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Abstract: A Bayesian Optimisation framework in conjunction with Direct Numerical
Simulation (DNS) of spatially developing turbulent boundary layers (TBL) is used to
study the potential of vertical wall blowing to reduce skin-friction drag but also to generate
net-power saving. In order to obtain realistic values for the power needed to supply the
wall blowing, the experimental data of Kornilov and Boiko [1] are used as well as the
averaged friction coefficient over a large extent of the computational domain. For the
present study it is found that after 18 DNS simulations, corresponding to 18 iterates of
the Bayesian Optimisation scheme, the optimum strategy achieves a net-power saving of
5% via uniform blowing with moderate intensity (0.29% of the freestream velocity). It is
found that it is possible to generate substantial drag reduction. However, this is associated
with power losses (up to 20% net-energy loss with an average of 19% of drag reduction and
values up to 60% locally). A Fukagata-Iwamoto-Kasagi (FIK) analysis shows two different
mechanisms responsible for the drag reduction over and downstream of the blowing region.
The reduction of the friction coefficient is associated with the FIK convection term over the
blowing region, and the TIK spatial development term downstream of the blowing region.

Keywords: Computational Fluid Dynamics, Turbulent Boundary Layer, Drag Reduction,
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1 Introduction

Drag-reducing flow control is a topic of great interest due to its importance in many engineering
applications. As an example, just a 3% reduction in the skin-friction of a long-range commer-
cial aircraft would save £1.2m in jet fuel per aircraft per year and prevent the annual release of
3,000 tonnes of carbon dioxide. Despite many decades of extensive research, a practical and af-
fordable method for skin-friction drag reduction is yet to be found and implemented in real-world
applications. Various strategies, which includes polymer additives, riblets, vibrators, actuators,
microelectromechanical systems, gas microbubbles, hydrophobic coating and large eddy breakup
devices have been developed in the last decades to reduce skin-friction drag. Adding additives to a
liquid flow, for instance, can reduce skin-friction drag by more than 70%, yielding a phenomenon
known as Maximum-Drag-Reduction (MDR) (Graham [2]). For air flows, however, the energy ex-
penditure of typical active drag reduction strategies can be very high, often leading to net-energy
loss even if substantial skin-friction drag reduction is obtained (Quadrio and Ricco [3]).
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In the present work we focus on the spatial development of a zero pressure gradient turbulent
boundary layer and the resulting wall friction after control has been applied locally using vertical
wall-blowing as a drag-reducing strategy. Mass flow injection from a surface is not new and can be
traced back to the 40’s with surface cooling studies by Dawes and Wheeler [4] and Mickley et al. [5].
Rubesin [6] and Torii et al. [7] developed analytical formulas for the calculation of the heat transfer
and skin-drag coefficients under wall transpiration conditions which were later confirmed experi-
mentally by Simpson et al. [8] with measurements to analyse and model the turbulent momentum
and heat transport in the presence of injection and suction. Sumitani and Kasagi [9] performed
Direct Numerical Simulations (DNS) of a turbulent channel flow with low-intensity (0.1% of the
free stream velocity) uniform wall injection. They observed more than 10% drag reduction and
concluded that higher intensities for the wall injection could lead to larger drag reduction. A DNS
of a spatially developing turbulent boundary layer was performed in Kim et al. [10] to examine
the characteristics of wall pressure fluctuations after the sudden application of wall blowing or suc-
tion. It was found that wall pressure fluctuations are more affected by blowing than by suction.
For both blowing and suction, the small scale of wall pressure fluctuations reacts in a short down-
stream distance to after the blowing, whereas the large scale recovers slowly farther downstream.
Experimental investigations using a blowing technique called the Microblowing Technique (MBT)
have showed that it is possible to reduce turbulent skin friction by more than 50% in subsonic flow
and more than 80% in supersonic flow (Hwang [11, 12]). However, the authors conclude that the
main challenge is related to the blowing air resources which can be very substantial. Based on the
parametric study of Hwang [12], and with the help of new advanced drilling technology, Kornilov
and Boiko [1] designed micro-drilled surface and reported a reduction of the shear stress by more
than 70%. Thanks to a detailed investigation of boundary-layer characteristics over the permeable
surface, they managed to make real-time decisions for the experiment setup refinement to achieve
the maximum efficiency of the control method under study. The estimated net-energy saving was
only 5% due to the energy expenditure of the blowing system. Interestingly, they observed that
the friction coefficient downstream of the blowing region only relaxes to its canonical value after a
significant distance. This indicates the possibility of employing spatially-discontinuous blowing to
achieve comparable drag reduction with less blowing power, as reported in Kornilov and Boiko [13].

Fukagata et al. [14] derived a simple expression which can explain the skin-friction drag in
wall-bounded turbulent flows: the local skin friction can be decomposed into four parts, laminar,
turbulent, inhomogeneous and transient components, the second of which is a weighted integral
of the Reynolds stress distribution. This so-called FIK identity can be used to investigate drag
reduction techniques. Note that for spatially evolving flows, this identity has the contributions
from boundary layer thickness, the Reynolds shear stress, mean wall-normal convection, and spatial
development. The simulations of Kametani and Fukagata [15] and Kametani et al. [16] showed
that uniform suction can suppress turbulence but increases the drag, while uniform blowing can
enhance turbulence but reduce shear stress. Their FIK analysis revealed the presence of pressure
gradients near the edges of the suction/blowing area. These numerical studies also showed that
the efficiency of the control increases with widening the streamwise length of the control section.
More recently, DNS of a turbulent boundary layer with a low-intensity vertical wall-blowing control
region have shown a local maximum skin-friction drag reduction of 60%, which persists to tens of
boundary-layer thicknesses downstream of the control (Stroh et al. [17]). A series of Large-Eddy
Simulations (LES) of spatially evolving turbulent boundary layers with vertical wall-blowing were
performed in Kametani et al. [18] with a special focus on the effect of intermittent (separated in
streamwise direction) blowing sections. A net-energy saving rate of around 18% was reported and
a FIK study showed that the distribution of all components over each blowing section has similar
trends, resulting in similar averaged values over the whole control region.
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Employing a reliable optimisation method to determine the optimal parameters of a vertical
wall-blowing control technique could potentially lead to substantial net-energy saving. Bayesian
Optimisation (BO) is a derivative-free algorithm that works efficiently with expensive non-convex
objective functions (Gelbart et al. [19]). BO plays a prominent role in efficiently optimising the
parameters of machine learning algorithms, such as Neural Networks, with superior performance
when compared to more standard approaches (Snoek et al. [20], Brochu et al. [21]). BO is yet
to be used for fluid flow problems and very few studies combining DNS/LES and BO have been
published to date. Talnikar et al. [22] developed a parallel Bayesian Optimisation algorithm for
LES to minimize drag in a turbulent channel flow and to design the trailing edge of a turbine
blade to reduce turbulent heat transfer and pressure loss. They managed to simultaneously run
several simulations for their optimisation study, taking advantages of the concurrency offered by
supercomputers.

In the present study, DNS of spatially evolving turbulent boundary layers are performed in order
to investigate the potential of a Bayesian Optimisation algorithm to achieve net-power saving using
intermittent vertical wall-blowing as a technique to reduce skin-friction drag. Unlike the majority
of numerical studies where idealized situations are assumed, energy savings are evaluated by taking
into account the hydraulic and mechanical loss of the blowing system, using the experimental data
of Kornilov and Boiko [1]. For this first study, and for simplicity, only three blowing parameters
are optimised to achieve maximum net-energy saving. Furthermore, the FIK identity is used to
investigate in details the mechanism of the drag reduction.

2 Numerical Methods

The incompressible NavierStokes equations are solved using a recent version of the high-order flow
solver Incompact3d (see www.incompact3d.com), adapted to parallel supercomputers using a pow-
erful two-dimensional (2D) domain decomposition strategy (Laizet and Li [23]). This solver is
based on sixth-order finite-difference schemes on a Cartesian mesh for the spatial discretization and
a semi-implicit time advancement for the viscous terms. To treat the incompressibility condition, a
fractional step method requires solution of a Poisson equation, fully solved in spectral space via the
use of relevant 3D Fast Fourier transforms. Combined with the concept of the modified wave number
(Lele [24]), this direct (i.e. non-iterative) technique allows the implementation of the divergence-free
condition up to machine accuracy. A partially staggered mesh is used where the pressure mesh is
shifted by a half-mesh from the velocity mesh in each direction. This type of mesh organization
leads to more physically realistic pressure fields with no spurious oscillations. More details about
the code can be found in Laizet and Lamballais [25]. Incompact3d has been recently used for DNS
of TBL (Diaz-Daniel et al. [26, 27]), including comparison of wall-shear stress statistics and energy
budget with the reference data of Schlatter and Örlü [28], Jiménez et al. [29].

The present simulations are performed for a domain size Lx × Ly × Lz = 750δ0 × 40δ0 × 15δ0
discretized with nx × ny × nz = 3073 × 321 × 128 mesh nodes in the streamwise, normal, and the
spanwise directions, respectively. Here, δ0 is the boundary layer thickness at the inlet. A laminar
Blasius boundary layer is prescribed at the inlet boundary condition in the streamwise direction,
with a Reynolds number Reθ = U∞θ/ν = 170 based on the momentum thickness θ and the free-
stream velocity U∞. A 1D convection equation is solved for the outlet boundary condition, where
the Reynolds number reaches Reθ = 1850. In the spanwise direction, the boundary conditions are
periodic while an homogeneous Neumann condition is imposed on the three velocity components at
the top of the domain. The mesh is uniformly spaced in the streamwise and the spanwise directions,
and is stretched towards in the wall normal direction. The resolution in wall units for Reθ = 365

3

www.incompact3d.com


is ∆x+ = 0.84, 0.027 ≤ ∆y+ ≤ 6.8 and ∆z+ = 0.4. The simulation time step is ∆T = 0.008 δ0
U∞

.
The dimensions with superscript + are normalized with the local shear-velocity uτ . Turbulent
conditions are triggered with the tripping method designed by Schlatter and Örlü [28], using the
optimal parameters described by these authors. The tripping region is located at x = 3.5δ0 and
occupies the whole spanwise extent. Figure 1 illustrates the computational domain and the control
region. Local uniform blowing vw is applied through an inhomogeneous wall-boundary condition
for the normal velocity.

Figure 1: Left: Schematic of the computational domain. Grey shaded areas correspond to the
control region. Right: Top-view of the control region.

Our numerical set-up is validated by comparing our data with the canonical TBL of Schlatter
and Örlü [28] and the controlled TBL (using vertical wall blowing) of Stroh et al. [17]. The control
region is located at a distance xBs = 76δ0 from the inlet and has a streamwise extent LB equal to
85δ0, corresponding to 470 ≤ Reθ ≤ 700 of the canonical case. The blowing coefficient CB = vw

U∞
,

where vw is the normal blowing velocity at wall, is equal to 0.005, which corresponds to a blowing
intensity equal to 0.5% of the free stream velocity. Data are averaged in the spanwise direction and
in time over T ∼ 5000 δ0

U∞
. Figure 2 shows that the streamwise evolution of the friction coefficient

in our canonical TBL is in good agreement with the reference data of Schlatter and Örlü [28]. The
friction coefficient is evaluated as follow

cf (Reθ) =
τw(Reθ)

0.5ρU2
∞

,

which is a function of Reθ for spatially developing flows. Here, τw is the mean wall shear stress and
ρ is the (constant) density of the fluid. It can be seen in figure 2 (right) that the mean streamwise
velocity profiles and the root-mean-square velocity fluctuation profiles at Reθ = 1000 (black lines)
and Reθ = 1410 (blue lines) for the canonical case are in good agreement with the reference data of
Schlatter and Örlü [28]. As seen in figure 2 (left), the streamwise evolution of the friction coefficient
for the controlled case is very similar to the one obtained in the reference data of Stroh et al. [17],
with a maximum reduction of the shear stress of 56% at Reθ ∼ 650. The only noticeable difference is
the behaviour of the friction coefficient in the recovery region downstream of the control region. For
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the reference data, the friction coefficient of the controlled case is similar to the friction coefficient
of the canonical case from Reθ ∼ 1300 whereas in our simulation, the friction coefficient is always
lower than the canonical one. This discrepancy may be attributed to the streamwise extend of the
computational domain in the present simulations, which is much smaller than in the reference data.
As already observed in the reference data of Stroh et al. [17], it can be concluded that low intensity
uniform blowing at the wall reduces the skin-friction drag and that the boundary layer requires a
relaxation distance to recover the canonical trend for the friction coefficient.

Figure 2: Left: streamwise evolution of the friction coefficient as a function of the Reynolds number
Retheta for the canonical and controlled cases. Right: mean and fluctuation streamwise velocity
profiles at Reθ = 1000 (black color) and Reθ = 1410 (blue color). Solid lines correspond to the
present results and the dashed lines to the reference data of Schlatter and Örlü [28].

3 Bayesian Optimisation algorithm

In the present study, a Bayesian Optimisation (BO) algorithm is used to achieve drag reduction
and net-power saving. Generically, BO algorithms seek to minimize a chosen objective function
over a given set of parameter values. BO algorithms have two stages. First, given knowledge of the
objective at a known set of parameters, a probability density function for the objective function
is computed. This encapsulates a best guess of the objective and quantifies the uncertainty of the
approximation. Second, an acquisition function is minimized to determine the next set parameter
values to be sampled. This typically involves a trade-off between minimizing the objective and
reducing uncertainty of its approximation.

Specifically, consider an experiment with m input parameters, denoted x ∈ Rm, and a scalar-
valued objective function f(x) ∈ R that we aim to minimize. Suppose that n experiments have
been conducted at input values (xi)

n
i=1 and that the objective function values f(xi) are known.

Collecting these values as

X :=

 ↑ ↑
x1 · · · xn

↓ ↓

 ∈ Rm×n, f :=

f(x1)
...

f(xn)

 ∈ Rn.
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a training set is defined as D := {X,f}.
Our aim is to approximate the value of the objective function at a new test set of input values

(x∗
i )

q
i=1 ⊂ Rm. To achieve this, a BO methodology assumes a particular form of Gaussian uncer-

tainty in the relation between input parameters x and the objective function value f(x) (Rasmussen
[30]). Under this assumption, the value of the objective at each test point x∗

i is itself a random
variable, which we denote f∗

i . Letting f∗ = (f∗
i )

q
i=1 and X∗ :=

[
x∗
1, · · · ,x∗

q

]
∈ Rm×q, it can be

shown that, given knowledge of the training set D and chosen test inputs X∗,

(f∗ |X∗,D) ∼ N (µ(X∗,D), σ(X∗,D)).

That is, the unknown values of the objective function f∗ at testing points x∗
i have a multivariate nor-

mal distribution with mean µ = µ(X∗,D) and covariance matrix Σ = Σ(X∗,D). This distribution
is commonly referred to as the posterior. Its mean and covariance are given by

µ = K(X∗, X)K(X,X)−1f ,

Σ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗),

where K(A,B) ∈ Rℓ×p is a kernel matrix calculted from inputs A ∈ Rm×ℓ, B ∈ Rm×p. In this study,
the elements of K(A,B) are chosen to be the Matérn 5/2 kernels

K(A,B)ij = k(ai, bj) = θ0

(
1 +

√
5∥ai − bj∥22

l2
+

5

3

∥ai − bj∥22
l2

)
exp

(
−
√

5∥ai − bj∥22
l2

)
, (1)

for i = 1, . . . , ℓ, j = 1, . . . , p. Here, θ0 is the covariance amplitude, and l is a length scale which
determines the smoothness of the posterior.

The second stage of the BO algorithm is to select the next sample point xn+1, given the training
set D and the computed posterior distribution f∗. This is performed by considering an acquisition
function a(x), which trades off between exploitation (to select the sample of the lowest mean) and
exploration (to sample from a region of high uncertainty), and computing

xn+1 = argmax{a(x) : x ∈ X∗}.

While many acquisition functions have been proposed (Snoek et al. [20], Brochu et al. [21]), the
one selected in this study is the expected improvement (EI). EI takes into account the probability
of improvement, and the magnitude of the expected improvement, with respect to the best known
value of the objective function fbest := maxx∈X f(x), given knowledge of D. In particular,

a(x) = σ(x|D) [γ(x)Φ(γ(x)) + ϕ(γ(x))] , x ∈ X∗,

where
γ(x) =

µ(x|D)− fbest

σ(x|D)
, x ∈ X∗,

and ϕ(.) and Φ(.) are the probability density function (PDF) and the cumulative distribution func-
tion (CDF), of a standard N (0, 1) distribution, respectively.

For a simple illustrative example of the BO algorithm, consider a 1D problem that has a noise-
free objective function, f(x) = sin(x)/x, for −2 ≤ x ≤ 1. In this example, we fix the fitting
parameters of (1) to be θ0 = 1 and l = 0.8. Starting with an arbitrary input parameter x1 = −1.5
and corresponding training set D = {−1.5, f(−1.5)}, figure 3 shows the development of the posterior
distribution over five iterations of the BO algorithm.
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(a) (b) (c)

(d) (e)

Figure 3: An example of using Bayesian Optimisation on 1D toy problem. The black curve is the
true objective function, black markers are the observed points, the dark blue curve is posterior mean
µ and the blue shaded area the posterior uncertainty (µ± σ).

Near the training points (black markers), the posterior mean µ (dark blue curve) and the true
function (black curve) match and the posterior covariance σ vanishes; conversely, the uncertainty of
the predictive model increases with distance from the observation points. With the EI acquisition
function, the first new input parameter x2 shown in figure 3b corresponds to the lowest value of
the posterior mean. Subsequently, since x2 is close to the lowest value of the new posterior mean
(almost unchanged from the previous figure), the acquisition function selects a testing point x3 in
a region of high uncertainty in figure 3c. This behaviour is repeated in figure 3d, after which the
minimum of the posterior mean approximately coincides with the true optimum in figure 3e.

4 Parameters for the optimisation problem

Bayesian Optimisation of wall blowing control is implemented with the Matlab function bayesopt

(see https://uk.mathworks.com/help/stats/bayesopt.html). The optimisation process can be par-
allelized, since multiple DNS can be performed at the same time to evaluate the objective function.
For the present study, up to four simulations were performed at the same time using a total of up to
8,192 computational cores (each simulation runs for approximately 48 hours). As described in sec-
tion 3, The Matérn 5/2 kernel function and the EI acquisition function are used for this study. The
blowing control region is similar to the one used in the validation case, from Reθ = 470 to Reθ = 700,
as seen in figure 1. The control region consists of alternating blowing and non-blowing areas. The
streamwise length of a blowing area, λ1, the streamwise length of a non-blowing areas, λ0, and the
blowing coefficient CB are chosen as optimisation parameters. Note that the control region always
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starts with a non-blowing area. An example is shown in figure 1 with three blowing areas and three
non-blowing areas for the control region. To avoid spurious oscillations, the blowing is imposed
gradually at the start and the end of each blowing area for a streamwise distance x ∼ 4δ0 using an
hyperbolic tangent function. To account for this transition region (where CB gradually increases),
the optimisation process has the constraint λ1 > 14 imposed. Blowing and non-blowing areas are
assumed to be repeated regularly in the control region, and optimisation variables are chosen to be
the number of blowing areas areas nB and the blowing-to-non-blowing area ratio γ = λ1/λ0. The
parameters λ0 and λ1 may then be calculated in terms of the optimisation variables nB and γ. For
the present study, the range of these parameters are 1 ≤ nB ≤ 10, 0 ≤ γ ≤ 1 and 0 ≤ CB ≤ 1.

In this study we are interested in the net-energy saving generated by a global drag reduction
from 35δ0 to 650δ0 (corresponding to 360 ≤ Reθ ≤ 1730 in the canonical case). The region very
close to the outlet (for Reθ > 1730) is removed as the data in this region are contaminated by
the outlet boundary condition. The global drag reduction is calculated using the mean friction
coefficient Cf (global skin friction) over the streamwise length L = 615δ0,

Cf =
1

L

∫ 650δ0

35δ0

cf (x)dx. (2)

The net-energy saving S is the ratio between the reduction of the total power coefficient due to wall
blowing and the power coefficient of the uncontrolled case.

S =
Cw − Cw0

Cw0
, (3)

where Cw0 is the power coefficient of the canonical case. The gross power input coefficient for
controlled case Cw = Cwτ + Cwb is equal to the sum of the mean viscous power coefficient Cwτ to
overcome the shear stress, and the blowing power coefficient Cwb needed to inject flow through the
permeable surface. The viscous power coefficient has the same value as the global friction coefficient,
Cwτ = Cf . The blowing power coefficient is equal to

Cwb = (CpCB + C3
B)α, (4)

where α is the ratio of the blowing region to the total area over which the global drag is calculated.
Finally, Cp is the pressure coefficient of the pressure difference across the permeable wall ∆p required
for the fluid to flow through the surface

Cp =
∆p

1
2ρU

2
∞
. (5)

Most numerical studies assume that Cp is equal to zero (Kametani et al. [16]). However, Cp

could be significant with the potential to generate net-energy losses. Therefore, for the optimisation
of the blowing parameters, Cp cannot be ignored. In order to evaluate the power required for the
wall-blowing control system, the experimental set-up of Kornilov and Boiko [1] is used as a proxy. In
this experimental work performed in a low-turbulence wind tunnel, a permeable material of porosity
equal to 17.1% was used to generate wall-blowing with an average pore orifice diameter of 0.17 mm,
a wall thickness of 1.1 mm, and an orifice aspect ratio 6.47. These geometric characteristics were
chosen because such a configuration of orifices was found to be promising with respect to skin-
friction drag reduction. Such a blowing system can easily be reproduced numerically by simply
imposing a uniform vertical velocity vw at the wall of the boundary layer in the control region.
Fortunately, experimental data are available for the variation of the pressure coefficient Cp as a
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function of the blowing coefficient CB (see figure 11 in Kornilov and Boiko [1]). Interestingly, the
relation between Cp and CB is linear, Cp = 124 CB. This relation is used in the present study
to evaluate the blowing power coefficient. In addition to the injected mass flow rate, the pressure
drop is also function of the porosity, hole diameter and plate thickness. Therefore, this relation is
particular to the permeable plate used by Kornilov and Boiko [1], and would differ for other designs,
potentially facilitating greater power saving with a more efficient blowing device.

In order to evaluate the objective function, i.e. the net-energy saving given by (3), several DNS
of a TBL are performed with various blowing parameters. For each evaluation, the simulation runs
for T = 1600 δ0

U∞
. For the first half of this time, the flow adapts to the wall blowing condition,

and then the statistics are collected for the second half on the simulation window. It is found that
T = 800 δ0

U∞
is enough to have a good estimate of the friction coefficient and the net-energy saving

with an error margin of ±1%. If the preliminary estimation of the net-energy saving is less than
2.5%, data are collected over an extra T = 1600 to reduce the error margin.

4.1 Results and Discussion

In total, 18 DNS simulations are conducted for the present Bayesian Optimisation study (to be
compared with the canonical case). The blowing parameters for the first three simulations are
selected arbitrarily (to pre-test the behaviour of wall blowing) and are used to initialize the Bayesian
Optimisation. The parameters of the remaining 15 simulations are determined by the optimisation
algorithm. Table 1 shows the parameters used for each run, the corresponding global friction
coefficient of the area 360 ≤ Reθ ≤ 1730 and the net-power saving. Case 0 corresponds to the
canonical case. Figure 4 (left) shows the local friction coefficient as function of the Reθ for all the
cases. Substantial drag reductions is observed for all simulations, especially over the control region,
and only the parameters in case 11 generate a global drag increase. It should be noted that the
Bayesian Optimisation algorithm converges to a uniform blowing strategy over the control region,
corresponding to λ0 = 0, which is evident from case 13 onwards. As anticipated, increased blowing
intensity corresponds to increased drag reduction but not necessarily increased power saving. Indeed,
the largest observed drag reduction of 18.9% in case 5 has an energy loss of 20.8% compared to
the canonical case. The highest net-power saving is obtained in case 13 with a net-power saving
of 5%, corresponding to a relatively low reduction of 8.3% of the friction coefficient. As previously
discussed, higher net-power saving can be achieved with a more efficient blowing device, so this
preliminary result is potentially very interesting for the future. It is important to point out that if
an idealised control power was used (i.e ignoring the effect of the pressure needed for the blowing
device) the Bayesian Optimisation algorithm would have a different search path, with potentially
misleading conclusions. Note also that blowing is applied at fairly low Reynolds numbers, and as
pointed out by Kametani and Fukagata [15], for the same blowing ratio vw/U∞, the drag reduction
could potentially increase for higher Re. In the remaining of this section, we will focus on three
cases: case 0 which is the uncontrolled case (black lines), Case 5 (red lines) with the highest global
drag reduction and the highest power loss and Case 13 (blue lines) which has the highest net-energy
saving.

Wall blowing distorts and accelerates the growth rate of the TBL with a jump in the boundary
layer thickness at the start of the control region as seen in figure 4 (right). With low blowing
velocity (Case 13, CB = 0.289) the distortion of the boundary layer thickness at the beginning of
the blowing region is less important when compared to case 5 with CB = 0.997. Downstream of the
control region, the friction coefficient eventually recovers to its uncontrolled values, however with
a higher boundary layer thickness. This result was already observed in Stroh et al. [17] and it was
concluded that the increase of the boundary layer thickness downstream of the control region can
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Case number CB λ1 (×δ0) λ0 (×δ0) Global Drag Reduction Net Power Saving S
0 0 − − 0 0
1 0.5 85 0 13.2 3.2
2 0.5 40 45 6.0 1.3
3 0.5 20 65 2.9 0.6
4 0.37 17 0.3 9.3 3.8
5 0.997 8.5 0.3 18.9 -20.8
6 0.032 84.7 0.6 0.9 0.9
7 0.424 97 0.3 11.0 3.8
8 0.404 23 0.3 9.6 3.1
9 0.233 10.5 0.3 5.4 3.3
10 0.136 5 80 0.4 0.3
11 0.0003 8 0.9 -0.5 -0.5
12 0.59 8.5 0.3 12.3 -1.6
13 0.289 85 0 8.3 5.0
14 0.386 85 0 10.4 4.5
15 0.296 85 0 8.4 4.8
16 0.29 85 0 8.1 4.8
17 0.289 85 0 7.9 4.6
18 0.278 85 0 7.6 4.5

Table 1: Blowing parameters for each simulation and the corresponding global drag reduction (in
%) and net-power saving.

Figure 4: Left: Streamwise evolution of the friction coefficient as a function of Reθ for all the cases.
The thick solid lines corresponds to the three cases of interest in this study: Case 0 (black), Case
13 (blue) and Case 5 (red). Right: Streamwise evolution of Reδ (based on the boundary layer
thickness) for the uncontrolled case, Case 5 and Case 13. The blowing section is highlighted in grey.

be described by a streamwise shift of the virtual origin of the turbulent boundary layer. It means
that uniform blowing can potentially be advantageous at significant distances downstream of the
control region because it yields not only a significant drag reduction in the blowing region, but also
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a greater boundary layer thickness downstream of the control region with lower wall friction.

Figure 5: Contours of the mean normal velocities of the cases, from the top, Case 0, Case 13 and
Case 5. The black line is the boundary layer thickness where u = 0.99U∞. Here, the velocities are
normalized by U∞, and y and x are normalize by δ0

.

Other interesting features related to blowing control can be observed in figure 5 where the mean
normal velocity is plotted for cases 0, 5 and 13. Over the control region, it can be seen that
the normal velocity is typically much higher than the blowing velocity at the wall vw. This can
be related to a strong adverse pressure gradient just upstream of the blowing. The streamwise
velocity is blocked and deflected upwards, increasing the normal velocity over the control region.
Downstream of the control region, a favourable pressure gradient is present. As a result, negative
values for the normal velocity can be observed associated with lower values for the friction coefficient
downstream of the blowing when compared to the canonical case. These adverse and favourable
pressure gradients when starting and stopping the blowing were also reported in Kametani et al.
[18]. Consistently with the literature, wall blowing enhances turbulence which is then convected
downstream and promotes the Reynolds shear stress as seen in figure 6. The magnitude of Reynolds
shear stress increases with the blowing intensity. Note also that the tripping is clearing visible in
figure 5 for Reθ ∼ 200.

5 FIK identity analysis of skin friction drag

Fukagata et al. [14] derived an expression of the skin-friction coefficient for incompressible turbulent
flows. Their expression is known as the Fukagata-Iwamoto-Kasagi (FIK) identity. For spatially
developing boundary layers which are homogeneous in the spanwise direction, the FIK identity can
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Figure 6: Contours of the Reynolds shear stress of the cases, from the top, Case 0, Case 13 and
Case 5. The black line is the boundary layer thickness where u = 0.99U∞. Here, the velocities are
normalized by U∞, and y and x are normalize by δ0

.

be expressed as

cFIK
f (x) =

4(1− δ∗)

Reδ︸ ︷︷ ︸
cδf

+4

∫ 1

0
(1− y)(−u′v′)dy︸ ︷︷ ︸

cTf

+4

∫ 1

0
(1− y)(−ūv̄)dy︸ ︷︷ ︸

cCf

−2

∫ 1

0
(1− y)2

(
∂ūū

∂x
+

∂u′u′

∂x
− 1

Reδ

∂2ū

∂x2
+

∂p̄

∂x

)
dy︸ ︷︷ ︸

cDf

,

(6)

where .̄ denotes the Reynolds-averaged quantities, δ∗ is the displacement thickness and Reδ =
U∞δ
ν .

All the dimensions, δ∗, x and y are normalized by the local boundary layer thickness δ. For the
present study, it is assumed that ∂p̄

∂x = 0. The FIK identity decomposes the friction coefficient into
four terms: a contribution from boundary layer thickness cδf , a Reynolds shear stress contribution
cTf , a mean wall-normal convection contribution cCf and a spatial development contribution cDf . The
spatial development contribution cDf consists of four terms

cDf = cD1
f + cD2

f + cD3
f + cD4

f

= −2

∫ 1

0
(1− y)2

(
∂ūū

∂x
+

∂u′u′

∂x
− 1

Reδ

∂2ū

∂x2
+

∂p̄

∂x

)
dy.

(7)
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Note that the mean wall-normal convection term and the spatial development term are absent in
fully developed channel and pipe flows. For a more detailed discussion about each term of the FIK
identity for spatially evolving boundary layers, see Kametani and Fukagata [15].

Figure 7 shows that the friction coefficient calculated by the streamwise shear stress, cf , matches
the one calculated by the FIK identity, cFIK

f , for the canonical case. The agreement is also very
good for cases 5 and 13 downstream of the blowing region and differences can be observed over the
blowing region. For the canonical case, it can be seen that the main contributions to the the skin
friction coefficient are cTf and cDf while cCf has a significant negative contribution. The less dominant
contribution is cδf with a slowly decreasing contributions which will eventually reaches zero for very
large Reynolds numbers.

When wall blowing is applied, cFIK
f deviates from cf over and near the blowing area in agreement

with previous simulations in a similar set-up (Kametani and Fukagata [15]). The deviation is very
pronounced at the beginning and the end of the blowing region for case 5 as a result of the adverse
and favourable pressure gradients reported in the previous section and not taken into account in the
FIK identity for the present study. For case 13, where uniform blowing is applied with a relatively
low blowing intensity (CB = 0.289), the difference between cFIK

f and cf is reasonable in the middle
of the blowing region. For case 5, because of the discrete blowing areas within the blowing region,
the FIK identity as defined in the present study does not produce a correct estimation of the friction
coefficient over the blowing region. This problem should be easily corrected by introducing an extra
term related to the streamwise evolution of the pressure in the FIK identity. For the intermittent
blowing case, it is interesting to notice that the Reynolds shear stress contribution is not sensitive
to the intermittency of the blowing whereas the spatial development contribution cDf and mean
convection contribution cDf are oscillating and nearly cancelling each other.

For all cases, the spatial development contribution cDf is clearly dominated by the spatial devel-
opment of the streamwise velocity gradient as seen in figure 8. The remaining terms, cD2

f and cD3
f

are virtually zero for the canonical case. It should be noted, however, that CD2
f exhibits small oscil-

lations around zero at the start and end of blowing regions. Interestingly, cDf increases significantly
downstream of the wall blowing with positive values for case 13 and negative values for case 5.

Figure 7: Streamwise evolution of the terms from the FIK decomposition for (a) Case 0, (b) Case
13 and (c) Case 5.

An intriguing observation is related to the mean convection contribution which is positive for
case 5 and negative for case 13 downstream of the blowing region. It might be related to the
presence of strong values for the Reynolds shear stress in the blowing region for case 5. To obtain
drag reduction, the increase for cDf and cTf needed to be counteracted by a strong reduction for cCf .
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The significant growth of the magnitude of cCf is mainly due to the increase of the mean normal
velocity in the blowing section (see figure 5). In Case 13, cDf grows rapidly at the beginning of the
blowing region, but then decays gradually over the blowing area reaching very small values before
slowly converging to the value observed in the canonical case. For case 5, CD

f oscillates along the
blowing region, but drops to negative values after the control section, while cCf becomes positive
after the control section. Therefore, it is possible to conclude that over the blowing region the
reduction of the convection contribution cCf is responsible for the total drag reduction, while the
spatial development contribution cDf is responsible for the low drag observed downstream of the
blowing region.

Figure 8: Streamwise evolution of the terms associated to the spatial development contribution
term for (a) Case 0, (b) Case 13 and (c) Case 5.

6 Conclusion and Future Work

In this work, DNS of a specially developing turbulent boundary layer with continuous/discontinuous
wall blowing were performed to provide data for a Bayesian Optimisation algorithm and used to find
the optimal parameters to reduce the friction coefficient of the boundary layer as well as generating
net-power saving. Net-energy saving was estimated based on the global drag reduction over a large
extend of the computational domain (365 ≤ Reθ ≤ 1730) and the experimental data of Kornilov and
Boiko [1] for an accurate estimation of the power required to generate the wall blowing. After 13
simulations, the Bayesian Optimisation algorithm converged to a control strategy corresponding to
low intensity uniform blowing over the control region. An additional 5 simulations were performed
but no significant improvements were made. A net-power saving of 5% was observed for the best
set of parameters, corresponding to a blowing intensity 0.289% of the free stream velocity.

The results are very promising and future studies will address the relatively low net-energy saving
by increasing the streamwise extent of the control region, by increasing the Reynolds numbers of the
simulations and by increasing the number of parameters for the Bayesian Optimisation algorithm.
Instead of using costly DNS, future studies will be based on Implicit Large-Eddy Simulations (ILES)
which will allow for a longer computational domain to be employed and for a much larger number of
simulations to be performed. Recently, a new method was implemented in |Incompact3d| in order
to perform ILES. It is based on a strategy that introduces a targeted numerical dissipation at the
small scales through the discretisation of the second derivatives of the viscous terms (Lamballais
et al. [31], Dairay et al. [32]). It was shown in these studies that it is possible to design a high-order
finite-difference scheme in order to mimic a subgrid-scale model for LES based on the concept of
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Spectral Vanishing Viscosity (SVV, see for instance Tadmor [33], Karamanos and Karniadakis [34]),
at no extra computational cost. ILES of a turbulent channel flow have already been performed with
|Incompact3d| (Lamballais et al. [31]) so there should be no issue with turbulent boundary layers.
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