlop/s (DP) 2240 GFlop/s (DP)

Peak memory bandwidth per

CPU/GPU
51.2 Gb/s 208 Gb/s (ECC off)

Peak memory bandwidth per node 102.4 Gb/s 416 Gb/s (ECC off)

Power per CPU/GPU
Thermal design power:

115 W

Board power: 225 W

Idle power: 25 W

Released date Q1'2012 Q4'2012

For the GPU code, two levels of parallelism are employed: fine-grained data parallelism for the

computation within a grid block and coarse-grained parallelism for computation across multiple grid

blocks. Fine-grained parallelism is implemented by associating one CUDA thread per cell, which

implies that one thread typically needs to update five variables (the five states in vector 𝑾𝑐 or 𝑾𝑝).

This approach creates more instruction-level parallelism and therefore more concurrent arithmetic

operators and memory access in-flight per thread but it leads to a higher number of registers used per

thread. For the coarse-grained parallelism, one asynchronous CUDA stream is used per block in the

grid, which allows to overlap computations across multiple grid blocks, and therefore increase

occupancy.

In FANSC, all data is stored using the Structures of Arrays (SoA) data structure to allow efficient

coalesced memory accesses. Padding between the five variable fields ensures that the global memory

fetches are fully aligned and coalesced, as shown in Figure 2.

Figure 2: FANSC data storage layout in GPU global memory within one grid block.

5 Results

5.1 Impact of grid block orientations on red-black line and plane smoothers

In this section, the efficiency of the RB-LINE-PRIM and RB-PLANE-PRIM smoothers is studied on

the GPU. More specifically, the impact of coloring the lines or the planes along different i,j,k directions

21 22 23 24 25

…

0 1 2 3 4

j

i

Plane k = 0

26 27 …

Plane k = 1

0 1 2 … 26 27 …

0 1 2 … 26 27 …

0 1 2 … 26 27 …

0 1 2 … 26 27 …

0 1 2 … 26 27 …

Field 1

Field 2

Field 3

Field 4

Field 5

Padding

Padding

Padding

Padding

Padding

128 byte

boundary

 7

is investigated since it is known [18, 19] that the efficiency of those smoothers depends on the

orientation of the colorings relative to the flow direction. Furthermore, since the memory access pattern

is better for line colorings in the i-direction and plane colorings along i-j planes, the orientation of the

i, j, and k directions are permuted to find the smoother with not only the best convergence rate but also

with the lowest time per iteration. The most efficient smoothers from this section will be used as the

representative smoothers for RB-LINE-PRIM and RB-PLANE-PRIM smoothers in section 5.2.

For both the RB-LINE-PRIM and RB-PLANE-PRIM smoothers, there are 3 possible colorings of the

lines and planes respectively, leading to the following 6 smoothers: RB-LINE-I-PRIM, RB-LINE-J-

PRIM, RB-LINE-K-PRIM, RB-PLANE-JK-PRIM, RB-PLANE-IK-PRIM and RB-PLANE-IJ-PRIM.

The studies are carried out on two different test cases. The first case is the transonic flow over the

Onera-M6 wing, at Mach 0.84, angle of attack 3.06 and Reynolds number 11.72x106. The second case

is the transonic flow over the DPW-W1 wing, at Mach 0.76, angle of attack 0.61 and Reynolds number

5x106. A non-linear multigrid scheme with 3 levels is used to solve the RANS equations. The simulation

is stopped when the L2-norm of the density residual has dropped by 6 orders of magnitude. The grid

over the Onera-M6 geometry contains 1.3M cells on the finest level (level 0), 161K cells on the middle

level (level 1) and 20K cells on the coarse level (level 2). The mesh was partitioned in 32 blocks for

both the CPU and GPU runs to obtain a perfect load balancing. The surface mesh on the ONERA-M6

geometry is shown in Figure 3, along with the pressure coefficient contours of the converged solution.

The grid over the DPW-W1 contains 2.3M cells on the finest level, 288K cells on the middle level and

36K cells on the coarsest level. The DPW-W1 mesh was portioned in 72 blocks to obtain a load

balancing of 1.04 on 16 cores. The surface mesh on the DPW-W1 geometry is shown in Figure 4, along

with the pressure coefficient contours of the converged solution. The number of iterations for the

smoothers was set to 8, 8 and 10 on the finest level, the middle level and the coarsest level, respectively.

These numbers are found to guarantee the convergence to steady solutions for all 6 implicit smoothers

on both ONERA-M6 and DPW-W1 simulations.

Structured grid of OMERA-M6 Cp distribution

Figure 3: ONERA-M6 wing geometry, structure grid and pressure coefficient contours.

Structured grid of DPW-W1 Cp distribution

Figure 4: DPW-W1 wing geometry, structure grid and pressure coefficient contours.

Figure 5 shows the total time and total number of nonlinear MG iterations required to reach the steady

solution along with time per MG cycle for the ONERA-M6 and DPW-W1 geometries. The unpermuted

orientation of the i,j,k axes follows the convention in Figure 1: the spanwise direction is assigned to the

k axis, the chordwise direction is assigned to the i axis, and the direction normal to the wing surface is

set to the j axis. Figure 5-(a),(b) show that RB-LINE-K-PRIM and RB-PLANE-IK-PRIM require the

lowest number of non-linear MG iterations to reduce the residual by 6 orders of magnitude for both

ONERA-M6 and DPW-W1 cases but unfortunately, those smoothers do not have the lowest time per

iteration, as shown in Figure 5-(e),(f). This is explained by the fact that the RB-LINE-K-PRIM and RB-

 8

PLANE-IK-PRIM smoothers have inefficient uncoalesced memory access patterns due to the data

layout used in FANSC (i-direction first, j-direction second, k-direction third). On the other hand, the

RB-LINE-I and RB-PLANE-IJ smoothers have fully coalesced memory access patterns, which explain

why they have the lowest time per iteration.

Fortunately, it is possible to permute the orientation of the i,j,k axes to improve the memory access

patterns of the RB-LINE-K and RB-PLANE-IK-PRIM smoothers. By permuting the (i, j, k) orientations

to (k, i, j), it is possible to obtain smoothers with the best convergence rate and good memory access

patterns. Those line and plane smoothers are referred to as RB-LINE-I-SWAP-K2I and RB-PLANE-

IJ-SWAP-J2K. Figure 5-(c)-(d) shows that those smoothers have the best total run time. For the

remainder of this paper, they will simply be referred to as RB-LINE and RB-PLANE smoothers.

ONERA-M6 DPW-W1

(a) (b)

(c) (d)

(e) (f)

Figure 5: The effect of multiblock grid orientation on the GPU solver performance for ONERA-M6

and DPW-W1 wing geometries with 8, 8 and 10 sweeps for finest, coarser and coarsest grid, (a), (b):

Number of MG cycle; (c), (d): Total simulation time; (e), (f): Computing time per MG cycle.

5.2 Parametric studies to identify the optimal implicit smoothers for the CPU and

GPU codes

410

489

405 405 410

489
524

405

490 490
524

405

0

150

300

450

600

M

G
 c

yc
le

s

380
342 327 327

380
342 352 334 353 353 352 334

0

150

300

450

600

M

G
 c

yc
le

s

205

260
216 205 221

263 279

200 212

269 269

181

0

100

200

300

400

500

To
ta

l t
im

es
 (

s)

349
326 312 302

368
331 340

305
282

342 323

268

0

100

200

300

400

500

To
ta

l t
im

e
s

(s
)

0.50 0.53 0.53 0.51 0.54 0.54 0.53 0.49
0.43

0.55 0.51
0.45

0

0.3

0.6

0.9

1.2

1.5

T
im

e
 p

e
r

M
G

 c
y

cl
e

 (
s)

0.92 0.95 0.95 0.92 0.97 0.97 0.97 0.91
0.80

0.97 0.92
0.80

0

0.3

0.6

0.9

1.2

1.5

Ti
m

e
 p

e
r

M
G

 c
y

cl
e

 (s
)

 9

Parametric studies are now carried out on the ONERA-M6 and DPW-W1 test cases presented in Section

5.1. Various combinations of implicit smoothers and number of sweeps per MG level are studied to

identify the combination that leads to the lowest simulation time with the CPU and GPU codes. The

different type of implicit smoothers used for the CPU and GPU codes for the parameter study are shown

in Table 1. The implicit smoothers used with the CPU code consist of the LUJACOBI-PRIM, Lagged

LUSGS-PRIM, LUSGS-PRIM and LUSGS smoothers. For the GPU code, the LUJACOBI-PRIM,

Lagged LUSGS-PRIM, RB-LINE-PRIM, RB-PLANE-PRIM and RB-PRIM smoothers are used. As

mentioned in Section 5.1, the RB-LINE-PRIM and RB-PLANE-PRIM smoothers correspond to the

RB-LINE-I-PRIM and RB-PLANE-IJ-PRIM on a swapped (i, j, k) to (k, i, j) grid.

Three levels of nonlinear MG are used to solve the RANS by reducing the L2-norm of the density

residual by 6 orders of magnitude. The number of sweeps on each multigrid level is varied as shown in

Figure 6. On the finest level (level 0) and middle level (level 1), seven different numbers of sweeps are

considered, varying from 2 to 14 with interval of 2. On the coarsest level (level 2), seven different

numbers of sweeps are considered, varying from 10 to 40 with interval of 5. The number of sweeps on

the coarsest level is higher since the efficiency of multigrid schemes can be greatly improved by having

an accurate coarsest grid solution. To limit the number of cases to run, the number of sweeps on the

coarse levels (levels 1 and 2) is restricted to be higher than the number of sweeps on a finer level. The

total number of combinations of sweeps per implicit smoother is thus 183. Since a total of 9 different

smoothers are studied, a total of 1647 RANS simulations were performed.

Figure 6: Number of sweeps per MG level settings for parameter study to obtain the optimal implicit
smoother for CPU and GPU code.

For the CPU code, the solution is initialized by first performing 50 iterations on the coarsest level only

followed by 50 iterations on the two coarsest levels (levels 1 and 2). It has been found that this strategy

leads to lower overall run times with the CPU code. On the GPU code, no such initialization is

performed since it was not found to improve the overall run times. This is explained by the fact that

performance of the GPU code is lower on coarse levels. Figure 7 shows the speedup between 1 GPU

and 2 CPUs for one iteration on the different MG levels when using the lagged LUSGS-PRIM solver

with 8-8-10 sweeps. It is seen that on the coarser levels, the GPU loses some of its advantage over the

CPUs, because of the limited parallelism available.

Figure 7: Speedup of 1 GPU versus 2 CPUs for one iteration on the different MG levels. The same

solver configurations with 8, 8 and 10 sweeps for finest, coarser and coarsest grid were used on the

DPW-W1 wing.

It should be mentioned that a similar parametric study was performed using only 1 and 2 MG levels,

2

8

10 40

14

15 40

2

10 40
+5 +5 +5

Finest mesh Sweeps

Coarser mesh sweeps

Coarsest mesh sweeps

8

14

15 40

8

10 40

+2

+5 +5

14

14

15 40
+5

+2 +2

+2

Case 1:47 Case 121:146 Case 178:183

+2

2, 4, 6, 14

2, 4, 6, 14

10, 15, 40

Case

1:7

Case

42:47

Case

22:28

Case

141:146

Case

121:127

Case

178:183

2.7x
2.5x

2.1x

1.0x 1.0x 1.0x

0

0.5

1

1.5

2

2.5

3

3.5

4

1MG 2MG 3MG

Lagged LUSGS-PRIM

Sp
e

ed
u

p
 p

e
r

M
G

 c
y

cl
e

1 GPU 2 CPUs (16 cores)

 10

but it was found that the run times were higher than when using 3 MG levels, for both the CPU and

GPU code.

The GPU results are obtained using a single Kepler K20 while the CPU results are obtained using the

16 cores from two Xeon E5-2670 CPUs. The simulation times and the total number of iterations

required to reduce the residual by six orders of magnitude using different combinations of the number

of sweeps and implicit smoothers for the ONERA-M6 and DPW-W1 wings are shown in Figure 8 and

Figure 9, respectively. Each point in those figures corresponds to a fully converged RANS simulation

with FANSC. Some combinations of number of sweeps and implicit smoother did not converge, which

can be expected when using a non-linear multigrid scheme with insufficient smoothing on some levels.

For example, in Figure 8-(a),(b), using the LUJACOBI-PRIM and Lagged LUSGS-PRIM smoothers

leads to divergence when using less than 6 sweeps on the finest level.

(a) GPU computing time (b) CPU computing time

(c) GPU number of MG cycles (d) CPU number of MG cycles

Figure 8: Simulation time and number of MG cycles for different combinations of implicit smoothers
and sweeps for ONERA-M6 wing.

As expected, increasing the number of sweeps on each MG level reduces the number of iterations

required to converge to the steady-state solution however, using more sweeps on each MG level also

increases the time per iteration. For each type of implicit smoother, there exists an optimal number of

sweeps on each level that leads to a good compromise between the number of iterations and time per

iteration. In general, the weaker smoothers such as LUJACOBI-PRIM and Lagged LUSGS-PRIM

provide good performance when using a large number of sweeps. This can be seen for both CPU and

GPU codes. Interestingly, the performance of LUJACOBI-PRIM and Lagged LUSGS-PRIM with a

high number of sweeps even surpasses the performance of the other stronger smoothers with a lower

number of sweeps.

1 48 88 121 147 166 183

0

250

500

750

1000

1250

1500

14 FS12 FS10 FS8 FS6 FS4 FS

S
in

g
le

 G
P

U
 s

im
u

la
ti

o
n

 t
im

e
 (

s)

Case Study

 LUJACOBI-PRIM

 Lagged LUSGS-PRIM

 RB-PRIM

 RB-LINE-PRIM

 RB-PLANE-PRIM

2 FS

Best computing time

1 48 88 121 147 166 183

0

250

500

750

1000

1250

1500

14 FS12 FS10 FS8 FS6 FS4 FS

 2
 C

P
U

s
si

m
u

la
ti

o
n

 t
im

e
(s

)

Case Study

 LUJACOBI-PRIM

 Lagged LUSGS-PRIM

 LUSGS-PRIM

 LUSGS

2 FS

Best computing time

1 48 88 121 147 166 183

0

250

500

750

1000

1250

1500

14 FS12 FS10 FS8 FS6 FS4 FS

S
in

g
le

 G
P

U
 n

u
m

b
er

 o
f

it
e
ra

ti
o

n
s

Case Study

 LUJACOBI-PRIM

 Lagged LUSGS-PRIM

 RB-PRIM

 RB-LINE-PRIM

 RB-PLANE-PRIM

2 FS

Best number of iterations

1 48 88 121 147 166 183

0

250

500

750

1000

1250

1500

14 FS12 FS10 FS8 FS6 FS4 FS

 2
 C

P
U

s
n

u
m

b
er

 o
f

it
e
ra

ti
o
n

s

Case Study

 LUJACOBI-PRIM

 Lagged LUSGS-PRIM

 LUSGS-PRIM

 LUSGS

2 FS

Best number of iterations

 11

(a) GPU computing time (b) CPU computing time

(c) GPU number of MG cycles (d) CPU number of MG cycles

Figure 9: Simulation time for different combinations of implicit smoothers and sweeps (DPW-W1).

For the CPU code, when using the stronger smoothers such as LUSGS and LUSGS-PRIM, increasing

the number of sweeps on the finest grid show mild or even no noticeable improvement on the

convergence (Figure 8 (d) and Figure 9 (d)). It can be hypothesized that solving the linear system in

Equation (2) to a tighter tolerance is not required to obtain good convergence with the inexact Newton

method. This mild improvement in convergence rate does not compensate for the higher time per

iteration due to the larger number of sweeps on each MG cycles.

Figure 8(b) and Figure 9(b) also demonstrate the advantage of using the primitive form of the flux

Jacobian matrix instead of the conservative form. For the 183 study cases, the LUSGS-PRIM

outperforms the LUSGS in term of computing time whereas the number of MG cycles are comparable,

as expected. For the GPU code, the smoothers RB-LINE-PRIM and RB-PLANE-PRIM which are

derivatives of the RB-PRIM smoother show comparable convergence to the RB-PRIM smoother even

though they are considered as weaker smoothers. In addition, due to their fully coalesced memory

access patterns, the RB-LINE-PRIM and RB-PLANE-PRIM smoothers outperform the RB-PRIM

smoother in term of computing time. Recall that in section 5.1., the orientation of the i,j,k axes was

chosen to obtain good convergence rates as well as good memory access patterns.

The combinations of smoother and number of sweeps that led to the lowest run times are shown in

Table 3 and Table 4 for the CPU and GPU codes respectively. For the ONERA-M6 wing simulation,

the best scheme on the GPU is the RB-PLANE-IJ smoother with 6-6-10 sweeps which requires 156.36s

while the best scheme on the CPU is the LUSGS-PRIM smoother with 4-4-25 sweeps which requires

380.04s. Thus, for the ONERA-M6 case, the single GPU code is 2.43x faster than the two-CPU code

at their optimal settings. For the DPW-W1 wing simulation, the best scheme on the GPU is the RB-

PLANE-IJ smoother with 6-6-10 sweeps which requires 224.49s while the best scheme on the CPU is

1 48 88 121 147 166 183

0

500

1000

1500

2000

2500

14 FS12 FS10 FS8 FS6 FS4 FS

S
in

g
le

 G
P

U
 s

im
u

la
ti

o
n

 t
im

e
 (

s)

Case Study

 LUJACOBI-PRIM

 Lagged LUSGS-PRIM

 RB-PRIM

 RB-LINE-PRIM

 RB-PLANE-PRIM

2 FS

Best computing time

1 48 88 121 147 166 183

0

500

1000

1500

2000

2500

14 FS12 FS10 FS8 FS6 FS4 FS

 2
 C

P
U

s
si

m
u

la
ti

o
n

 t
im

e
(s

)

Case Study

 LUJACOBI-PRIM

 Lagged LUSGS-PRIM

 LUSGS-PRIM

 LUSGS

2 FS

Best computing time

1 48 88 121 147 166 183

0

500

1000

1500

2000

2500

14 FS12 FS10 FS8 FS6 FS4 FS

S
in

g
le

 G
P

U
 n

u
m

b
er

 o
f

it
e
ra

ti
o

n
s

Case Study

 LUJACOBI-PRIM

 Lagged LUSGS-PRIM

 RB-PRIM

 RB-LINE-PRIM

 RB-PLANE-PRIM

2 FS

Best number of iterations

1 48 88 121 147 166 183

0

500

1000

1500

2000

2500

14 FS12 FS10 FS8 FS6 FS4 FS

 2
 C

P
U

s
n

u
m

b
er

 o
f

it
e
ra

ti
o

n
s

Case Study

 LUJACOBI-PRIM

 Lagged LUSGS-PRIM

 LUSGS-PRIM

 LUSGS

2 FS

Best number of iterations

 12

the LUSGS-PRIM smoother with 2-2-10 sweeps which requires 499.6s. Therefore, the single GPU code

is 2.23x faster than the two-CPU code at their optimal settings for the DPW-W1 wing.

The obtained speedup when using 1 GPU relative to 2-CPU is comparable to the ratio of maximum

memory bandwidth between the Tesla K20 (208 Gb/s with ECC off) and two Xeon E5-2670 CPUs

(102.4 Gb/s). Since the performance of FANSC is mostly limited by the memory bandwidth, these

results are in-line with expectations.

Table 3. Best computing time and corresponding scheme settings for CPU and GPU codes (ONERA-

M6)

 Implicit smoothers
Initial MG

cycles

Ramping MG

cycles

Number of sweeps on 3

MG levels
Time (s)

CPU

LUJACOBI-PRIM 0 449 14-14-25 560.55

Lagged LUSGS-

PRIM
100 364 8-8-10 430.35

LUSGS 100 376 4-4-10 446.60

LUSGS-PRIM 100 366 4-4-25 380.04

GPU

LUJACOBI-PRIM 0 449 14-14-15 233.56

Lagged LUSGS-

PRIM
0 369 8-8-10 190.40

RB-PRIM 0 364 6-6-10 174.84

RB-LINE-I-PRIM 0 365 6-6-10 168.93

RB-PLANE-IJ-

PRIM
0 370 6-6-10 156.36

Table 4. Best computing time and corresponding scheme settings for CPU and GPU codes (DPW-W1)

 Implicit smoothers
Initial MG

cycles

Ramping MG

cycles

Number of sweeps on 3

MG levels
Time (s)

CPU

LUJACOBI-PRIM 100 306 10-10-15 624.29

Lagged LUSGS-

PRIM
100 282 8-8-20 615.94

LUSGS 100 296 2-2-10 530.84

LUSGS-PRIM 100 304 2-2-10 499.60

GPU

LUJACOBI-PRIM 0 322 10-10-10 267.83

Lagged LUSGS-

PRIM
0 298 8-8-10 290.50

RB-PRIM 0 380 4-4-10 297.55

RB-LINE-I-PRIM 0 314 6-6-10 262.83

RB-PLANE-IJ-

PRIM
0 293 6-6-10 224.49

Conclusion

In this study, Bombardier’s in-house CFD code FANSC was accelerated with GPGPUs. Non-linear

multigrid smoothers that are efficient numerically while being well suited for massively parallel

hardware architectures are identified. The results indicate that numerically weaker smoothers such as

red-black line and plane smoothers can be very effective when an appropriate number of sweeps are

 13

performed on each multigrid level. When both the CPU and GPU codes are used with their best

respective solvers, speedups of 2.4x can be achieved on a single Tesla K20 GPU compared to two 8-

core Xeon 2670 CPUs.

Acknowledgements

This work is supported by the National Science and Engineering Research Council (NSERC) of Canada.

Computations were made on the supercomputer Guillimin from McGill University, managed by Calcul

Québec and Compute Canada. The operation of this supercomputer is funded by the Canada Foundation

for Innovation (CFI), the ministère de l'Économie, de la science et de l'innovation du Québec (MESI)

and the Fonds de recherche du Québec - Nature et technologies (FRQ-NT).

References

[1] Castonguay, P., et al. On the development of a high-order, multi-GPU enabled, compressible

viscous flow solver for mixed unstructured grids. in 20th AIAA Computational Fluid Dynamics

Conference. 2011.

[2] Xu, C., et al. Parallelizing a High-Order CFD Software for 3D, Multi-block, Structural Grids

on the TianHe-1A Supercomputer. 2013. Berlin, Heidelberg: Springer Berlin Heidelberg.

[3] DeVito, Z., et al. Liszt: A domain specific language for building portable mesh-based PDE

solvers. in 2011 International Conference for High Performance Computing, Networking,

Storage and Analysis (SC). 2011.

[4] Kampolis, I.C., et al., CFD-based analysis and two-level aerodynamic optimization on graphics

processing units. Computer Methods in Applied Mechanics and Engineering, 2010. 199(9): p.

712-722.

[5] Jacobsen, D., J. Thibault, and I. Senocak. An MPI-CUDA implementation for massively parallel

incompressible flow computations on multi-GPU clusters. in 48th AIAA Aerospace Sciences

Meeting Including the New Horizons Forum and Aerospace Exposition. 2010.

[6] Mostafazadeh Davani, B., et al. Unsteady Navier-Stokes Computations on GPU Architectures.

in 23rd AIAA Computational Fluid Dynamics Conference. 2017.

[7] Lefebvre, M., et al., Optimizing 2D and 3D structured Euler CFD solvers on Graphical

Processing Units. Computers & Fluids, 2012. 70: p. 136-147.

[8] Brandvik, T. and G. Pullan, An Accelerated 3D Navier–Stokes Solver for Flows in

Turbomachines. Journal of Turbomachinery, 2010. 133(2): p. 021025-021025-9.

[9] Cagnone, J.S., et al., Implicit multigrid schemes for challenging aerodynamic simulations on

block-structured grids. Computers & Fluids, 2011. 44(1): p. 314-327.

[10] Laurendeau, E., Z. Zhu, and F. Mokhtarian. Development of the FANSC Full Aircraft Navier-

Stokes Code. in Proceedings of the 46th Annual Conference of the Canadian Aeronautics and

Space Institute, Montreal. 1999.

[11] Swanson, R.C. and E. Turkel, Multistage Schemes With Multigrid for Euler and Navier-Stokes

Equations. 1997, NASA Langley Technical Report Server.

[12] Jameson, A., Multigrid algorithms for compressible flow calculations, in Multigrid Methods II:

Proceedings of the 2nd European Conference on Multigrid Methods held at Cologne, October

1–4, 1985, W. Hackbusch and U. Trottenberg, Editors. 1986, Springer Berlin Heidelberg: Berlin,

Heidelberg. p. 166-201.

[13] Spalart, P. and S. Allmaras. A one-equation turbulence model for aerodynamic flows. in 30th

aerospace sciences meeting and exhibit. 1992.

[14] Jameson, A. and S. Yoon, Lower-upper implicit schemes with multiple grids for the Euler

equations. AIAA Journal, 1987. 25(7): p. 929-935.

[15] Rossow, C.C., Convergence Acceleration for Solving the Compressible Navier-Stokes

Equations. AIAA Journal, 2006. 44(2): p. 345-352.

[16] Cotronis, Y., E. Konstantinidis, and N.M. Missirlis, A GPU Implementation for Solving the

Convection Diffusion Equation Using the Local Modified SOR Method, in Numerical

Computations with GPUs, V. Kindratenko, Editor. 2014, Springer International Publishing:

 14

Cham. p. 207-221.

[17] Sermeus, K., E. Laurendeau, and F. Parpia. Parallelization and performance optimization of

Bombardier multiblock structured Navier-Stokes solver on IBM eserver Cluster 1600. in 45th

AIAA Aerospace Sciences Meeting and Exhibit. 2007.

[18] Elman, H.C. and M.P. Chernesky. Ordering Effects on Relaxation Methods Applied to the

Discrete Convection-Diffusion Equation. 1994. New York, NY: Springer New York.

[19] Elman, H.C. and M.P. Chernesky, Ordering Effects on Relaxation Methods Applied to the

Discrete One-Dimensional Convection-Diffusion Equation. SIAM Journal on Numerical

Analysis, 1993. 30(5): p. 1268-1290.

