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Abstract: Aircraft Aerodynamic Shape Optimization is a complex, large-scale and 

expensive optimization problem. Adjoint-based gradient optimization method plays 

a significant role in aerodynamic shape design. In this paper, we mainly focus on 

the optimization algorithm applied to aircraft aerodynamic design field. BFGS, a 

quasi-Newton algorithm is employed here, and some improvements in line search 

and descent direction computation are made to speed up the convergence of the 

algorithm. After improvements, the physical change of variables in each iteration 

can be evaluated, set and control. The optimization model with the drag coefficient 

minimization objective and wing thickness constraints for Wing-Body-Tail 

Common Research Model (CRM) is established. Aerodynamic shape design for 

CRM with Wing-Body-Tail Configuration is carried out. The optimization results 

are compared and discussed. Our optimization procedure reduced the drag from 

167.9 counts to 157.2 counts (6.4% reduction) within 11 iterations. The 

optimization results demonstrate the effectiveness of the improved BFGS method 

proposed in this paper. 
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1     Introduction 
 

With the development of the high performance computing, numerical optimization that requires huge 

computational resources becomes possible, such as Aerodynamic Shape Optimization [1]. In 

Aerodynamic Shape Optimization process, Computational fluid dynamics (CFD), which is 

computationally expensive, is repeatedly employed to accurately obtain the flow, providing the 

objective function value. Furthermore, it should always deal with hundreds of design variables, and 

the complex constraints in engineering. Aircraft Aerodynamic Shape Optimization is a complex, 

large-scale and expensive optimization problem. Performing high-fidelity aerodynamic shape 

optimization is a challenging and expensive task, and the optimization algorithm is one of its key 

problems.  

Generally, the optimization methods could be divided into two classes: gradient-free and gradient-

based ones. The former ones are easy to implement and can converge to the global optimum in theory, 

but their computational cost is much high especially for the large-scale variable problems. The latter 

ones make use of the gradient information of the objective function, and usually converge to a local 

optimum. They relatively converge fast and easy to deal with large-scale variables problems. In 

Aircraft Aerodynamic Shape Optimization, slight local change in wing shape would issue large 

impact on aerodynamic performance. To finely improve the aerodynamic design, large-scale variables 
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should be taken into account, and gradient-based methods are preferred options for optimization. 

From a literature review, much work has been done based on gradient-based method. The 

aerodynamic shape derivatives are usually computed by adjoint method, which enables the cost of 

gradient evaluation independent of the number of design variables. Much of these researches focused 

on adjoint method, and usually applied mature software for optimization, e.g. SNOPT, IPOPT, et al. 

While some other focused on the aerodynamic performance analysis [2-7]. The Martines’ team 

presented a generalization of the adjoint method in [8]; solved a series of single or multipoint 

aerodynamic shape optimization problems using multilevel optimization acceleration technique based 

on the Common Research Model (CRM) wing benchmark case in [9]-[11], as well as Wing-Body-

Tail Configuration in [12]-[14]; benchmarked several optimization algorithms, including gradient-

based and gradient-free methods in [1], and finally concluded that the gradient-free methods require 

two to three orders of magnitude more computational effort when compared to the gradient-based; 

and some other aerodynamic design optimization studies on Blended-Wing-Body Aircraft in [15]. 

Similar work of other researchers can be found in [16]-[18]. 

In this paper, we mainly focus on the optimization algorithm. BFGS is employed here, and some 

improvements in line search and descent direction computation are made to speed up the convergence 

of the algorithm. The efficiency of the improved BFGS algorithm in CRM Aerodynamic Shape 

Optimization is discussed.  

 

2     Problem Formulation 
2.1     Baseline Geometry 
CRM Wing-Body-Tail Configuration is used to be the baseline geometry. The main reference 

parameters for this baseline configuration are listed in Table 1.  

Table 1 Baseline geometry configuration. 

Parameters Value 

Reference area 191.8 m2 

Reference chord 6.9 m 

Moment reference (0.0; 0.0; 0.0) m 

Reynolds number (Mach = 0.85) 5×106 

 

2.2     Mesh Generation 
The structured mesh of the CRM Wing-Body-Tail is generated by ANSYS ICEM-CFD software. The 

mesh we generated for the test case optimization contains 6,620,160 cells (see Figure 1). 

 
Figure 1: Mesh generation for CRM Wing-Body-Tail  

 

2.3     Design Variables 
Free-form deformation (FFD) approach is utilized to parameterize the CRM wing geometry in this 

paper. Ten airfoil sections are extracted from the CRM wing along with the span-wise direction. The 

shape of each airfoil is defined by 16 control points, where half of these on the top and the other half 

on the bottom. So there are 160 design variables in total (see Figure 2). 
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Figure 2: The shape design variables are the z-displacements of 160 FFD control points 

 

2.4     Constraints 
(1) Lift constraint: the lift coefficient is set to be 0.5. 

(2) Thickness constraint: The relative maximum thickness constraints of three airfoils are taken into 

account (see Figure 3). One airfoil is located at the wing root; the second one is located at the kink; 

and the third one it at the wing tip. The original relative maximum thicknesses of these airfoils are 

13.69%, 10.52%, and 9.51%, respectively. The relative thickness (Rthick) is calculated by equation 

(1), where thickness  represents the actual thickness and chord  denotes the chord length of the 

corresponding airfoil.  

/Rthick thickness chord                                                               (1) 

In this paper, the relative maximum thicknesses of the three airfoils are constrained to 13.5%, 10.5% 

and 9.5%, respectively. 

 
Figure 3: The constrained airfoil sections 

 

2.5     Merit Function 
The optimization objective here is to minimize the drag coefficient 

dC , as well as satisfying some 

constraints. The lift constraint could be addressed by CFD solver, in which the attack angle is adjusted 

and modified to maintain the constant lift coefficient. The thickness constraints are added to the merit 

function as penalty part (see equation (2)).  
2

, ,

( ) 0.3* (max( ) / 1)d i ic

i A B C

f x C Rthick Rthick


                                             (2) 

In equation (2), icRthick  represents the constraint value, i.e. 13.5%, 10.5% and 9.5% corresponding to 

airfoils A, B, and C, respectively. The penalty coefficient in this paper is set to be 0.3. 

 

2.6     Optimization Model 
With the objective of minimizing the drag coefficient of the CRM Wing-Body-Tail geometry in 

nominal cruising state, the shape design variables are set to be the z-coordinate movements of 160 

control points on the FFD volume. All of these points are distributed in ten airfoil sections (see Figure 

2). The lift constraint and the maximum thickness constraint of airfoil sections A, B and C (see Figure 

3) are taken into account. The complete optimization problem is described in Table 2. (To maintain 
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the lift constraint, the attack angle should also be optimized. The attack angle would be optimized 

implicitly during Flow Simulation. And this variable would not appear here.) 

Table 2 Aerodynamic shape optimization problem. 

Function/Variable Description Quantity 

Minimize                 
dC   Drag coefficient 1 

With respect to         z   FFD control point z-coordinates 160 

 Total design variables 160 

Subject to       0.5LC    lift constraint 1 

max( ) 13.5%ARthick   Maximum thickness constraint of airfoil section 1 1 

max( ) 10.5%BRthick   Maximum thickness constraint of airfoil section 2 1 

max( ) 9.5%CRthick   Maximum thickness constraint of airfoil section 3 1 

 Total constraints  4 

 

3     Methodology 
3.1     The Main Framework 

The main framework used for aerodynamic shape optimization in this paper is illustrated in Figure 4. 

There are five key numerical tools and methods that are used for shape optimization, i.e. Geometry 

Parameterization, Mesh Perturbation, CFD solver for Flow Simulation, Gradient Solver, and 

Optimizer. 
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Flow 

Simulation
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Gradient Solver

Adjoint Computation

 
Figure 4: The main framework for aerodynamic shape optimization 

The free-form deformation (FFD) approach is employed for Geometric Parametrization, which 

parametrizes the geometry changes rather than the geometry itself. Mesh Perturbation is carried out 

by a mesh deformation technique, modifying the displacements of the whole grid points under the 

basis of the radial basis functions. In Flow Simulation, a self-developed CFD solver PMB3D with a 

Reynolds-averaged Navier-Stokes (RANS) model is put into use. PMB3D is a large-scale parallel 

structured grid RANS solver. In Gradient Solver, another self-developed, parallelized adjoint equation 

solver, Adjoint3D is employed for gradient computation. In Optimizer, the gradient-based algorithm 

BFGS is employed and improved.  

 

3.2     The Improved BFGS algorithm 
Figure 5 shows the main optimization process of BFGS. 

kD  is the descent direction, alpha  is the step 

length of the line search. Different from the conventional BFGS algorithm, the descent direction 

would be normalized before line search. The initial alpha  is obtained by users according to the 



 5 

optimization experience. And the interpolation method is employed to update alpha , speeding up the 

convergence of the iteration. 

Data Preparation
Geometry 

Parameterization

Design 

variables
Mesh Generation Flow Simulation

Adjoint 

Computation

Gradient 

Evaluation

Objective function 

and Constraints 

Evaluation

Terminate 

Optimization?

Update HkCompute DkX* =Xk+alpha*Dk

Geometry 

Parameterization

Mesh Generation

Flow Simulation

Objective function 

and Constraints 

Evaluation
Terminate 

LineSearch?

Adjoint 

Computation

Gradient 

Evaluation

N
Update alpha

Xk+1=Xk+alpha*Dk

N

Y

k=k+1

Output Y

Line Search

 
Figure 5: The main framework of optimization process. 

 

The detailed steps of BFGS algorithm is as follows. 

Step 0: Give the initial guess 0x  and the initial symmetric positive definite matrix 0H , and let 0k  . 

Compute the gradient vector 
0( )kg f x  . 

Step 1: Check if the terminate conditions are satisfied or not. If yes, go to step 6. 

Step 2: Calculate the descent direction 
kD . 

k k kD H g                                                                          (3) 

1k k xs x x                                                                         (4) 

1k k ky g g                                                                        (5) 
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Step 3: Line search and find one proper step length alpha  
satisfy equation (7).  

( ) ( ) 0k k k kf x D f x                                                         (7) 

Step 4: Let 1k k k kx x D   . Compute 
1 1( )k kg f x  . 

Step 5: Let 1k k  , and then go to step 1. 

Step 6: End, and 
kx  is the approximate minimum point. 

Line search, also called one-dimensional search, is a local search in the BFGS framework, aiming at 

finding one step length to satisfy the descending condition equation (7). Lots of line search methods 

have been proposed [19], such as golden section search, interpolation, Wolfe principle, and Armijo 

principle etc. No matter what method is put into use, the key problem in practice is to define the initial 

step length. A good initial step length could sharply decrease the local iteration, speeding up the 

convergence of the whole algorithm. In addition, due to the expensive computation cost in CFD, in 

the application of aircraft aerodynamic design, we need minimum number of calls to CFD solver and 

the gradient solver. In this paper, quadratic interpolation is employed to search the step length. In 

order to define a reasonable initial guess of the step length, we normalize the descent direction 
kD  

first, and then define an initial guess by engineering experience. When 
kD  is normalized, the 

maximum number in 
kD  vector is 1. And the step length then represents the maximum change in the 

variables, i.e. the step length has a physical meaning. 

 

4     Simulation and Discussion  
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The optimization results with lift and thickness constraints for the CRM Wing-Body-Tail aircraft 

aerodynamic design under the nominal flight condition (Mach 0.85, Re = 5.0e6) are presented in this 

section. The grid of 6,620,160 cells is used for the optimization. Based on the FFD method, 160 

design variables described in Figure 2 are optimized. The initial step length is 0.01, which means that 

the maximum change of the aircraft shape during the optimization process is 1 cm. Our optimization 

procedure reduced the drag from 167.9 counts to 157.2 counts (6.4% reduction) within 11 iterations. 

The comparisons between the initial model and the optimization results are illustrated in Figure 6. The 

comparison of the airfoil sections are given in Figure 7. The iteration process is depicted in Figure 9. 

The constraints variation is described in Figure 8. The number of objective evaluation and the 

corresponding merit function value and drag coefficient value are described in Figure 10.  

          
Figure 6: Comparison of the optimization results with the baseline configuration. 

 

It can be seen from Figure 6 there are closely spaced pressure contour lines exhibited in the baseline 

wing, spanning a significant portion of the wing. And the intensive pressure contour lines indicate a 

shock. While in the optimized wing, the pressure contour lines are near uniform spacing, indicating 

shock elimination under the nominal flight condition. The airfoil Cp distributions of different position 

(as % of range) are also depicted in Figure 6. After optimization, the sharp increase in local pressure 

due to the shock becomes a gradual change from the leading edge to the trailing edge, indicating a 

shock-free state. 

 

 

 

 

 

 
Figure 7: Comparison of the airfoil sections. 
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Figure 8: Constraints variation. 

 

It can be seen from Figure 7 the thickness change of the airfoil sections before and after optimization 

is not significant. This is due to that the airfoil thicknesses are constrained to constant values, which 

are near to their initial thickness values. But it still can be seen, most of the airfoils in Figure 7 are 

slightly thinner than the original ones. Figure 8 illustrates the constraints change with the optimization 

process. The constraint value is calculated as: 
i icRthick Rthick , where , ,i A B C . It can be seen from 

Figure 8, the relative maximum thickness of airfoils A and B decreases while that of airfoil C 

becomes slightly larger. The change of airfoil B is more obvious than others. 

 

     
Figure 9: Iteration process.    

 

 
Figure 10: Number of objective evaluation vs. the merit function value and the drag coefficient. 
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Figures 9 and 10 separately describe the drag coefficient and the merit function change with the 

iteration process and the CFD solver calls. It can be seen from Figure 9 the whole optimizing process 

converged within 11 iterations. The optimal solution is obtained at iteration 10, and at iteration 11 the 

optimizer can not found a better solution in line search. The whole optimization is terminated by the 

failure of line search.  

For each objective evaluation, the CFD solver should be called once. At the beginning of the 

optimization (before iteration 9), the line search could always find a superior point at the first search. 

At iterations 9 and 10, the line search searches three times to obtain a superior point, while at iteration 

11 the line search tries 9 times, and then terminate the optimization as the step length is too small to 

continue.  

Seeing the partial enlarged drawing in Figure 10, some points with smaller drag coefficient are 

evaluated, but due to the penalty on constraints, the corresponding merit function values are relative 

high and these points are abandoned.  

The simulation results demonstrate the effectiveness of the improved BFGS algorithm and the 

optimization strategy to certain degree. In terms of the algorithm efficiency, the improved BFGS 

algorithm work well. 6.4% reduction of drag coefficient has been obtained by only ten iterations and 

15 CFD solver calls. The initial step length in line search can easily be determined by introducing 

engineering experience, as the step length represents the design variable variation range in physics. A 

good initial step length could efficiently prevent meaningless searching, and speed up the 

convergence velocity. In terms of the optimization results, the optimized shape indicates shock 

elimination. Compared with some other gradient-based algorithm, such as SQP (Sequential Quadratic 

Programming), BFGS is not good at dealing with constraints. On accounting of equality or un-

equality constraints, SQP algorithm may be more proper. However, the effectiveness of the 

improvements in line search could be demonstrated in this paper. And it also could be introduced to 

the other gradient-based algorithms. 

 

5     Conclusions   

 
Performing high-fidelity aerodynamic shape optimization is a challenging and expensive task, and the 

optimization algorithm is one of its key problems. Adjoint-based gradient optimization method plays 

a significant role in aerodynamic shape design. In this paper, we mainly focus on the optimization 

algorithm applied to aircraft aerodynamic design field. BFGS, a quasi-Newton algorithm is employed 

here, and some improvements in line search and descent direction computation are made to speed up 

the convergence of the algorithm. After improvements, the physical change of variables in each 

iteration can be evaluated, set and control. The optimization model with the drag coefficient 

minimization objective and wing thickness constraints for Wing-Body-Tail Common Research Model 

(CRM) is established. Aerodynamic shape design for CRM with Wing-Body-Tail Configuration is 

carried out, and the optimized shape indicates shock elimination. The simulation results demonstrate 

the effectiveness of the improved BFGS algorithm and the optimization strategy to certain degree. 

Compared with some other gradient-based algorithm, such as SQP, BFGS is not good at dealing with 

constraints. In our near future, the proved improvements in line search would be introduced to SQP, 

improving the optimization algorithm in dealing with constraints in aerodynamic shape design. 
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