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Abstract: Despite its simple formulation, the AUSM-type flux schemes exhibit robust and ac-
curate treatment of both linear and non-linear waves in complex flow fields. This paper presents
the progress of AUSM-type fluxes augmented with pressure-based weight functions introduced
by the authors and colleagues. Starting from a robust and accurate numerical flux designed for
single-phase gas dynamics (AUSMPW+), extensions to capture multi-phase flow physics with
phase transition (AUSMPW+_N) have been carried out. The accuracy of the computed results
by AUSMPW+_N for multi-phase flows is then further improved by introducing a simple phase
interface sharpening procedure, which scales the volume fraction in a mass-conserving manner.
Various all-speed compressible tests ranging from interactions between a shock and a phase inter-
face, two- and three-dimensional interface-only problems to a cryogenic three-component flow with
phase change are computed to demonstrate the effectiveness of the proposed method.
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1 Introduction
Numerical studies on compressible multi-phase flows have been carried out in a wide range of disciplines
for decades, but are still challenging to perform due to the physical complexity intrinsic to multi-phase
flows. (Throughout the paper, the tern “multi-phase flow” refers to multi-species and/or multi-phase flow;
accordingly, “phase interface” refers to either the interface between different species or the interface between
different phases of a single species.) Numerical methods, originally developed for single-phase gas dynamics,
struggle to deal with such complex phenomena: the creation and evolution of another discontinuity (phase
interface) besides a shock. Even though there exists a large disparity in material properties in both shock
and phase interface, the fundamental wave natures of these discontinuities differ. Therefore, a numerical
method for compressible multi-phase flows should be able to

(i) treat the shock and phase interface in different manners,

(ii) overcome the stiffness arising from the largely disparate flow speeds, pressures, and material properties,

(iii) demonstrate the travel and deformation of the phase interface over a long period of time,

(iv) include the creation/demise of the phase interface due to phase changes.

This becomes much more complicated when more than two phases exist. Thus, we add the condition that
the numerical method for multi-phase flows should be able to

(v) readily include an additional phase without incurring a significant increase in computational complexity.
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Depending on the way phase interfaces are treated, there are two types of numerical methods for describing
two-phase flows: sharp interface methods and diffuse interface methods. Although sharp interface methods,
such as the front-tracking method [1], the level-set method [2], or the ghost fluid method [3], can continuously
maintain the sharp representation of a phase interface, they cannot handle dynamically created interfaces.
If the condition (iv) is essential for the problem of interest, a diffuse interface method is adopted. Diffuse
interface methods consider a phase interface as a diffused zone, not a sharp discontinuity, and can apply the
same numerical method or model for both pure fluid and interface mixture zones. A dynamically created
interface by phase change is naturally handled. However, the major drawback of diffuse interface methods
is that interfaces are gradually smeared due to numerical diffusion.

A homogeneous mixture model, a type of diffuse interface method, is established based on the assump-
tion of mechanical and thermal equilibrium between different phases in a computational cell. Although
the detailed non-equilibrium effects at the phase interface could be reflected with more sophisticated non-
equilibrium models [4, 5, 6], the homogeneous mixture approach is still attractive in respect of its simplicity
as follows:

• One set of mass, momentum, and energy conservation laws is computed for the mixture, rather than
multiple sets of conservation laws for each component.

• Extension to flows with three or more phases or species is readily acquired.

• Securing conservative and hyperbolic properties facilitates the use of numerical methods developed for
single-phase gas dynamics.

For the sake of condition (v), we use the homogeneous mixture model to compute various multi-phase flows.
Within the framework of a homogeneous mixture model, a robust numerical flux function that satisfies
conditions (i) and (ii) and a numerical technique to manage the interface smearing for condition (iii) are
necessary to meet the conditions listed above.

First, a robust numerical flux is required for compressible two-phase flows. Since the proposition of the
original advection upstream splitting method (AUSM) [7] for gas dynamics, AUSM-type numerical fluxes
have gained much attention and popularity. Despite its simple basic formulation, the AUSM scheme secures
the robust and accurate treatment of both linear and non-linear waves in complex flow fields. Preserving
the main idea of AUSM-type flux splitting, a series of sequels have been developed to overcome some defects
and/or to extend the range of applications [8, 9]. This work presents the progresses of AUSM-type fluxes
augmented with pressure-based weight functions introduced by the authors and colleagues [10, 11, 12].
Starting from a robust and accurate numerical flux designed for single-phase gas dynamics, extensions to
multi-phase flow have been carried out with emphasis on conditions (i) and (ii).

Second, the diffuse interface model can be augmented with an interface-sharpening procedure to achieve
condition (iii). Contrary to a shock wave which contains a physical compressive mechanism, a phase interface
does not possess any physical means with which to counter numerical diffusion. Several studies provide nu-
merical maneuvers to restore or preserve the sharp interface in compressible flows: the interface compression
[13], anti-diffusion [14], tangent of hyperbola for interface capturing (THINC) [15] methods, TVD limiters
[16, 17], and a level-set approach [18]. The present work proposes a simple but accurate interface-sharpening
procedure with mass conservation.

After the brief introduction on the governing equation in Section 2, the extension of AUSMP-type nu-
merical fluxes is presented. In Section 4, we explain the interface-sharpening method with mass conservation
for the homogeneous mixture model. The results of validation tests of the proposed methods are shown in
Section 5 and followed by the conclusion.
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2 Numerical Modeling

2.1 Governing Equations
The homogeneous mixture model is adopted to describe multi-phase flows. The governing equations for the
homogeneous mixture flow are expressed as

∂

∂t

∫
Ω

~WdΩ +

∮
∂Ω

[
~F − ~Fv

]
dS =

∫
Ω

~SdΩ. (1)

The vector of conservative variables ~W and the convective flux vector ~F are respectively given by

~W = [ρ ρu ρv ρE ρyv ρyg]
T
, (2)

~F = [ρU ρuU + nxp ρvU + nyp ρHU ρyvU ρygU ]T. (3)

Here, ~S is the source term vector, and U(≡ nxu + nyv) is the contravariant velocity component normal to
the surface element dS. The mass fractions satisfy the following constitutive relation:

yl + yv + yg = 1, (4)

where the subscripts (l, v, g) signify the liquid, gas phase of the same fluid, and non-condensable gas
of another fluid, respectively. As represented in Eqs. (1)-(3), the consideration of the third phase (non-
condensable gas) is achieved by the insertion of one more continuity equation.

2.2 Equation of State (EOS)
The governing equations are closed with equation of state for each component phase. For air and liquid
water, stiffened-gas model is used.

p = (γi − 1)ρi
Cp,i
γi

T − γip∞,i (i = l, v, g). (5)

For cryogenic fluids, all thermodynamic properties of both liquid and vapor phases are generated from the
standard reference database 23 available from the National Institute of Standard and Technology (NIST)
[19]. To access these thermodynamic properties efficiently, we use the spline-based table look-up method
[20].

The mixture density is then defined by the Amagat’s law with the densities of the constituent phases:

1

ρ
=

(1− yv − yg)
ρl

+
yv
ρv

+
yg
ρg
. (6)

The mixture enthalpy is calculated as

h = hl (1− yv − yg) + hvyv + hgyg. (7)

2.3 System Preconditioning
In order to handle flows spanning from subsonic to supersonic Mach numbers, the governing equations (Eq.
(1)) are preconditioned using the preconditioning matrix Γ of Weiss and Smith [21] as follows:

Γ
∂

∂τ

∫
Ω

~QdΩ +

∮
∂Ω

[(
~F − ~Fv

)
· ~n
]

dS =

∫
Ω

~SdΩ. (8)

The time variable t has been changed to τ , which indicates that Eq. (8) should be applied to steady
computations. Here, ~Q stands for the vector of primitive variables given by ~Q = [p u v T yv yg]

T. If
1/β inside Γ becomes ∂ρ

∂p , then Γ goes back to the Jacobian matrix ∂ ~W

∂ ~Q
, resulting in a non-preconditioned
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system in the primitive form. The eigenvalues of the preconditioned system in Eq. (8) are then given by

λ

(
Γ−1 ∂

~F

∂ ~Q

)
= U,U, U, U, U ′ −D,U ′ +D, U ′ =

1

2

(
1 +

c′2

c2

)
U, D =

1

2

√(
1− c′2

c2

)2

U2 + 4c′2. (9)

The relation between 1/β and the preconditioned speed of sound c′ is

1

β
=

1

c′2
−

∂ρ
∂T

(
1− ρ∂h∂p

)
ρ ∂h∂T

(10)

with
c′ = min

(
c,max

(√
u2 + v2, Vco

))
. (11)

In Eq. (11), Vco is a cut-off value that is typically used to prevent c′ from becoming zero in the vicinity
of stagnation region. The cut-off value is generally specified as Vco = kV∞. For supersonic flows, the
preconditioned speed of sound becomes the local speed of sound c, meaning that the preconditioning is
turned off.

For unsteady low-Mach number computations, the dual time-stepping method is employed. When a
physical time step ∆t is large, the preconditioned speed of sound for steady flows (Eq. (11)) still works, but
it causes unsatisfactory convergence behavior for intermediate and small time steps. In order to overcome
this, Venkateswaran and Merkle [22] proposed a preconditioning method that takes the effect of the Strouhal
number into account through von Neumann stability analysis. The resulting preconditioned speed of sound
for unsteady flows c′un is then given by

c′un = min
(
c,max

(√
u2 + v2, Vco, Vun

))
. (12)

The unsteady preconditioning parameter is defined as Vun = Lch

π∆t = Lch

π∆tV ×V = Str×V , where Lch is a char-
acteristic length scale. Although Vun was derived for single-phase gas flows, it is applicable to multi-phase
flows because multi-phase effects induced by the homogeneous mixture model simply change the magnitude
of the speed of sound. For steady flows or low Strouhal number flows with a large time step ∆t, Vco is
larger than Vun; consequently, c′un is the same as c′ in Eq. (11). For an intermediate time step, Vun can
be larger than local velocity (V =

√
u2 + v2) and unsteady preconditioning takes effect. As the time step

becomes smaller for high Strouhal number flows, Vun completely turns off the system preconditioning, thus
reverting the preconditioned speed of sound c′ to the original speed of sound c. This corresponds to a phys-
ical situation where acoustic wave propagates with respect to the original speed of sound. Thus, Eq. (12)
may promise an optimal convergence for inner iterations at all flow speeds and for all values of time step size.

More details on the numerical modeling for homogeneous multi-phase flows are found in the literature
[12, 23].

3 AUSMP-type Numerical Fluxes with Pressure-based Weighting
In an effort to combine the accuracy of flux difference splitting (FDS) and the robustness of flux vec-
tor splitting (FVS), the AUSM [7] and its improved successors were published. Despite their respective
improvements, AUSM+ [8] and AUSMDV [24] were not perfectly free from numerical oscillations or the
carbuncle phenomenon. By examining the complementary characteristics of these two schemes, AUSM by
pressure-based weight functions (AUSMPW) [25] eliminated undesirable pressure wiggles and overshoots.
Based on this history, more advanced AUSMP-type flux schemes have been developed.

3.1 AUSMPW+
Starting from the AUSMPW scheme, AUSMPW+ was designed to improve the accuracy and computational
efficiency. By the new definition of numerical speed of sound at a cell interface, the resolution of oblique
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Figure 1: Interface of a two-dimensional cell

shock capturing was remarkably enhanced, and an unphysical expansion shock was completely excluded.
The computational efficiency was also secured by simplifying the formulations.

For the Euler equations, the numerical flux of AUSMPW+ is written as

~F = M̄ +
L c1/2

~Q∗L + M̄−
R c1/2

~Q∗R + ~p1/2, (13)

where ~Q∗ = [ρ ρu ρv ρH]
T and ~p1/2 = [0 nxps nyps 0]

T. The pressure flux is

ps = P+
L pL + P−

R pR. (14)

In Eq. (13), M̄±
L,R are defined as follows:

(i) for m1/2 ≥ 0,

M̄ +
L = M +

L + M−
R [(1− w)(1 + fR)− fL], (15)

M̄−
R = M−

R w(1 + fR), (16)
(ii) for m1/2 < 0,

M̄ +
L = M +

L w(1 + fL), (17)

M̄−
R = M−

R + M +
L [(1− w)(1 + fL)− fR], (18)

wherem1/2 = M +
L +M−

R . The Mach number and pressure splitting functions, M±
L,R and P±

L,R, are obtained
using the Mach number of each side ML,R = UL,R/c1/2 as follows:

M± =

{
± 1

4 (M ± 1)
2

for |M | ≤ 1,
1
2 (M ± |M |) for |M | > 1,

(19)

P± =

{
± 1

4 (M ± 1)
2

(2∓M)± αM
(
M2 − 1

)2
for |M | ≤ 1,

1
2 (1± sign (M)) for |M | > 1.

(20)

In order to prevent unwanted near-wall oscillations and overshoots behind a strong shock, the AUSMPW+
scheme introduced pressure-based weight functions f and ω:

fL,R =


(
pL,R

ps
− 1
)

min
(

1, min(pL+1,pR+1,pL−1,pR−1)
min(pL,pR)

)2

for ps 6= 0

0 elsewhere
, ω = 1− (Πo

1/2)3, (21)

where
Πo

1/2 = min

(
pL
pR
,
pR
pL

)
. (22)

The computational stencil for f which considers pressures in the transverse direction is shown in Fig. 1.
In AUSM-type fluxes, the definition of numerical speed of sound at a cell interface is critical to the

resolution of a shock discontinuity. The AUSM+ was able to capture the stationary normal shock exactly

5



with the common speed of sound at interface:

c1/2 = min(c̃L, c̃R), c̃ = c∗2/max(c∗, |U |), (23)

where the critical speed of sound, c∗, is given by
√

2(γ − 1)H/(γ + 1) for a calorically perfect gas. The
AUSMPW+ scheme improved the shock-capturing property by defining a new interfacial speed of sound
according to flow directions as:

c1/2 =

{
c2s/max(cs, |UL|) for (UL + UR) > 0

c2s/max(cs, |UR|) for (UL + UR) < 0,
(24)

where the speed of sound normal to a cell interface, cs, is given by
√

2(γ − 1)Hnormal/(γ + 1) for a calorically
perfect gas. The AUSMPW+ with the new c1/2 shows the exact capture of a stationary oblique shock and
also eliminates the physically unaccepted expansion shocks. Detailed analysis and extensive validation results
are found in Kim et al. [10].

3.2 AUSMPW+ for Gas-Liquid Two-phase Mixture Flows
The AUSMPW+ scheme which verifies its accuracy, efficiency, and robustness in gas dynamics were extended
to gas-liquid two-phase mixture flows [11]. Above all, the advection variable vector in Eq. (13) was changed
to ~Q∗ = [ρ ρu ρv ρH ρyv]

T to include additional phase in two-phase mixture flows. The distinctive
modifications in the two-phase AUSMPW+ are summarized below.

• Numerical speed of sound at a cell interface
Since there is no Prandtl-like relation across a phase interface, the numerical speed of sound, c1/2 in
Eq. (24), should be modified to reflect the property of sound speed in a two-phase mixture. The
homogeneous mixture model yields a lower sound speed in mixture than that of either phase; any
interfacial speed of sound defined from some averaged mass fraction satisfies this property. For example,
c1/2 can be obtained from a Roe-type averaged enthalpy and mass fraction:

c1/2 = c1/2(p1/2, ĥ, ŷv), (25)

where p1/2 = 0.5(pL + pR).

• Shock-discontinuity-sensing term (SDST) directly from the two-phase EOS
Even in subsonic two-phase flows, the pressure field can vary drastically due to the large density and
high speed of sound in the liquid phase. Therefore, the original SDST of Eq. (22), which considers only
the pressure ratio to detect a shock, grossly misinterpret the physically non-shock region as a shock
region. A two-phase SDST was derived from the analysis based on the ideal gas law (for gas phase)
and the stiffened-gas model (for liquid phase):

Π1/2 = min

(
p̄L
p̄R
,
p̄R
p̄L

)
, p̄L,R = 1/

(
αv,1/2

pL,R
+

1− αv,1/2
pL,R + pc

)
. (26)

In addition, following the M-AUSMPW+ [26] published after AUSMPW+, the pressure-based weight
functions with the two-phase SDST are defined as

fL,R =

(
p̄L,R
p̄s
− 1

)
× (1− ω), ω = max(ω1, ω2), (27)

with

ω1 = 1− (Π1/2)3, ω2 = 1−
(

min(p̄L+1, p̄R+1, p̄L−1, p̄R−1)

max(p̄L+1, p̄R+1, p̄L−1, p̄R−1)

)2

.
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• Pressure-based weight functionfL,R for large density ratio
The AUSMPW+ and its variants possess the pressure difference term in the mass flux, with the
help of the pressure-based weight function as ∆f ∝ ∆p. If the pressure difference coincides with a
large-density-ratio phase interface, the mass flux induced by pressure difference becomes too large,
which leads to numerical instability. To circumvent such instability, the function fL,R was modified by
considering the densities on both sides:

fL,R =

(
p̄L,R
p̄s
− 1

)
× (1− ω)× min(ρL, ρR)

ρL/R
, (28)

where

ρL/R =

{
ρL for m1/2 ≥ 0

ρR for m1/2 < 0
.

After the modifications, the two-phase AUSMPW+ was preconditioned for all-speed computations.

• Scaling for low Mach number flows
The scaling technique by Edwards and Liou [27] was adopted. The Mach number and pressure splitting
functions (Eqs. (19) and (20)) were evaluated using the following scaled Mach number:

M∗1/2 =
1 +M2

r,1/2

2
× ML,R

φ1/2
+

1−M2
r,1/2

2
× MR,L

φ1/2
, (29)

where M2
r = c′2/c2 with the same c′ in Eq. (11) and

φ1/2 =

√
(1−M2

r,1/2)M2
1/2 + 4M2

r,1/2

1 +M2
r,1/2

.

The interfacial speed of sound in Eq. (13) was replaced by the scaled speed of sound:

c∗1/2 = c1/2 × φ1/2. (30)

In order to prevent the odd-even decoupling problem in the low Mach number regime, the pressure-
based weight function was scaled as:

f∗ = f × 1

M2
r

. (31)

3.3 AUSMPW+_N for Cryogenic Multi-phase Mixture Flows
Although it was confirmed that the above two-phase AUSMPW+ was robust and efficient for gas-liquid two-
phase flows, the application area was limited because the two-phase SDST was dependent on a specific form
of EOS (i.e., stiffened-gas model for liquid). In addition, the two-phase AUSMPW+ could not guarantee the
accuracy for unsteady low Mach number flows, as it did not take into account unsteady preconditioning and
corresponding flux scaling. Recently, more extended AUSMPW+_N was developed [12, 23]; there was no
restriction on the choice of EOS model and proper scaling for unsteady low Mach number flows was included.

• New SDST for general EOS
When a general EOS such as a tabular form of NIST database for a cryogen is incorporated into a
flow solver, the two-phase AUSMPW+ cannot be employed because the term pc inside the two-phase
SDST (Eq. (26)) can be obtained only from a few types of EOS models. By exploiting the steady
one-dimensional shock relations, a new SDST was designed as follows:

Π∗1/2 = min

(
p̄∗L
p̄∗R
,
p̄∗R
p̄∗L

)
, p̄∗L,R = pL,R + 0.1×min

(
ρLc

2
L, ρRc

2
R

)
. (32)
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The newly introduced Π∗ only requires the mixture density and speed of sound across a cell-interface
which can be defined without a specific form of EOS. Then, the pressure-based weight functions become

f∗L,R =

(
pL,R + ρ1/2c

2
1/2

ρ1/2c
2
1/2

− 1

)
× (1− ω∗)×

ρ1/2

ρL/R
, ω∗ = max(ω∗1 , ω

∗
2), (33)

with

ω∗1 = 1− (Π∗1/2)3, ω∗2 = 1−
(

min(p̄∗L+1, p̄
∗
R+1, p̄

∗
L−1, p̄

∗
R−1)

max(p̄∗L+1, p̄
∗
R+1, p̄

∗
L−1, p̄

∗
R−1)

)2

.

• Scaling for unsteady low Mach number flows
For unsteady low Mach number flows, the pressure and velocity difference dissipation terms need to be
separately scaled, contrary to the steady low Mach number flows which can be handled by a uniform
scaling technique. The scaling functions for the pressure and velocity difference terms were respectively
given by

φp = θp(2− θp), θp = min

1,max


√
u2

1/2 + v2
1/2

c1/2
,
Vco
c1/2

,
Vun
c1/2

 , (34)

and

φu = θu(2− θu), θu = min

1,max


√
u2

1/2 + v2
1/2

c1/2
,
Vco
c1/2

 . (35)

The AUSMPW+_N then modified the pressure flux Eq. (14) by adding the scaled velocity difference
term as follows:

ps = P+
L pL + P−

R pR − 2KuP
+
LP−

Rρ1/2c1/2φu(UR − UL), (36)

with 0 ≤ Ku ≤ 1. Next, the pressure difference term was scaled as

f∗L,R =
1

φp

(
pL,R + ρ1/2c

2
1/2

ρ1/2c
2
1/2

− 1

)
× (1− ω∗)×

ρ1/2

ρL/R
. (37)

It is noted that the complex scaled Mach number (Eq. (29)) and scaled speed of sound (Eq. (30)) were
discarded and the original Mach number and speed of sound (Eq. (25)) were restored.

3.4 Evaluation of AUSMPW+_N
The improved features in the AUSMPW+_N are tested in comparison with its predecessor.

• The effect of SDST in the shock and water column interaction problem
In order to examine the changes in behavior of AUSMPW+_N caused by the choice of SDST (the
original SDST from gas dynamics (Πo), the two-phase SDST (Π), and the new SDST (Π∗)), a shock
in gas impacting a water column was simulated. The problem’s description is provided in Sect. 5.2.
Figure 2 plots the inverse values of SDST at t = 8 µs, where the shock passes the middle of the water
column. The original SDST and two-phase SDST misinterpreted the vicinity of the phase interface as
the shock region; the inverse of SDST was even higher than the gaseous shock. Eventually, inaccurate
numerical dissipation across the phase interface made the computations fail. On the contrary, the new
SDST, Π∗1/2, successfully sensed the shock discontinuity without confusing it with the circular phase
interface. Here, we assume pure liquid and pure gas phases, but if a small volume fraction of gas (10−5)
was put in the water column, and vice versa, all three SDSTs pass the test without difficulty.

• The effect of unsteady scaling functions in a low Mach unsteady problem
The propagation of an inviscid vortex in a low Mach number flow (M∞ = 0.005) was computed. The
detailed problem definition and the discussion of the computed results are found in Kim et al. [12]. The
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(a) 1/Πo
1/2

(b) 1/Π1/2 (c) 1/Π∗
1/2

Figure 2: Inverse values of SDST in the shock and water column interaction problem

simultaneous enhancement of the accuracy and efficiency of the AUSMPW+_N is briefly shown in Fig.
3. Since the previous two-phase AUSMPW+ scheme cannot handle the velocity and pressure difference
dissipation terms separately, the improved accuracy due to the steady preconditioning accompanies
the degradation of subiteration convergence, and the accelerated convergence due to the unsteady
preconditioning creates the diminished accuracy.
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Figure 3: Accuracy and convergence by different preconditioning methods

Hereafter, we only consider the AUSMPW+_N scheme on the grounds of its superiority.

4 An Interface Sharpening Procedure with Mass Conservation
In order to manage the diffusion of phase interfaces, Kinzel et al. [18] incorporated the reinitialization stage
of the level-set method to the two-phase homogeneous mixture equations. They suggested three options for
the reinitialization of the interface. LS-1 and LS-2 inherit the reinitialization technique used in the level-set
community, but LS-3 is uninvolved with the conventional level-set method. The LS-3 strategy artificially
scales the volume fraction in the interfacial mixture zone and thus does not require extra PDE to be solved,
unlike the other two options. We have focused on the LS-3 scheme to preserve the main advantage of the
homogeneous mixture model, which is its compact set of governing equations. While the application of LS-3
enhanced the quality of interface capturing, it was not mass-conservative. We adopted the idea of LS-3, and
modified it to be mass-conservative as well as extended the scheme to a three-component situation.
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4.1 LS-3: Realizable-Scaled Sharpening
Before presenting our extension, here is the original realizable-scaled sharpening method (LS-3) [18], which
utilizes the following equation to scale the volume fraction.

α∗ = min

(
max

(
1

2

[
αn+1/2 − 0.5

0.5− ε
+ 1

]
, 0

)
, 1

)
with 0 ≤ ε < 0.5. (38)

We followed the popular notation of gaseous volume fraction α and confined our interest to a two-phase
flow of liquid and gas. The intermediate volume fraction αn+1/2 is obtained by solving the flow equations
(Eq. (1)) and the fluid properties at the next time step (n + 1) are updated by the scaled volume fraction
αn+1 = α∗. Independent of the local cell size, the parameter ε determines the sharpness of the scaled
volume fraction. Figure 4(a) shows the relationship between αn+1/2 and α∗. The application of LS-3 to a
smeared interface is demonstrated in Fig. 4(b). The baseline volume fraction profile was obtained by solving
∂α
∂t + u∂α∂t = 0 with the 1st-order upwind method. The initial discontinuous profile (α = 0 for x < 0.1,
α = 1 for x ≥ 0.1) was smeared at t = 2 with u = 0.05. The reconstructed profile was sharper with larger
ε. In actual computations, the reconstruction procedure was practiced with a sharpening frequency fls. To
improve numerical stability, a relaxation was applied as follows:

αn+1 = α∗ + fr(α
n+1/2 − α∗).

(a) Relation between αn+1/2 and α∗ (b) Reconstructed α using LS-3

Figure 4: Reconstruction of volume fraction by LS-3

4.2 LS-3MC: Realizable-Scaled Sharpening with Mass Conservation
Even though the governing equations are in a conservative form and solved by a conservative method, they
could fail to satisfy mass conservation when implemented with the LS-3 scheme. The mass change comes from
the fixed interface-defining level set (α = 0.5) in Eq. (38). We propose the realizable-scaled sharpening with
mass conservation scheme (LS-3MC) which maintains the global mass of the system after reinitialization.

α∗ = min

(
max

(
1

2

[
αn+1/2 − αref

0.5− ε
+ 2αref

]
, 0

)
, 1

)
with 0 ≤ ε < 0.5. (39)

The interface-defining level set αref is newly determined each time Eq. (39) is computed according to fls.
Once αref is determined for a certain time, it is applied to the entire cells.
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The mass-conserving value of αref can be always determined, which is demonstrated as follows. Let
Mo be the baseline mass with a smeared interface as the solution of the flow equations. The mass after
reconstruction, Mr, is a function of αref , or Mr(αref ), since ρl and ρg of a cell are constants at (n + 1/2)
time (of course, they may differ in other cells). When the liquid density is higher than the gas, the smallest
possible Mr is Mr(αref = 0) with ε → 0.5, which corresponds to a situation where the entire interfacial
mixture zone is filled by the pure gas phase (Fig. 5(a)). Conversely, the largest possible Mr is derived when
the mixture zone is filled by the pure liquid phase (Fig. 5(c)). In an actual baseline situation with a smeared
interface, the “mixture” zone is filled by a mix of heavy liquid and light gas (Fig. 5(b)). Therefore, the
following is valid.

Mr(αref = 0) ≤Mo ≤Mr(αref = 1) (40)

From the intermediate value theorem, αref satisfying Mr(αref ) = Mo always exists.

(a) Possible minimum Mr (b) Mo (c) Possible maximum Mr

Figure 5: Mo and the limits of Mr

Figure 6 shows the reconstructed volume fraction by LS-3MC from the same baseline profile used in Fig.
4(b). Depending on the value of αref , the position of the reconstructed interface is shifted. Table 1 shows
the Mr in the case of ε = 0.2 when ρl = 1000 and ρg = 10 in a one-dimensional domain (−0.5, 1.5). The
mass-preserving αref is deduced to be a value between 0.5 and 0.8 and can be determined by the iterative
process. It is noted that the iterative process for finding the precise value of αref is conducted once for the
entire system, not for each individual cell, since the LS-3MC method reconstructs the cell-representative
values, not the sub-cell distributions.

Table 1: Total mass after reconstruction with different αref
Mo 713.00
αref 0 0.2 0.5 0.8 1
Mr 650.82 702.63 712.25 722.22 730.73

The overall procedure with the LS-3MC is outlined as follows:

– Step 1: Solve the flow governing equations using Eq. (1). When the time step, n, corresponds to
N×1/fls (in which N is a positive integer), proceed to Step 2 after updating the flow variables
of the intermediate time step.

– Step 2: From the solution of flow equations, obtain Mo and αn+1/2 = (ρn+1/2y
n+1/2
g )/ρ

n+1/2
g .

– Step 3: With an initial αref=0.5, calculate α∗ using Eq. (39).

– Step 4: Compare Mo and Mr(α
∗).

· If Mr(α
∗) > Mo, reduce the value of αref based on an iterative method and return to Step 3.

· If Mr(α
∗) < Mo, raise the value of αref and repeat from Step 3.
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(a) Reconstructed α using LS-3MC with ε = 0.2 (b) Reconstructed α using LS-3MC with ε = 0.49

Figure 6: Reconstruction of volume fraction by LS-3MC

· If Mr(α
∗) = Mo, go to Step 5.

– Step 5: Set αn+1 as α∗ and update the mixture density, mass fractions, and mixture enthalpy. The
density and enthalpy of each phase remain constant throughout Steps 2−5 since p and T do not
change; only the mixture properties are changed by the reconstruction of the volume fraction.

ρn+1 =αn+1ρn+1/2
g + (1− αn+1)ρ

n+1/2
l

yn+1
g =αn+1ρn+1/2

g /ρn+1

hn+1 =yn+1
g hn+1/2

g +
(
1− yn+1

g

)
h
n+1/2
l

The essential steps in the LS-3MC compute the global mass and the scaling of cell-representative volume
fractions by Eq. (39). These calculations are performed in an identical manner in 1-, 2-, and 3-D flow solvers
and are free from any geometric constraint. Therefore, the LS-3MC procedure can be incorporated into
a flow solver for multi-phase mixture, irrespective of the physical dimension and mesh type (structured or
unstructured).

4.3 Utilization of Smooth Curves
In Figs. 4 and 6, some reconstructed profiles seem non-differentiable near α=0 or 1. The non-smooth
reconstruction is a result of min and max cutting in Eqs. (38) and (39). This is not a problem for the
purpose of interface sharpening, but may yield potential difficulty when computing the gradient of the
volume fraction in situations such as those where the surface tension must be considered. We employ a
smooth reconstruction using the tanh function as follows:

α∗ =
tanh(αref/ε) + tanh ((αn+1/2 − αref )/ε)

tanh(αref/ε) + tanh ((1− αref )/ε)
. (41)

The THINC method [15] also takes advantage of the tanh function, but it reconstructs the sub-cell distribu-
tion of fluid properties for flux computation. Another smooth reconstruction is embodied using the Bézier
curve with 11 control points designed for a nice curve.

α∗ = Σ10
i=0bi,10(t)Pi (42)
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with

t =


1 if αn+1/2 > 1− ε
0 if αn+1/2 < ε
1
2

(
αn+1/2−0.5

0.5−ε + 1
)

else
,

bi,10 =
10!

i!(10− i)!
ti(1− t)10−i (i = 0, ..., 10),

Pi =



0
0

αref − 0.23
αref − 0.2
αref − 0.15

0.5
αref + 0.15
αref + 0.2
αref + 0.23

1
1


.

Compared to the linear reconstruction (Eq. (39)) the formulations for smooth curves are more complex, but
computational overload is negligible because fls is typically 10−3− 10−4. Moreover, the goal of the LS-3MC
method is to conserve the total mass; thus, a computation for the entire system is sufficient and cell by cell
computations are unnecessary and, in fact, impossible.

4.4 Extension to a Three-Component Situation
So far, we have confined our discussion to a two-phase flow of liquid and gas, but the extension of the LS-3MC
to a three-component situation is straightforward due to the simplicity of the scheme. For a multi-phase flow
consisting of L (the liquid phase of a fluid), V (the gas phase of the same fluid), and G (the non-condensable
gas of another fluid), the LS-3MC method is applied twice in successive manner.

• Apply LS-3MC to the mixture of L and (V+G) following Steps 1−5 in Sect. 4.2 to sharpen the inter-
face adjacent to the L phase. Here, αn+1/2

1 = α
n+1/2
v + α

n+1/2
g is considered as α in Eq. (39). Step 2

is slightly modified to be:

– Step 2: ObtainMo, α
n+1/2
1 = ρn+1/2

(
y
n+1/2
v /ρ

n+1/2
v + y

n+1/2
g /ρ

n+1/2
g

)
, and qn+1/2 = α

n+1/2
g /α

n+1/2
1 .

The volume fraction ratio of G to the mixture of gases (V+G) is for computing the total density
after reconstruction. We assume that the scaling of α consistently applies to αv and αg. After finding
the mass-conserving αref , the updated variables in Step 5 are marked as (n+1*) state.

– Step 5: Set αn+1∗
1 as α∗ and compute the volume fraction of each phase at (n+ 1∗).

αn+1∗
g =αn+1∗

1 qn+1/2

αn+1∗
v =αn+1∗

1 (1− qn+1/2)

• Apply LS-3MC again to the mixture of V and G from Step 2, keeping αn+1∗
1 constant. In order to use

the same code to find the mass-conserving αref as the first reconstruction, the total volume fraction
of the V and G mixture is regarded as a unity during Steps 2−4. Thus, αn+1∗

2 , the relative volume
fraction of the lighter phase between V and G, is used as α in Eq. (39).

– Step 2: Obtain Mo and αn+1∗
2 = αn+1∗

g /(αn+1∗
v + αn+1∗

g ) = αn+1∗
g /αn+1∗

1 .
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After finding the mass-conserving αref , the variables are updated to the next time step (n+1).

– Step 5: Set αn+1
2 as α∗ and update the mixture density, mass fractions, and mixture enthalpy.

ρn+1 =αn+1∗
1 ρn+1

(v+g) + (1− αn+1∗
1 )ρ

n+1/2
l

=αn+1∗
1 [αn+1

2 ρn+1/2
g + (1− αn+1

2 )ρn+1/2
v ] + (1− αn+1∗

1 )ρ
n+1/2
l

yn+1
g =αn+1

g ρn+1/2
g /ρn+1 = αn+1∗

1 αn+1
2 ρn+1/2

g /ρn+1

yn+1
v =αn+1

v ρn+1/2
g /ρn+1 = αn+1∗

1 (1− αn+1
2 )ρn+1/2

v /ρn+1

hn+1 =yn+1
g hn+1/2

g + yn+1
v hn+1/2

v +
(
1− yn+1

g − yn+1
v

)
h
n+1/2
l

5 Numerical Results
Various multi-phase flows were considered to exhibit the performance of the present numerical framework.
Compressible problems with shock and phase interface demonstrated the robustness of the AUSMPW+_N
for multi-phase shock and the effectiveness of the LS-3MC. The LS-3MC scheme was further tested by
2-D and 3-D interface-only problems. Finally, the flow inside a cryogenic tank under the injection of non-
condensable gas was computed. This test revealed the applicability of the present numerical framework with
the LS-3MC to three-component phase change flow. The MLP5 limiter [28] was used for all computations
and the third-order TVD Runge-Kutta scheme [29] was adopted for temporal discretization unless stated
otherwise.

5.1 Air-to-Water Shock Tube
First, a one-dimensional air-to-water shock tube problem was solved as a simple test for a two-phase com-
pressible flow with shock and moving contact discontinuity. Due to the high density ratio, a large pressure
difference is necessary to transmit the shock from air to water. The initial conditions are defined as:

~QL =(1.0× 109 Pa, 0 m/s, 0 m/s, 308.15 K, 0, yg,L) for 0 m ≤ x ≤ 5 m,

~QR =(1.0× 105 Pa, 0 m/s, 0 m/s, 308.15 K, 0, yg,R) for 5 m < x ≤ 10 m.

Here, yg,L and yg,R are gas mass fractions that correspond to αg = 1− εα and αg = εα, respectively. We set
εα = 1× 10−7. The parameters for the stiffened-gas EOS are γg = 1.4, p∞,g = 0, Cp,g = 1004.64 J/(kg ·K),
and γl = 2.8, p∞,l = 8.5 × 108 Pa, Cp,l = 4186 J/(kg ·K). A uniform grid of 500 cells was used with
CFL=0.2. Figure 7(a) shows the results of volume fraction and pressure at t = 2× 10−3 s. A strong shock is
transmitted into the water and rarefaction waves are reflected back into the air. The AUSMPW+_N scheme
captures the shock, phase interface, and rarefaction waves without any noticeable oscillation. In particular,
the baseline AUSMPW+_N scheme captures the shock with 4− 5 grid points, but the contact discontinuity
was captured with 10 points. The efficacy of the LS-3MC process (using the linear reconstruction with
fls = 0.01, ε = 0.2) is demonstrated in Fig. 7(b). With the LS-3MC scheme, the number of grid points in
the mixture zone was reduced to 3.

5.2 Interaction between the Shock and the Water Column
As a more complex compressible two-phase problem, the interaction between a shock in air and a water
column was computed. A cylindrical water column centered at the origin was struck by a moving air shock
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(a) Volume fraction and pressure (b) Volume fraction (magnified)

Figure 7: Solutions of the air-to-water shock tube problem

of Ms = 1.47.

~QL = (2.35348× 105 Pa, 225.86 m/s, 0 m/s, 381.85 K, 0, 1) for − 15 mm ≤ x ≤ −4 mm,

~QR = (1.0× 105 Pa, 0 m/s, 0 m/s, 293.15 K, 0, 1) for − 4 mm < x ≤ 20 mm,

~Qwater = (1.0× 105 Pa, 0 m/s, 0 m/s, 293.15 K, 0, 0) for x2 + y2 < 3.2 mm.

Most studies that solved the same problem put a small amount of gas in the liquid region and vice versa
[30, 31], but our computations were carried out with pure liquid and gas phases for a more severe test. The
same EOS parameters were used as in Sect. 5.1. The grid consisted of total 450×210 cells, which was refined
to ∆x = ∆y = 0.05 mm near the water column and stretched outward. Computations were performed only
for y ≥ 0 and the symmetry condition was applied at the bottom boundary. At the water column interface, a
transition region with a width of ±2∆xmin was specified by the blending function, which imposed a smooth
change in the gas volume fraction across the phase interface. Computations were executed up to 200 µs with
∆t = 5× 10−9 s (CFL ≈ 0.3).

Images of a numerical Schlieren function, log(|∇ρ|+ 1), from the initial to the final time are presented in
Fig. 8. The shock-discontinuity-sensing term in AUSMPW+_N worked as designed to distinguish the shock
from the phase interface in two-phase flows. Intricate patterns of wave interactions inside the liquid are
clearly captured by the AUSMPW+_N scheme (see [12] for pressure contours). The distortion of the water
column and the evolution of Richtmyer-Meshkov instability were also properly simulated. At the beginning
of the computations, the results for the high speed flows were very similar in the baseline and LS-3MC; thus,
only the baseline results were included for t = 20 and 60 µs. At a later time, however, the incorporation
of LS-3MC (using the Bézier curve reconstruction with fls = 0.001, ε = 0.1) yielded quite a different result
from the baseline. For this problem only, the LS-3MC method was applied to the interface cells detected by
a filter |∇αg| ≥ 400. Compared to Fig. 8(e), the darker contours around the water column in the baseline
result indicates that the liquid mass is severely diffused and flows downstream along the shedding vortexes.
For LS-3MC, the thin dark line is present only at the perimeter of the water column. The lighter color near
the liquid indicates a lower density gradient due to a less diffused liquid mass. Figure 9 gives the contours
of the volume fraction at t = 100 and 200 µs. The LS-3MC results retain a compact interface thickness
without excessive smearing.

15



(a) t = 0 µs (b) Baseline at t = 20 µs (c) Baseline at t = 60 µs

(d) Baseline at t = 200 µs (e) LS-3MC at t = 200 µs

Figure 8: Numerical Schlieren images of the interaction between shock and water column problem

(a) Baseline at t = 100 µs (b) LS-3MC at t = 100 µs (c) Baseline at t = 200 µs (d) LS-3MC at t = 200 µs

Figure 9: Contours of the volume fraction for the interaction between shock and water column problem

5.3 Translation of Square Liquid Column
This is a two-dimensional, interface-only problem. In a unit square domain, a square liquid column [0.3, 0.7]×
[0.3, 0.7] m2 in size was translated in gas with a constant velocity of u = v = 100 m/s, a uniform pressure
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of p = 105 Pa, and a temperature of T = 300 K. The liquid region contained a small amount of gas
(αv = 10−8) and the gas region contained a small amount of liquid (αl = 10−8). For this test, the fluid
properties were modeled by the linearized Mie-Grüneisen EOS. If it was formulated as Eq. (5), the second
term on the right-hand side (−γip∞,i) became c2o,i(ρi− ρo,i). The required parameters were γg = 1.4, co,g =

0, ρo,g = 1 kg/m3, Cp,g = 1166.67 J/(kg ·K), and γl = 4.4, co,l = 1624.8 m/s, ρo,l = 1000 kg/m3, Cp,l =
0.4314 J/(kg ·K). A computational grid with uniform 100 × 100 cells was used, and a periodic boundary
condition was applied for all sides. The computations were run for two periodic cycles.

Figure 10 shows contours of the mixture density after two-cycle run. For the purpose of comparison,
the LS-3 method without mass conservation was also employed. The baseline solver results in a greatly
smeared interface. The LS-3 method significantly reduces the interface diffusion, but fails to preserve the
liquid mass (30 % of the initial mass is lost). On the other hand, the present LS-3MC method (using the
tanh reconstruction with fls = 0.0005, ε = 0.2) creates a sharpened interface without mass loss.

(a) t = 0 ms (b) Baseline at t = 20 ms (c) LS-3 at t = 20 ms (d) LS-3MC at t = 20 ms

Figure 10: Contours of the density after two-cycle run for the translation of square liquid column problem

In order to identify LS-3MC’s quantitative improvement of accuracy, a grid refinement study was con-
ducted (Table 2). The baseline solver was less than first-order accurate, but the order of accuracy was
improved above first order when the solver was incorporated with the LS-3MC method. Due to the substan-
tial mass loss, the LS-3 method shows the poorest accuracy.

Table 2: L1 errors of the mixture density for the translation of square liquid column problem

N Baseline LS-3 LS-3MC (linear) LS-3MC (tanh) LS-3MC (Bézier)
Error Order Error Order Error Order Error Order Error Order

50 52.2345 – 97.2752 – 30.8121 – 17.0809 – 31.8844 –
100 34.2274 0.61 50.6878 0.94 9.1400 1.75 8.6163 0.99 8.9092 1.84
200 21.5635 0.67 47.1270 0.11 3.8418 1.25 4.1648 1.05 4.1785 1.09
400 13.1488 0.71 45.7028 0.04 1.6917 1.18 1.9572 1.09 1.6788 1.32

5.4 Three-Dimensional Rising Bubble in Liquid
As stated before, the implementation of the LS-3MC process into a three-dimensional multi-phase flow
solver is similar to the procedure for implementing into a two-dimensional solver. We further verified the
effectiveness of LS-3MC in a three-dimensional, interface-only problem for a spherical bubble rising in liquid.
Initially, a bubble of radius 0.005 m was located at the origin. Constant gravitational acceleration was
applied (~g = (0, 0,−9.8 m/s2)). Liquid and gas densities were set as 1000 and 10 kg/m3, respectively.
The computational domain [−0.02, 0.02] × [−0.02, 0.02] × [−0.01, 0.09] m3 was divided by 50 × 50 × 125
uniform cubic cells, and the free-slip condition was applied for all boundaries. Since the entire flow field
was incompressible, the dual time-stepping method with preconditioned LU-SGS [32] was used for time
discretization. The CSF model [33] was also adopted to take surface tension into account.
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When a spherical bubble rises in quiescent viscous liquid due to buoyancy, the rising speed and the bubble
deformation are dependent on the dimensionless Morton number (Mo) and Eötvös number (Eo):

Mo =
|gz|µ4

l (ρl − ρg)
ρ2
l σ

3
, Eo =

|gz|(ρl − ρg)d2

σ
,

where µl, σ, d are the liquid viscosity, surface tension coefficient, and the bubble diameter, respectively.
Grace [34] conducted extensive bubble rising experiments and integrated the results in a diagram that has
been copied from Clift et al. [35] (Fig. 11). Here, we considered four cases witch similar Mo and Eo values
as the study of van Sint Annaland et al. [36]. Conditions for the simulations are tabulated in Table 3, and
each case is marked as a red dot in Grace’s diagram in Fig. 11.

Figure 11: Bubble diagram of Grace [35]

Table 3: Conditions for the rising bubble simulations
Case A Case B Case C Case D

Bubble shape from Spherical Ellipsoidal Skirted Dimpled
Grace’s diagram ellipsoidal-cap
µl (kg/(m · s)) 0.6 0.319 0.1 0.5666
σ (N/m) 1 0.1 0.01 0.01
Mo 1.26× 10−3 0.1 0.97 1000
Eo 0.971 9.709 97.09 97.09
∆t (s) 0.005 0.001 0.001 0.005
fls 1/6000 1/3000 1/3000 1/6000
ε 10−4 10−3 10−3 10−2

The baseline solver could not complete the simulations due to the excessive interface diffusion. As the
interface became smeared, the bubble shape became distorted in an unexpected shape and the convergence
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rate deteriorated due to the accumulated error. The computations of the baseline solver achieved awkward
results (not presented here). The snapshots of iso-surface (αg = 0.25) computed by the LS-3MC method (the
Bézier curve reconstruction) are given in Fig. 12. It can be seen that the deformed bubble shape matches
Grace’s diagram well, so the applicability of the LS-3MC scheme in three-dimensional computations was
identified.

(a) Case A: spherical (b) Case B: ellipsoidal

(c) Case C: skirted (d) Case D: dimpled ellipsoidal-cap

Figure 12: Iso-surface of αg = 0.25 of the rising bubble problem
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Table 4: Initial conditions of the cryogenic tank simulation
Fuel Ullage Pressurant

Initial fill level (%) 90 10 –
Fluid type Liquid oxygen Gaseous oxygen Gaseous nitrogen
Temperature (K) 90.18 135.16 288
Pressure (MPa) 2.24 2.24 –

5.5 Phase Change Flow inside a Cryogenic Tank
As a test of the three-component flows, a phase change flow inside a cryogenic oxygen tank which is pressur-
ized by the injection of superheated nitrogen gas was considered. The tank’s geometry was taken from the
E-1 high pressure LOX tank at NASA Stennis Space Center [37]. The initial conditions of the simulation are
listed in Table 4. The pressurant gas entered radially through the diffuser at a mass flow rate of 453.64 kg/s.
The effects of phase change and turbulence were modeled by the Merkle’s model [38] and the k − ω SST
model [39], respectively. The computational grid was composed of 26,000 cells. Since the AUSMPW+_N
scheme is compatible with any type of EOS, a tabular form based on the NIST database was employed as
EOS for cryogenic oxygen and nitrogen.

The results of the baseline and LS-3MC methods (using the linear reconstruction with fls = 1/30000, ε =
0.1) are compared in Figs. 13 and 14. When the injection began at t = 0, the oxygen gas inside the tank
and the injected nitrogen gas mixed and formed a vortex. The initially flat interface between the gas and
liquid oxygen curled up along the vortex. Eventually, the oxygen gas, liquid, and nitrogen were completely
mixed. The condensation of oxygen gas also occurred at the contact surface with liquid during the entire
simulation. Since three phases exist inside the tank, the LS-3MC method was applied twice (see Sect. 4.4).
Figure 13 shows the interface evolution between the injected nitrogen gas (shown in red) and others (the
liquid and gaseous oxygen, both shown in blue). Figure 14 shows the interface evolution between the liquid
oxygen (shown in red) and others (the gaseous oxygen and nitrogen, both shown in blue). The LS-3MC
process successfully sharpens each intricately evolving interface in the three component flows where phase
changes are occurring.

6 Conclusion
The extensions of AUSMP-type fluxes from compressible gas dynamics to all-speed multi-phase flows have
been presented. The extended scheme, AUSMPW+_N, effectively modified the shock-discontinuity-sensing
term to distinguish a shock from phase interfaces, irrespective of EOS type. The pressure-difference and
the velocity-difference terms in the AUSMPW+_N scheme were separately scaled so that the accuracy and
convergence were simultaneously satisfied for steady/unsteady low Mach number flows. The multi-phase
computations by the AUSMPW+_N was further improved by employing an interface sharpening procedure.
The proposed sharpening method simply scales the volume fractions while preserving the total mass of the
system. Due to its simplicity, the method was extendable to multi-phase flows with more than two phases
without much effort. From various multi-phase tests, it was confirmed that the diffused interfaces of the
baseline solver regained the original sharpness regardless of the physical dimension, the number of constituent
components, or the flow speed.
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(a) Baseline at 0 s (b) LS-3MC at 0 s

(c) Baseline at 0.110 s (d) LS-3MC at 0.110 s

(e) Baseline at 0.146 s (f) LS-3MC at 0.146 s

(g) Baseline at 0.217 s (h) LS-3MC at 0.217 s

(i) Baseline at 0.288 s (j) LS-3MC at 0.288 s

Figure 13: Evolution of non-condensable gas surface inside a cryogenic tank under the injection of pressurant
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(a) Baseline at 0 s (b) LS-3MC at 0 s

(c) Baseline at 0.110 s (d) LS-3MC at 0.110 s

(e) Baseline at 0.146 s (f) LS-3MC at 0.146 s

(g) Baseline at 0.217 s (h) LS-3MC at 0.217 s

(i) Baseline at 0.288 s (j) LS-3MC at 0.288 s

Figure 14: Evolution of liquid surface inside a cryogenic tank under the injection of pressurant
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