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Abstract: This work is devoted to a numerical study of two-dimensional incompressible flow
around a porous medium obstacle on top of an impermeable wall. The porous medium is either
formed of thousands of small particles for the direct numerical simulation or considered as a con-
tinuum and is modelled with penalized Navier-Stokes equations. Several penalization models are
studied and simulated. Applications encompass flow at various regimes over a large porous rect-
angle. Results show significant discrepancies between the different penalization models compared
to the direct numerical simulation of the flow inside and outside the porous medium.
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1 Introduction
For more than fifty years now, numerous analyses have been dedicated to the modelling of a porous medium-
fluid system, either deriving a boundary condition at the interface [1] or using a simplified model within which
the porous medium is taken into account using a penalization method [2, 3] in order to avoid numerical
simulation of coupled equations in the fluid and in the porous medium without knowing the appropriate
conditions at the interface.
In this work, the porous medium is a large rectangle made of many particles close to each others and the
aim is to compute accurately incompressible flow inside and outside the porous medium. The flow is first
computed by solving the Navier-Stokes equations in the whole domain including the particles. In a second
step, the porous zone is replaced by an homogeneous medium taking into account its property ("permeability"
and porosity). Several models are proposed adding a penalization term inside the momentum equation and
results are compared to those obtained by direct numerical simulation. The penalization models range from
the simple first order model to a full model involving a tensor depending on the local flow. They can be
found respectively in [2, 4, 3, 5, 6].
The Navier-Stokes equations are approximated by an accurate finite differences scheme and solved by a
multigrid procedure involving several grid levels. The code is highly parallelized with MPI directives.
The models and the results are carefully analysed to see which penalized model yields results closest to those
from the direct simulation. In particular the flow inside the porous medium are scrutinised and the velocity
profiles are provided in the whole domain to highlight the impact of penalization approach close to and far
from the porous zone.

2 Numerical approximation and results
The porous rectangle is made of 12000 solid squared particles aligned on 30 rows of 400 squares with a porosity
ε = 0.913 that is consistent with Brinkman’s approximation. The domain is a large box Ω = (0, 600)×(0, 600)
including the porous rectangle (100, 500)× (0, 30). To better compare the results, the numerical simulations
are performed on a medium 3840×3840 cells Cartesian grid. The genuine Navier-Stokes equations are solved
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for the velocity U and pressure p in the fluid:

ρ∂tU + ρ(U · ∇)U − µ∆U +∇p = 0 in ΩT = Ω× (0, T ),

div U = 0 in ΩT ,

where ρ is the density, µ is the viscosity and T is the simulation time. When a penalized model is used to
account for the porous medium, the momentum equation is replaced by:

ρ∂tU + ρ(U · ∇)U − µ∆U + εµH(U)−1U +∇p = 0 in ΩT = Ω× (0, T ),

where H(U) is a tensor which can depend on U [5].
The simplest model is obtained while considering H(U) = kI where k is the intrinsic permeability of the
porous medium and I the identity tensor (this case is noted K in the following). Then the well-known second
order extension of [3] with

εµH(U)−1U =
εµ

k
U +

ρε2F

sqrt(k)
‖U‖U

where F is the Forchheimer tensor (this case is denoted K2). Finally the more complex form of H(U),
depending on the local Reynolds number and on the angle of the pressure gradient inside the porous medium,
is used to improve the approximation [6]. This last case is referred as H and is compared to the two simpler
cases K and K2.
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Figure 1: Vertical mean velocity profile at three different positions in x-direction 200, 400 and 500 for
Re = 10. Left: the direct numerical simulation (DNS) is compared to the penalization models (K), (K2)
and (H). Right: zoom of the velocity profile above the porous zone.

At low Reynolds number, Re = 10, the four approximations above give about the same profile in the fluid
domain as can be seen in Figure 1. The velocity obtained by the three penalization models almost coincide
between each other and are in very good agreement with the mean velocity profile obtained from the direct
numerical simulation. There is only a small discrepancy at the velocity maximum. Let us point out that
for this low Reynolds number the three penalization models give almost the same dispersion tensor as the
correction is negligible in front of the main term.
For higher Reynolds numbers there are more significant discrepancies. Indeed at Re = 100 the three
penalization models do not give any more the same result. Nevertheless there are in quite good agreement
with the reference flow computed by DNS on a finer grid (see Figure 2). But the results obtained with the
full tensor (H) are closer to the reference flow which shows the efficiency of the correction. In that case the
interest of the penalization model (H) is obvious as it gives almost the same result than DNS on a finer grid.
Thus this is a way to compute the right solution saving a lot of computational time.
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Figure 2: Vertical mean velocity profile at three different positions in x-direction 200, 400 and 500 for
Re = 100. Left: the direct numerical simulation (Ref) is compared to the penalization models (K), (K2)
and (H). Right: zoom of the velocity profile above the porous zone. In this case the DNS is performed on a
finer grid ans is referred as the reference flow.

3 Conclusions
Results obtained in this work show that an incompressible flow within a porous medium-fluid system can be
successfully modelled by a volume penalization term using a tensor depending on both the local Reynolds
number and the local pressure gradient orientation.
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