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Abstract: Increasing demands on maneuverability and agility of aero-vehicles require much 

superior unsteady performance and higher quality flight control systems. Traditional design methods 

of flight control laws based on linear assumption with small perturbations are no longer suitable. So 

numerical virtual flight (NVF), a multi-physics method coupling computational fluid dynamics 

(CFD), rigid body dynamics (RBD), flight control system (FCS) and other discipline simulation tools, 

has been paid more and more attention in recent years, due to its capability of obtaining the closed-

loop response characteristics during maneuvering flight via numerical simulations. In this paper, a 

CFD-based integrated solver of unsteady aerodynamics, kinematics and flight control system is 

presented, and is applied to simulating the pitching maneuver process of a super maneuverable missile 

model. A parallel unstructured dynamic overlapping grid technique is adopted to generate proper 

moving grids over the deflecting afterbody rudders, while the unsteady flow field is simulated by a 

parallel URANS solver based on cell-centered finite volume method. For the flow/kinematic coupled 

problem, the 6-DOF equations are solved by an explicit or implicit method with the URANS CFD 

solver. A nonlinear dynamic inversion method is implemented to the control law design. Simulations 

and analysis of the pitching maneuver process are carried out to improve the flight control law. By 

adjusting the gain factors and adding an integrating link, we obtained a set of optimized control 

parameters, and realized good control performance. 

 
Keywords: numerical virtual flight; nonlinear dynamic inversion; unstructured dynamic 

overlapping grids; super maneuverable missile pitching. 

 

1  Introduction 

In recent years, increasing demands on maneuverability and agility of aerospace vehicles require 

much superior performance under unsteady conditions and higher quality flight control systems. On 

one hand, the flight envelops of next generation aircrafts are becoming wider and wider; the 

aerodynamic characteristics exceeds the linear interval and the traditional control laws based on linear 

assumptions with small perturbations are no longer suitable as a result. On the other hand, the next 

generation aircrafts will have much higher maneuvering performance, leading to stronger unsteady 

effects, and strong coupling of aerodynamics and kinematics, as well as the flight control law and 

even structural dynamics (aero-elastics). To solve these complex and strong coupled multi-physics 

problems, virtual flight experimental technologies [1-3] have been developed in recent years. With the 

rapid development of computer science and numerical methods, CFD-based multi-physics simulation 

methods have been paid more and more attention. These works focus on obtaining closed-loop 

response characteristics during maneuvering flight via numerical simulations, so this kind of 
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simulation methods is called as numerical virtual flight (NVF) or digital flight [4]. 

In the past decade, so many works on developing an integrated software system of numerical 

simulation, virtual flight and optimization have been reported, such as the AVT-161 program of the 

Research Treaty Organization [5], the SikMa (Simulation of Complex Maneuvers) program [6] and 

the Digital-X program [7-8] of DLR, the CREATE (Computational Research and Engineering 

Acquisition Tools and Environment) Program [9-10] of the DoD HPCMP in America. Especially in 

the CREATE-AV (aero-vehicle) sub-program, a 12-year long-term program since 2008, two multi-

physics simulation systems, Kestral [11-12] and Helios [13-14], were developed for fixed-wing 

aircrafts and helicopters, respectively. The main goal of Kestral and Helios is to supply necessary 

virtual flight simulation tools for the next generation aircrafts. Some exciting results by these coupled 

solvers have been reported in a series of papers [11-14]. 

Using this kind of NVF tools, we can evaluate and further improve the flight control law for fast 

maneuvering flight, which will result in the revolution and innovation of aircraft design patterns. Even 

in the initial concept design phase, we can consider the effects of flight control system to avoid the 

risks of flight testing later, and further improve and optimize the flight control system in the detailed 

design phase.  

For a CFD/RBD/FCS coupled NVF system, three key issues should be considered: dynamic mesh 

generation, unsteady flow simulation and multidisciplinary coupling method. In this work, we focus 

on CFD/RBD coupling method and control law design, based on the authors’ previous work [15-18]. 

To simulate the pitching process of a super maneuverable missile model, we developed a 

CFD/RBD/FCS coupled NVF solver based on URANS simulation on unstructured dynamic grids and 

solution of flight mechanics (FM) equations. Due to the strong nonlinear effects of the missile model 

under high angle of attack and strong hysteresis effects caused by high-speed maneuvering, the 

traditional linear control law is no longer suitable. Hence, we adopted nonlinear dynamic inversion 

method [19] to design the control law, instead of the widely-used PID control approach [20-21]. The 

pitching process of the model with a control command (the angle of attack pitching-up from 0 to 30) 

was simulated by the integrated solver and the influences of control parameters were analyzed. By 

adjusting the gain factor and adding an integrating link, we obtained a set of optimized control 

parameters, and realized good control performance. 

 

2  Numerical methods of CFD-based NVF 

2.1 Main procedure of the CFD/RBD/FCS coupled NVF solver 

As discussed in the introduction, in order to simulate aerodynamics/kinematics/flight-control 

coupled problems, a multi-physics integrated solver should be set up firstly, in which the modules of 

dynamic grid generation, the unsteady flow simulation, the computation of 6-DOF equations and the 

flight control law should be coupled within a unified framework. Here in this work, we developed a 

CFD/RBD/FCS coupled solver as shown in Fig.1. The procedure can be listed as follows: 

 
Figure1. Flow chart of the CFD/RBD/FCS coupled NVF solver 



 3 

(a) The program starts with initial grid generation by some commercial grid generation software 

and unstructured overlapping grid assembly, and the initial steady flow field and the aerodynamic 

forces are obtained by the URANS solver for the initial steady case; 

(b) Input the aerodynamic forces into the 6-DOF flight dynamics solver to obtain the 6-DOF 

information of the (n+1)th time step; 

(c) Input aerodynamic forces and the 6-DOF information of the model to the flight control law 

module to obtain the deflection of the control surfaces of the (n+1)th time step; 

(d) Assemble the overlapping grids according the 6-DOF information of the model body and 

control surfaces of the (n+1)th time step; 

(e) Obtain the (n+1)th time step unsteady flow field and the aerodynamic forces by the URANS 

solver; 

(f) Repeat steps (b)-(e) until the goal time. 

In our previous work [15-17], the authors had developed a dynamic hybrid grid generation 

technique, which integrates the grid morphing and the local remeshing. For the maneuvering missile 

model considered in this work (as shown in Fig.2, and the ‘X’ configuration of the four rudders will 

be studied only), the afterbody rudders will deflect simultaneously by a same angle during pitching 

process. In order to generate the moving grids automatically, an unstructured dynamic overlapping 

grid technique is integrated further into our previous dynamic hybrid grid generator to handle the 

deflection of the control surfaces. An improved parallel implicit hole-cutting approach is developed to 

improve the efficiency and to enhance the robustness of overlapping grid assembling [22]. Figure 3 

shows the initial hybrid grids. The grids of the body and the rudders are generated separately, and 

then are assembled by the parallel implicit hole-cutting approach. The initial hole-cutting results are 

shown in Figure 4a. During the pitching process, the dynamic overlapping grids over the afterbody 

rudders at some typical states are shown in Figure 4b-f, while the grids over the body are rotated with 

the pitching angles using a rigid body-fixed approach for simplicity.   

 
Figure 2. The configuration of the manuevering missile model 

     
Figure 3. The initial grids over the missile model 

       
(a) Initial case, t = 0.0s                (b) t = 0.1s                           (c) t = 0.2s 
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(d) t = 0.3s                         (e) t = 0.5s                            (f) t = 2.0s 

Figure 4. The dynamic overlapping grids over the deflecting rudders. 

 

The unsteady flow solver is based on the well-known second-order finite volume discretization of 

the URANS equations in an ALE framework. The dual time stepping method is adopted to achieve 

second-order accuracy of temporal discretization. To improve the accuracy of unsteady flow 

simulations, the geometry conservation law (GCL) on moving grids is paid more attention in our 

previous work [18]. Some verification and validation test cases have been shown in these papers [15-

18], which will not be repeated here. 

2.2 Coupling strategy: Loose Coupling and Strong Coupling 

For aerodynamics/kinematics/flight-control coupled problems, the right hand terms of URANS 

equations and the 6-DOF governing equations are related to both the flow variables and the 

kinematics variables; therefore, the governing equations for this coupled system can be written as: 

 
 ,

( , )

QV
R Q U

t

dU
P Q U

dt














 

(1) 

Unfortunately, the flow variables Q are implicit in term P because the aerodynamic forces and 

moments are the integrated form of flow variables. And the 6-DOF variables U are implicit in term R 

too because the position, velocity and orientation, angular velocity of the moving body influence the 

computational mesh directly. Therefore, a uniform temporal scheme for Eq. (1) is hardly to achieve, a 

feasible way is to solve the URANS equations and the 6-DOF governing equations separately with 

time marching. In other words, the monolithic method is hardly to achieve and we have to deal with 

the problem by partitioned methods [23]. 

The conventional method is the loose coupling approach in which a general cycle can be described 

as following sequential procedure:  

1) Suppose all the 6-DOF variables and the flow variables at the nth real-time step are already 

known (initial conditions); 

2) Solve the 6-DOF equations for kinematics variables at the (n+1)th time level according to the 

pressure field at the nth time level; 

3) Adjust the computational mesh for the (n+1)th real-time step according to the new kinematics 

variables; 

4) Execute the URANS flow solver on the updated mesh and update the flow variables at the 

(n+1)th time level. 

So in the loose coupling approaches, the 6-DOF system is advanced explicitly. It’s obvious that 

there always exist a lag between the information of the subsystems in time advancing. This may result 

in instability sometimes. 

If an implicit method is adopted to solve the 6-DOF governing equations, sub-iterations should be 

carried out to get a convergent solution. The implicit method, in which the interaction between the 

URANS equations and the 6-DOF governing equations was carried out in each sub-iteration, is called 

as the ‘strong coupling’ approach (or ‘fully implicit’ method) [24].  
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At the beginning of the sub-iterations procedure, the initial value of U (U(0)) should be specified. 

The way to get U(0) is generally called as the ‘prediction’ step, and various explicit methods can be 

employed here. The following sub-iterations are called as the ‘correction’ steps. The value of U(0) 

may influence the convergence rate of sub-iterations; however, the converged solutions with different 

initial value are consistent. In this work we let U(0)=Un. 

The procedure of the fully implicit scheme is almost similar to the loose coupling one except for 

the updating of information between subsystems. For the loose coupling approaches, the information 

is updated in each real time step, but for the strong coupling ones (see Figure 5), the information is 

updated also in each sub-iteration. The 6-DOF governing equations are solved firstly in each sub-

iteration, and then the computational mesh is updated according to the new kinematics variables. 

After that, the sub-iteration for URANS equations is executed on the updated mesh. Finally, a check 

for convergence is carried out at the end of each sub-iteration. If the convergence tolerance is reached, 

the variables at the (n+1)th time-step is then updated; otherwise, the sub-iterations would be carried 

out continuously until reaching a convergence solution.  

 
Figure 5. Sub-iteration procedure of the strong coupled solver. 

 

Both the explicit and the implicit coupled strategies have been integrated into our NVF solver. 

What should be mentioned here is that the flight control law is coupled with an explicit manner. For 

each real-time step, the command from the flight control law will be updated according to the current 

kinematic parameters, and then the control law outputs the deflection of control surfaces to the next 

time step. In the next section, we will discuss the control law design approach in details. 

 

3  Design of nonlinear dynamic inversion control law 

As we know, the supermaneuverable missile model presents strong nonlinear characteristics at high 

angle of attack. And the rapid maneuver may also result in strong unsteady hysteresis effect, so the 

nonlinear dynamic inversion method is adopted to design the control law. 

An aero-vehicle (controlled plant) is essentially an affine nonlinear system and can be decoupled by 

the feedback linearization method. This guarantees the feasibility of adopting the nonlinear dynamic 

inversion method in the design of flight control system. The fundamentals of dynamic inversion 

method can be described as follows: cascades an inversion system with the controlled plant, which 

can compensate it into linear system that can be designed with linear system theory. So it is very 

suitable to handle the nonlinear system. However, the mathematical model of the plant should be 

accurate enough for inversion system. But in actual engineering applications, we can hardly supply 

the absolute accurate aerodynamic model, some prediction and modelling errors in aerodynamic 

performance, especially in high angle of attack with strong flow separation, are unavoidable. This 



 6 

may lead to the whole system instability in some cases, and brings challenges to adopt the dynamic 

inversion method in flight control system design. The goal of flight control law design is to ensure the 

flight stability, robustness, maneuverability and agility of the controlled plant in the condition of 

prediction errors. For the pitching-up process of the supermaneuverable missile model in this work, 

the specific goals of flight control law are 1) to reduce or even eliminate the static error to improve 

the control accuracy; 2) to control the overshoot phenomenon to decrease large structural overloads; 

3) to reduce the response time and thus to improve the agility. 

Dynamic inversion method can be divided into two types: output feedback and state feedback. The 

output feedback method requires the multistep derivatives of the output which is often difficult to get 

and even impossible to achieve sometimes. The state feedback method requires all the state variables, 

and is relatively easier to implement for the supermaneuverable missile pitching process. So we use 

this kind of feedback method in this work. For an affine nonlinear system in the following equation,  

           t x t f x t G x t u t     (2) 

the state feedback method can be described as follows. 

If G(x) is invertible, then: 

         1u t G x t f x t t       (3) 

so the system can be reduced to a linear dynamic system: 

       ct x t k x t x t       (4) 

For a given signal xc(t), its error between the actual state x(t) and xc(t) is taken as the input of the 

linearized system, so that the signal can be tracked. 

For the supermaneuverable missile pitching process, the time-scale separation technology is 

adopted when designing the dynamic inversion control law. The kinematics equations are considered 

as the slow loop (outer loop), while the kinetics equations are considered as the inner loop (fast loop). 

When designing the slow loop control law, the impacts of the fast variables are ignored; and for the 

fast loop, the slow variables are approximately considered constant. 

Firstly, for the outer loop, introducing the kinematics equations into Equation (2), and rewriting it 

into the form of Equation (2), we have: 

       0 1
d

q t t t q t
dt


     (5) 

in which  is the angle of attack, q is the pitching angular velocity. Equation (5) can be further written 

as the form of Equation (3): 

       
1

1 0q t t t q t


     (6) 

Substituting Equation (4) into Equation (6) if we consider x  as q, the slow loop control law can be 

obtained: 

       c c cq t k t t q k           (7) 

where cq  is the command angular velocity, k  is the slow loop control gain factor. 

Then the inner loop is designed. Here the influences of the dynamic derivative terms are ignored, 

because dynamic derivative terms generally play a damping role, which only affect the response 

process, and have little effects on the final steady-state results. Meanwhile, the cost of calculating 

dynamic derivative terms by unsteady CFD method is relatively large. Therefore, the aerodynamic 

model of the missile’s pitching channel can be simplified as follows: 

 ,a mm QScC    (8) 

in which Ma is the pitching moment, Q=V
2
/2 is the inflow dynamic pressure,  is the inflow density, 

V is the inflow velocity, S is the reference area, c is the reference length, Cm is the static pitching 

moment coefficient, which is a function of the angle of attack  and the rudder deflection angle . We 

can assume the pitching moment coefficient is approximately linear with the rudder deflection angle, 

i.e.: 
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     ,m m mC C C        (9) 

where  mC   and  mC    represent the pitching moment coefficient and the derivative of pitching 

moment with respective to deflecting angle of the rudder when  = 0, respectively. These two 

quantities are related only to the angle of attack  and can be obtained by linear interpolation or 
numerical differentiation from the static aerodynamic database. 

Thus, the kinetics equation of fast loop is: 

   m ma
QSc C Cdq m

dt I I

       (10) 

in which I is the inertia of pitching channel. Similar to the slow loop design process, combining with 

Equations (2)~(4), the fast loop control law can be obtained with the fast loop control gain factor qk : 

   

 

+m q c

m

QScC Ik q q

QScC 






 
  (11) 

Due to the approximation between the aerodynamic model and the actual plant, the aerodynamic 

moment formed by the rudder deflection according to Equations (7) and (11) is often different from 

the expected command value, so there usually exists a static error (ess=-c) between the steady-state 

value of the angle of attack  and the command one c. The static error can be reduced by increasing 

the gain factor to some extent, but it cannot be completely eliminated. So an integrating link is 

introduced into the slow loop for reducing the static error, then Equation (7) can be written with the 

integrating gain factor ki as follows: 

   +c c i cq k k dt        (12) 

In realistic engineering applications, the flight control devices also have some physical limitations, 

such as the maximum rudder angle |Limit, the maximum rudder deflection angular velocity |Limit. 

These nonlinear physical limitations may lead to divergence of the control system. Therefore, it is 

necessary to restrict the contribution of the integrating link and the command angular velocity in the 

control law. This can enhance the stability of the system and improve the dynamic response 

characteristics. In summary, the flight control system can be illustrated in Figure 6. 

 

 
Figure 6. Sketch of the flight control system 

 

4  Rapid pitching process simulation of the model 

In this section, we use the aforementioned virtual flight numerical simulation platform combined 

with the control law designed in Section 3 to simulate the supermaneuverable missile rapid pitching 

process and trim the control law by adjusting the gain factors.  

4.1 The static aerodynamic characteristics 

The configuration of the supermaneuverable missile has been shown in Figure 2. The inflow Mach 

number Ma is 0.6 and the Reynolds number Re is 210
6
 per meter. Since the Reynolds number is very 

large, so the well-known SA turbulence model is adopted in the following simulations. The inflow 
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temperature is set to 288.15K in the wind tunnel experimental environment. The reference length is 

taken as the missile’s diameter d=0.16002m, and the reference area S is πd
2
/4=0.010062m

2
. The 

moment reference point (xc, yc, zc) is (9d, 0, 0) = (1.44018m, 0m, 0m), and the inertia of pitching 

channel I is 63.5kgm
3
. 

A half-model is adopted for saving computational cost since the pitching process is only considered 

in this study. The origin of coordinates is located at the apex of the missile’s head. The boundary layer 

is discretized with prismatic elements and tetrahedral elements are adopted in farfield. The height of 

the first layer is 1 10
-6

m and the number of total cells is about 15 million to capture the flow 

separation more clearly. 

Here the coordinate system adopts the one generally employed in flight mechanics, i.e., the x-axis 

is in the missile plumb symmetry plane and parallel to the missile design axis to the head, the y-axis is 

perpendicular to the missile plumb symmetry plane to the right of the missile body, and the z-axis is 

in the missile plumb symmetry plane and perpendicular to the xy plane pointing to the earth. In this 

coordinate system, the pitching-up moment and the upward deflection of the rudder leading edge are 

defined as positive values. 

The pitching moment coefficients for different angles of attack and rudder deflection angles are 

shown in Table 1 and Figure 7. From Table 1, the trimmed deflection angle of the rudders δc is 

identified as -10.284° for the expected pitching angle of attack c=30°. The derivatives of pitching 

moment with respective to deflecting angle of the rudder at  = 0 can be derived from the values of 

the pitching moment coefficients (see the last column in Table 1). It can be seen that the missile 

model is basically static stable in the selected range (-5°<<45°), and the pitching moment is 

relatively linear when the rudder deflections and the angles of attack are both small. However, in the 

cases of higher angles of attack or larger rudder deflections, the nonlinearity appears, and the missile 

even becomes static instable. At these situations, it is difficult to design the control law by traditional 

linear method. 

 
Figure 7. The static moment coefficients with different angles of attack of the missile and 

deflection angles of the rudders 

 

Table 1. The static moment coefficients and the derivative with respective to the deflecting angle 

 δ=15° δ=10° δ=5° δ=0° δ=-5° δ=-10° δ=-15° δ=-20° δ=-25° Cmδ 

α=-5° -27.474 -16.850 -6.3866 3.0357 14.394 24.703 32.661 38.844 43.145 -1.7655 

α=0° -29.761 -20.856 -9.7543 -0.0281 9.6999 20.811 29.712 37.179 42.588 -1.8087 

α=5° -32.764 -24.748 -14.451 -3.0909 6.3304 16.805 27.434 35.883 42.253 -1.8754 

α=10° -33.102 -26.959 -17.179 -6.2849 3.8229 13.571 23.827 33.693 41.351 -1.8613 

α=15° -33.886 -29.162 -22.069 -11.670 -0.6297 9.3983 19.151 29.196 38.439 -1.8081 

α=20° -32.943 -29.804 -23.517 -14.657 -3.6156 6.7183 16.645 26.033 35.379 -1.7081 

α=25° -32.388 -30.096 -24.173 -16.610 -6.8939 3.4084 13.532 22.639 31.219 -1.5902 

α=30° -32.359 -30.880 -25.174 -18.138 -10.059 -0.4689 9.3913 18.731 26.692 -1.4763 

α=35° -33.904 -32.556 -28.242 -21.784 -14.248 -5.6978 3.6054 13.117 21.210 -1.3779 

α=40° -28.442 -29.320 -26.527 -22.017 -15.874 -8.2208 -0.0934 9.5981 17.897 -1.1585 

α=45° -23.283 -23.380 -21.594 -20.994 -18.195 -13.462 -6.8650 1.7481 10.269 -0.8388 
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4.2 Typical cases with different gain factors 

As mentioned before, in actual situations, there are some physical limitations for the flight control 

device. In this case, the maximum rudder deflection angle |Limit and the maximum rudder deflection 

velocity |Limit are specified as 25 and 250/s, respectively. The initial value of control gain factors 

can be obtained through flight mechanics (FM) simulation. Generally, the fast loop gain factor is set 

to be no more than 1/5 of that of the rudder deflection velocity, and then the slow loop gain factor is 

set to be about 1/5 of the fast loop one to ensure the time-scale separation is established. According to 

the flight mechanics simulation, we have obtained a group of initial control gain factors, kα=5 and 

kq=25 (named as Case1 in Table 2). For comparison, a case (Case2 in Table 2) with larger gain factors 

(kα=10 and kq=50) is also considered. Because the static error cannot reach the expected value as 

shown in Section 4.3, then two cases (Case3 and Case4 in Table 2) with integrating link are simulated 

also. In spite of these cases, the overshoot phenomenon is very serious in Cases 2-4, so two other 

cases (Case5 and Case6 in Table 2) are considered with different limitations on control parameters. 

 

Table 2. Six typical cases for different gain factors with and without integrating link 

Case kα kq ki 
q ia HistroyIk k I  

limitation 

cq  

limitation 

1 5 25 - - - 

2 10 50 - - - 

3 10 50 1 - - 

4 10 50 5 - - 

5 10 50 50 250 - 

6 10 50 50 250 120 

 

4.3 Pitching-up process simulation without integrating link 

Firstly for Case1, the NVF and FM results are shown for comparison. The angular variables (angle 

of attack of the model and deflection angle of the rudder) refer to the left vertical axis, the angular 

velocity of the model refers to the right vertical axis in Figure 8. The legend ‘CFD’ represents the 

NVF results, while ‘SIM’ represents the FM simulation results by Matlab-Simulink. The CFD-based 

results have a lag behind those by FM simulation, because the unsteady effects are fully taken into 

account in the NVF results. The unsteady aerodynamic forces will cause delayed response, and the 

FM simulation does not consider the influence of this factor. The phenomenon also illustrates the 

importance of using NVF to design the control laws. There exist some differences between the steady-

state angles of attack of NVF and FM, and both of them have a static error (more than 1°) with the 

expected target because of the inaccuracy of the aerodynamic model.  

 
Figure 8. The NVF and FM simulation results of Case1 
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The static error is analyzed briefly as follows. Substituting Equation (7) into Equation (11), at the 

ideal trimmed state, namely the angle of attack is 30° and the pitching angular velocity is 0°/s, the 

steady-state rudder deflection angle from the control law is: 

    

 

 
 

30+
=

30

mm q c

m m

CQScC Ik k q

QScC C



 

  





  
  (13) 

However, according to Table 1,  30 = 18.138
m

C   and  30 = 1.4763
m

C


 , so the actual rudder 

deflction angle at this state is -12.286°, which is larger than the actual trimmed rudder deflection 

angle -10.284°. And this will lead to a larger steady-state angle of attack. For the steady state of 

Case1, the Equation (13) actually is: 

 
 

 
 

30 30

30 30

m ss q ss m q ss

m ss m

QScC e Ik k e QScC Ik k e

QScC e QScC

 

 



    
 


 (14) 

Since the static error ess>0, the rudder deflection angle will increase with the control gain factors, 

and finally results in the reduction of the static error. Thus, we try to double the two control gain 

factors for comparison (Case2). The increment of the control gain factors can also accelerate the 

response, but too large gain factors may destabilize the whole system. For Case2, the FM simulation 

results have already tended to be divergent (the dash lines as shown in Figure 9), but the NVF results 

in Figure 9 are still able to maintain convergence due to the consideration of unsteady effects (namely 

the damping is larger). However, if we want to further reduce the static error or accelerate the 

response time, the way by increasing the control gain factors may fail, which means resulting in 

system divergence. 

 
Figure 9. The NVF and FM simulation results of Case2  

4.4 Maneuvering process simulation with integrating link 

Inspired by equation (14), we can add an integrating link into the outer loop to further eliminate the 

static error. The steady-state rudder deflection angle after adopting the integrating link is: 

 
 

30

30

m q ia Histroy

m

QScC Ik k I

QScC 



 
  (15) 

where  =Histroy cI dt   is the historical integral amplitude. When it reaches the ideal trimmed state, 

-c=0, Ihistory will not change, and it can completely eliminate the static error, namely =c. 

We have tried two cases, in which the gain factor ki is set to 1 and 5, respectively (Case3 and 

Case4 in Table 2). The results compared with Case2 are shown in Figure 10. By introducing the 

integrating link, the response time of Case3 and Case4 are slightly reduced, but the overshoot 

phenomenon is more deteriorate. The approaching rate to the steady-state value is slightly faster with 

increasing ki (Figure 10(b)). However, the overshoot is obviously greater. This phenomenon can be 

analyzed from the property of the integrating link: when <c, Ihistory is negative and will make the 

rudder deflect larger, which will finally result in the missile model pitching-up stronger; when  
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keeps growing up larger than c, Ihistory will still negative in a certain range, so that the missile will 

continue to enhance its pitching-up trend. The analysis is similar for the pitching-down process. This 

is equivalent to increasing the ‘inertia’ of the system, and the damping is reduced relatively. 

Therefore, the response rate will become faster and the overshoot will increase as well. 

  
(a) angle of attack （b）enlarged view of angle of attack 

  

(c) Pitching angular velocity (d) deflection angle of the rudders 

Figure 10. Comparison of Case2, Case3 and Case4 

Because of the limited computing resources, we only simulate the pitching process within 2 

seconds. When it reaches 2s, the response including the integrating link is even worse than the ones 

without. If the simulation keeps running forward, the final response including the integrating link can 

converge to the expected value, but it will take lots of time (more than 10s). If we want to approach 

the steady-state value faster, the gain factor ki should be larger. But this may cause excessive 

overshoot and eventually make the entire system out of control. In order to continue increasing ki, the 

contribution of the integrating link IkqkiIhistory should be restricted. According to Equation (15) and 

the expected trimmed angle of attack, we can get IkqkiIhistory=217.025. So the limitation is set as 

|IkqkiIhistory|<250 and ki is taken as 50 (Case5 in Table 2). The response is shown in Figure 11. 

Comparing with Case3, although the integrating gain factor is increased by 50 times, the overshoot is 

almost unchanged, and the approaching rate to the steady-state value is increased slightly, so the 

performance of the controller is improved in some degree. 

As shown in Figure 11, the overshoot phenomenon is not improved obviously. According to the 

maximum angular velocity in Case1 simulation process, we introduce a restriction condition to the 

rudder angular velocity (Case6 in Table 2) based on Case5. The maximum angular velocity in Case1 

is max=98.137/s, so we choose the limitation of |qc|<120. The CFD-based NVF results are plotted in 

Figure 12 and compared with those of Case1. The overshoot phenomenon has almost disappeared. 

Comparing with the baseline Case1, the static error is eliminated, the response time is shortened 
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substantially, so the control performance is improved obviously. 

 

  
Figure 11. Comparison of the results between 

Case3 and Case5 

Figure 12. Comparison of the results between 

Case1 and Case6 

 

Finally in summary, we list the response performance in Table 3 of all the six cases. The steady state 

angle of attack , the steady-state rudder deflection angle , and the dynamic parameters (such as 

the rising time tr, the setting time ts  and the overshoot p) are compared. The rising time is defined as 

the response time when the model reaches the steady-state value for the first time. The setting time tr 

is defined as the response time when the status of the model no longer exceeds a certain error band. 

Here we define the error band as 0.1. The overshoot is defined as the ratio between the exceeding 

response and the steady-state value. It’s obvious that the static error is significantly reduced and the 

rising time is greatly shortened with the increasing of the control gain factors. However, the overshoot 

is too large if we do not restrict the rudder angular velocity qc, so the setting time increases finally. 

But in Case6, the overshoot is controlled very well after introducing a restriction condition of the 

rudder angular velocity, which is reasonable for realistic control device.  

 

Table 3. Comparison of response parameters between Case1 and Case2 

  (°)  (°) rt (s) 
st (s) p (%) 

Case1-CFD 31.1608 -11.5552 0.6985 0.9715 0.7079 

Case2-CFD 30.3823 -10.5750 0.2769 1.3374 38.1878 

Case3-CFD 30.0000 -10.2844 0.2730 >2 42.7023 

Case4-CFD 30.0000 -10.2844 0.2694 >2 54.7513 

Case5-CFD 30.0000 -10.2844 0.2730 1.6810 42.7023 

Case6-CFD 30.0000 -10.2844 0.4090 0.7704 2.5753 

 

4.5 Comparison of the flow structure of Case1, Case2 and Case6 

Since the pitching movements of Cases 2 – 5 are very similar, so we just compared the flow 

structures of Case1, Case2 and Case6. Figure 13 shows the Q contours (colored by pressure) over the 

model at six typical times for Case1, Case2 and Case6. It can be seen that the flow separation from 

the leading edge of the forebody delta wings and the rudders with angle of attack increasing. At lower 

angles of attack, the flow separation structures only occur at the tip of the rudders and within the 

model base (see the enlarged views in Figure 14). For Case2, because of the overshoot phenomenon, 

the maximum angle of attack is about 40, so the flow separations are much more serious. At t=0.5s 

for Case2, the flow over the forebody delta wings and the rudders is fully separated (see the enlarged 

views in Figure 14). Anyway, when approaching the final trimmed state (for example t=2.0s), the 

flow structures of Case1, Case2 and Case6 are almost same with each other. 
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Finally, Figure 15 shows the spatial streamlines over the model at different times with different 

angles of attach during pitching procedure. We also can see clearly the flow separation patterns with 

angle of attack increasing. It is difficult for conventional 2nd numerical methods to capture accurately 

the large-scale flow separation. We will validate the results with later experiments in the future. 

   
t=0.01s 

   
t=0.1s 

   
t=0.2s 

   
t=0.3s 

   
t=0.5s 
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t=2.0s 

Left: Case1 Middle: Case2 Right: Case6 
Figure 13. Q contours (colored by pressure) over the model for different cases. 

 

   
t=0.01s 

   
t=0.1s 

   
t=0.2s 

   
t=0.3s 
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t=0.5s 

   
t=2.0s 

Left: Case1 Middle: Case2 Right: Case6 

Figure 14. Enlarged views of Q contours (colored by pressure) near the rudders for different cases.   

 

   
t=0.01s t=0.1s t=0.2s 

   
t=0.3s t=0.5s t=2.0s 

Figure 15. The spatial streamlines for Case6 at different times 

 

5  Concluding remarks 

A multi-physics coupled platform is presented for numerical virtual flight simulations, which integrates 

the high-efficient parallel unsteady RANS solver, dynamic hybrid grid generator, 6DOF flight 

mechanics solver, and flight control law. The nonlinear dynamic inversion method is adopted to 

design the flight control law of a super maneuverable missile model in the pitching channel. Through 

the simulation and analysis of the maneuvering process, the baseline dynamic inversion control law is 

improved, and a set of optimized control gain factors are obtained.  

As illustrated by the test cases, for the rapid maneuvering of an aero-vehicle at large angles of 
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attack, flight mechanics simulations may often result in large errors due to the inaccurate 

approximation of aerodynamic model. The CFD-based NVF simulation is able to provide more 

reliable closed-loop response characteristics of the control system, because it has taken into account 

the strong unsteady effect of the controlled plant. More importantly, we can realize integrated multi-

discipline optimization in the future, using the NVF tools. 
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