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Abstract: The hybrid kinetic Weighted Essentially Non-Oscillatory (WENO) 

scheme proposed in Int. J. Numer. Meth. Fluids 2015, 79: 290-305 is further 

studied in this paper. In a conventional WENO framework, flux vector splitting 

(FVS) techniques are usually used for the numerical flux evaluation at cell 

interfaces, and it is well known that the numerical dissipation of FVS methods is 

relatively large due to the free transfer mechanism of gas molecules, in order to 

reduce the dissipation in the procedure of flux calculations, a hybrid kinetic WENO 

scheme was introduced in the above-mentioned paper, where the 5th order scheme 

employing the proposed hybrid kinetic approach has been validated. In this paper, 

we further test the 7th order scheme using the hybrid kinetic method. It is indicated 

that the 7th order hybrid kinetic WENO scheme is more accurate and less 

dissipative than that adopting conventional FVS techniques and has a good shock-

capturing capability, some examples including both one-dimensional and two-

dimensional cases are presented. 
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1     Introduction 
 
Essentially Non-Oscillatory (ENO) schemes were started with the classic paper of Harten et al.[1] and 

further efficiently implemented in [2, 3] for hyperbolic conservation laws. Later Weighted ENO 

(WENO) schemes were developed [4, 5], using a convex combination of all candidate stencils instead 

of just one as in the original ENO idea. The WENO reconstruction is very effective in both 

controlling numerical oscillations and restoring smooth distributions, which has been widely used in 

many practical applications. 

In recent years, the development of gas-kinetic schemes for compressible flow simulations has 

attracted much attention and become mature, such as the Kinetic Flux Vector Splitting (KFVS) 

methods[6, 7, 8], the various algorithms based on the Bhatnagar-Gross-Krook (BGK) model[9, 10, 

11, 12, 13], and many others. The gas-kinetic schemes use various kinetic equations to model the 

dynamic processes around a cell interface and can provide robust and accurate numerical solutions for 

various compressible flows. 

The combination of the WENO reconstruction and gas-kinetic flux formulation has been recently 

studied by some researchers [14, 15, 16]. In [24], a hybrid kinetic WENO scheme was proposed based 

on the hybridization of two types of kinetic fluxes, i.e. the free transfer KFVS flux and the collision-

related flux, both evaluated from the WENO reconstruction technique. The 5th order scheme 

employing the proposed hybrid kinetic approach has been validated in [24]. In this paper, we will 
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further test the 7th order scheme using the hybrid kinetic method. It is indicated that the 7th order 

hybrid kinetic WENO scheme is more accurate and less dissipative than that adopting conventional 

FVS techniques and has a good shock-capturing capability, many examples including both one-

dimensional and two-dimensional cases will be presented. 

 

2     Hybrid kinetic WENO scheme 
 
The finite volume hybrid kinetic WENO scheme proposed in [24] will be briefly presented in this 

section. The WENO reconstruction techniques proposed in [5, 25] will be used in the proposed hybrid 

kinetic scheme. Some improved smoothness indicators have been proposed and investigated 

recently[17, 18, 19], our numerical experiments indicate that these smoothness indicators can also 

work well for the proposed scheme. 

Next we will describe the hybrid kinetic WENO scheme [24] for solving the Euler equations. For 

the sake of simplicity, only the one-dimensional case is presented and it can be easily extended to 

multidimensional cases in a dimension by dimension manner [5]. The 1D Euler equations can be 

written as 
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the cell center xi, the cell interface xi+1/2 and the cell size Δx, a finite volume method can be written as 
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The third-order TVD Runge-Kutta method proposed in [2] will be used to integrate in time. Therefore 

we only need to specify the construction of the numerical flux 
1/2

ˆ
iF  for a finite volume scheme. 

 

2.1     Conventional WENO scheme 

 

As shown in [5], the numerical flux 
1/2

ˆ
iF  in Eq. (2) can be divided into two parts 

1/2 1/2 1/2
ˆ ˆ ˆ

i i i

 

   F F F
,                                                           (3) 

where 
1/2

ˆ
i



F  is the flux along x-positive direction and 
1/2

ˆ
i



F  is the flux along x-negative direction. Let 

iF  be the numerical flux based on the cell averaged value iU . In order to evaluate 
1/2

ˆ
i



F  in Eq. (3), 

first we split the numerical flux into two parts 

i i i

  F F F ,                                                                  (4) 

which can be achieved by many flux splitting approaches, such as the Lax-Friedrichs [5] or Steger-

Warming[20] flux splitting method. Then the numerical flux 
1/2

ˆ
i



F  in Eq. (3) can be obtained from 

i


F  by the WENO reconstruction technique, and 

1/2
ˆ

i



F  can be calculated from i


F  by a symmetric 

procedure with respect to xi+1/2. The underlying physical principle for such a conventional WENO 

algorithm is the collisionless free transfer of gas molecules. 

The kinetic flux vector splitting (KFVS) technique [6, 7] can also be used in Eq. (4), and the 

numerical flux 
1/2

ˆ
iF  in Eq. (3) calculated by the KFVS approach is denoted by 

1/2

KFVSˆ
i

F , and a 

conventional 5th-order/7th-order WENO algorithm[5, 25] based on the KFVS technique will be 

called the W5-KFVS/W7-KFVS scheme hereafter in this paper. 

 

2.2     Hybrid kinetic WENO scheme 
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In the following we will present the construction of a hybrid kinetic numerical flux, which includes 

the effects of both the free transfer and the collision of gas molecules. The hybrid kinetic flux can be 

written as 

 
1/2 1/2

KFVS C

1/2
ˆ ˆ ˆ1

i ii  
    F F F ,                                                 (5) 

where 
1/2

KFVSˆ
i

F  is the collisionless KFVS-type numerical flux, 
1/2

Cˆ
i

F  is the numerical flux due to 

molecule collision effects, and   is a parameter in the range 0 1   and will be hereafter called 

the jump indicator. It should be pointed out that this kind of hybrid numerical fluxes has been used in 

some kinetic schemes, see for example [21, 22, 23], and to name just a few. 

Since the evaluation of the collisionless KFVS-type flux 
1/2

KFVSˆ
i

F  in Eq. (5) is the same as that 

described in the preceding subsection, therefore in order to use Eq. (5) to get the hybrid numerical 

flux, we only need to determine the collision-related kinetic flux 
1/2

Cˆ
i

F  and the jump indicator  . 

The collision-related kinetic flux 
1/2

Cˆ
i

F  can be constructed as follows. The basic idea of 

evaluating is to calculate the flux 
1/2

Cˆ
i

F  based on the collision-related state 
1/2

Cˆ
i

U  constructed at the 

cell interface xi+1/2. In order to get the collision-related state, first we split the cell averaged 

conservative variable iU  into two parts 
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  U U U ,                                                           (6) 
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Then the collision-related state 
1/2

Cˆ
i

U  at the cell interface can be obtained by 

1/2 1/2 1/2

Cˆ ˆ ˆ
i i i  

  U U U ,                                                       (8) 

where 
1/2

ˆ
i


U  is determined from i


U  by the WENO reconstruction technique, and 

1/2

ˆ
i


U  is calculated 

from i


U  by a symmetric procedure with respect to xi+1/2. 

The principle to construct the jump indicator α is that the contribution of the flux 
1/2

KFVSˆ
i

F  should 

be dominant around strong shock waves and small in smooth regions. This is because that the 

collisionless flux 
1/2

KFVSˆ
i

F  is more dissipative than the collision-related flux 
1/2

Cˆ
i

F . Similar to the way in 

[21, 22, 23], in the present study we use the local pressure jump around the cell interface to determine 

the jump indicator  , 

1

1

1 exp
i i

i i

p p
C

p p
 



  
   

 
,                                                 (9) 

where C is an empirical positive constant, it can be seen that for the same local pressure jump, a larger 

value of C results in a larger value of and therefore more KFVS-type contribution in the hybrid 

kinetic flux which makes the scheme more dissipative. Fortunately, our numerical experiments as 

well as those in [21, 22, 23] indicate that the numerical results are not sensitive to the chosen value of 

C, for the present hybrid kinetic scheme, we find that C=10 is a quite good choice based on plenty of 

numerical experiments, therefore it is used for all the numerical tests in this paper, and the same value 

of C has been adopted in [22]. 

From Eq. (5) we can see that both 
1/2

KFVSˆ
i

F  and 
1/2

Cˆ
i

F  need to be calculated for each cell interface 

except for α=0 or α=1. In order to improve the efficiency of the proposed scheme, we introduce the 

following cut-off type of hybrid flux, 
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where  0 0.5    is a parameter to control the cut-off range of α. Based on a large number of 

trials we find that 0.02   is a satisfactory choice after considering the overall performance, such as 

the accuracy and efficiency, of the proposed scheme, and therefore it is adopted in this paper. 

Up to now, we have evaluated all the unknowns in Eq. (10) which can be used to get numerical 

fluxes for the hybrid kinetic WENO scheme [24]. Although the component by component version of 

the introduced hybrid kinetic WENO scheme is effective and works reasonably well for many 

problems, in this paper we will use the more costly, but much more robust characteristic 

decomposition technique[5] in order to test some demanding problems. The proposed 5th-order/7th-

order hybrid kinetic WENO algorithm will be called the W5-HK/W7-HK scheme hereafter in this 

paper. 

 

3     Numerical experiments 

 

In [24], the 5th order scheme employing the proposed hybrid kinetic approach has been validated. In 

this section, we will test the 7th order hybrid kinetic WENO scheme in both one-dimensional and 

two-dimensional cases. The uniform mesh is used for both 1D and 2D test problems. 

 

3.1     Accuracy test 
 

This example is to test the accuracy of the 7th order hybrid kinetic WENO scheme. We solve the 1D 

Euler equations with the following initial data: 

 ( ,0) 1 0.2sin ,  ( ,0) 0.7,  ( ,0) 1.x x u x p x                                (11) 

The periodic boundary condition is used, and the computational domain is taken as [0, 2]. We 

compute the solution up to t=2. The errors and convergence orders of density are shown in Table 1. 

This table shows that the 7th order convergence rate can be obtained by both W7-KFVS and W7-HK. 

Moreover, the W7-HK has smaller absolute errors than the W7-KFVS given the same cell size, this 

means that the former is more accurate and less dissipative than the latter. 

 

 

N Scheme L
∞  
error order L

1  
error order L

2  
error order 

8 W7-KFVS 2.37E-3 -- 1.21E-3 -- 1.42E-3 -- 

W7-HK 2.36E-3 -- 1.21E-3 -- 1.42E-3 -- 

16 W7-KFVS 8.35E-5 4.83 2.99E-5 5.34 3.87E-5 5.20 

W7-HK 4.14E-5 5.83 1.97E-5 5.94 2.32E-5 5.94 

32 W7-KFVS 1.48E-6 5.82 4.00E-7 6.22 5.80E-7 6.06 

W7-HK 5.69E-7 6.19 2.06E-7 6.58 2.60E-7 6.48 

64 W7-KFVS 1.44E-8 6.68 3.50E-9 6.84 5.18E-9 6.81 

W7-HK 5.10E-9 6.80 1.73E-9 6.90 2.20E-9 6.88 

128 W7-KFVS 1.19E-10 6.92 2.84E-11 6.95 4.20E-11 6.95 

W7-HK 4.09E-11 6.96 1.39E-11 6.96 1.76E-11 6.97 

 

 

Table 1: 1D accuracy test  
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3.2     Blast wave problem 

 

The blast wave problem was originally proposed in [26], which is a challenging test case due to the 

complex flow structures. The initial flow field is given by 

 

 

 

 

1, 0, 1000 , 5 4

, , 1, 0, 0.01 ,  4 4

1, 0, 100 ,      4 5

x

u p x

x



   


   


 

  .                                        (12) 

The computational domain is [-5, 5] with a reflecting boundary condition on both ends. Since the 

exact solution is unknown for this problem, the reference solution obtained by the W5-HK with 10000 

cells is used for comparison. The numerical results with Δx=0.025 at t = 0.38 are shown in Figure 1. 

From the figure, we can see that the W7-HK/W7-KFVS performs much better than the W5-HK/W5-

KFVS. Moreover, the W7-HK performs slightly better than the W7-KFVS, especially for the complex 

flow regions. 

 

3.3     Shock acoustic-wave interaction 

 

Next we solve the problem proposed by Shu and Osher[3] which describes the interaction of an 

entropy sine wave with a Mach number 3 right-moving shock. The initial conditions are given by 

 
 

 

3.857143, 2.629369, 10.333333 , 4
, ,

1 0.2sin(5 ),  0,  1 ,  4

x
u p

x x


 
 

  

                      (13) 

The computational domain is [-5, 5], the output time is t=1.8. The reference solution for comparison is 

obtained by the W5-HK with 10000 cells. The numerical results with Δx=0.025 are shown in Figure 

2. From the figure, we can see that the 7th order W7-HK gives much better numerical results than the 

W5-HK. 

 

3.4     Double Mach reflection problem 

 

This problem was extensively studied in [26] and later by many others. The computational domain is 

taken as [0,4] [0,1] . Figure 3 displays the close-up of density contours with 30 equally spaced 

contour lines at t=0.2 with a 1920X480 uniform grid. First, it is clearly seen that the 7th order W7-

HK/W7-KFVS captures the instability and roll-ups of the slip line better than the 5th order W5-

HK/W5-KFVS. Moreover, W7-HK/W5-HK performs slightly better than W7-KFVS/W5-KFVS, 

which indicates that W7-HK/W5-HK is less dissipative than W7-KFVS/W5-KFVS. 
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Figure 1: Blast wave problem, the bottom is an enlarged view of the top. 
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Figure 2: Shock acoustic-wave interaction problem, the bottom is an enlarged view of 

the top. 
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4     Conclusions 
 
The hybrid kinetic Weighted Essentially Non-Oscillatory (WENO) scheme proposed in [24] is 

further studied in this paper. In [24], the 5th order scheme employing the proposed hybrid kinetic 

approach has been validated, therefore in this paper, we further test the 7th order scheme using the 

hybrid kinetic method.  

Numerical experiments have demonstrated that the present 7th order method (W7-HK) is more 

accurate and less dissipative than the conventional scheme with the KFVS technique (W7-KFVS) for 

smooth flows, furthermore the former can provide shaper discontinuity transition than the latter for 

flows with discontinuities. The present study indicates that the collisionless KFVS technique is 

intrinsically very dissipative, the cautious consideration of the influences of molecule collisions can 

really reduce the numerical dissipation of a high-order scheme. 
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