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Abstract

This paper proposes a projection-WENO limiter for discontinuous Galerkin spectral ele-

ment method on unstructured quadrilateral grids. This limiter can keep high order accuracy in

smooth regions and suppress numerical oscillations e�ciently near discontinuities. The WENO

scheme proposed in the present paper is the wighted average of the high order polynomial in

the central cell and the linear polynomials constructed through a L2 projection in the central

and face-neighboring cells. The WENO smooth indicator is modi�ed by the introduction of

a small ε which is related to the discontinuity strength to achieve better shock capturing. A

number of compressible �ow cases are calculated to demonstrate the high order accuracy and

non-oscillation properties of the constructed limiter.

Keywords: Numerical Algorithms, Computational Fluid Dynamics, Turbulence Modeling,

Aeroacoustics.

1 Introduction

The discontinuous Galerkin spectral element method (DGSEM), as a nodal-type discontinuous Galerkin (DG) method,
has shown great convenience and e�ciency in solving the convection-di�usion equation [1] on tensor-product grids. The
approximate solution uses the tensor-product Lagrange interpolation polynomial associated with Gauss-Legendre quadra-
ture points. The collated interpolation and quadrature points give higher e�ciency comparing with the standard modal
type DG method. The implicit time integration based on a matrix-free Newton-Krylov-Schwarz algorithm was used to
accelerate the convergence speed for the DGSEM scheme [2]. Applications of DGSEM widely spread over multi-phase
�ows [3], transitional and turbulent �ows [4, 5].

The presence of shock waves in the compressible �ow requires special treatments in the DG method. The inner degrees
of freedom (DOF) in the DG approximate solution would induce large numerical oscillations near the discontinuities. An
accuracy-preserving and oscillation-free approach for shock capturing is still one of the most challenging issues for the
DG method. The slope limiting technique is a popular way in the �nite volume (FV) method [6, 7] and brought into the
DG method for its simplicity [8]. The robustness of this method strongly relies on the underlying criteria for singling out
the troubled cells. A comparison is given on a second-order slope limiter based on the TVB detector [9] and the Fu-Shu
detector [10]. The TVB detector gave smooth results with low resolutions for the strong shock problems, while the Fu-Shu
detector gave higher resolution results with some numerical oscillations in the smooth regions. The shock detector usually
mistook the smooth cell near extremas for the troubled cell and the accuracy was degraded with a second-order slope
limiter. High order limiting ways are pursued to relieve the di�culty of designing the shock detectors and to improve
the resolution near discontinuities. The multi-dimensional optimal order (MOOD) approach in the �nite volume method
[11] was introduced in the DG method by Dumbser et al [12] and Sonntag et al [13]. The sub-cell division combining
with a TVD-type slope limiter in MOOD preserved the accuracy of the DG method in smooth regions. The WENO
limiter achieved great success in �nite di�erence (FD) and FV methods, and was also applied in the DG methods. The
FV type WENO limiter was �rst introduced by Zhu et al [14] on unstructured grids. The Hermite WENO [15] and
secondary-reconstruction based WENO [16] limiters were proposed to fully utilize all the inner DOFs in the DG method.
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The problem of the WENO approaches is that the construction is complicated and their sub-cell shock capturing abilities
are still far from satis�ed.

In reference [17], the DGSEM was generalized to triangular grids and a high-resolution second-order WENO limiter
was developed on 2D mixed grids. This paper proposes a high order compact projection-WENO limiter for DGSEM on
quadrilateral grids. The projection-WENO limiter would be di�erent from the current WENO limiters [14, 15, 16]. The
candidate polynomials in the projection-WENO limiter contain the high order one in the central cell and several linear
ones, which are constructed through the L2 projection in the central and face-neighboring cells. The construction of
linear polynomials brings the possibility to remove numerical oscillations in inner DOFs near strong shocks. The scheme's
accuracy is guaranteed by the WENO weighted summation of all the candidate polynomials. The implementation on
2D quadrilateral grids fully utilizes the tensor-product structure of the approximation solution in DGSEM. The limiting
would be proceeded dimension by dimension to save computational cost. For the nonlinear Euler equations, the way in
[16] is adopted to perform the limiting in the characteristic space. Our purpose is to design a realizable limiter on general
quadrilateral grids which can both retain the high order accuracy and suppress numerical oscillations in the inner DOFs.

The rest of this article is organized as follows. Section 2 describes the framework of DGSEM on quadrilateral grids.
The projection-WENO limiter described in Section 3 would introduce the L2 projection in constructing the candidate
polynomials and the WENO limiting procedure performed in the characteristic space. Numerical examples are given in
Section 4 to validate the e�ciency of the developed shock capturing scheme in computing compressible �ows.

2 The DGSEM on unstructured quadrilateral grids

In this section we will review the implementation of DGSEM on unstructured quadrilateral grids in solving the inviscid
compressible �ows. The conservation form of the two-dimensional Euler equations can be written as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0, (1)

where U is the vector of the conservative variables given as U = (ρ, ρu, ρv, ρE)T , F,G are the inviscid �ux vectors. The
detailed formulations of the �ux terms are well-known and are omitted here for brevity. The discontinuous Galerkin
method uses the weak form of Eq. (1)∫

Ωi

∂U

∂t
WdΩ +

∮
∂Ωi

~Fn(U) · ~nWds−
∫
Ωi

~Fn · ∇WdΩ = 0, ~Fn = (F,G), (2)

where ∂Ωi denotes the boundary of control volume Ωi, ~n is the unit outward normal vector of the cell boundary, and W
is the test function. In the second term, ~Fn(U) · ~n is the face inviscid �ux denoted as F̂n(Ui, Ui+, ~n) with i+ being the
face-neighboring cell. The inviscid �ux in this paper is evaluated by the Roe or HLL Riemann solver [18, 19].

The tensor-product of one-dimensional Gauss-Legendre (GL) points is taken as the solution points. An example for is
shown in Fig. 1 for solution points of the p2 DGSEM. Using the solution points, the approximate solution is described as

Uhi (ξ, η) =

p+1∑
m=1

p+1∑
n=1

Umni ψmn(ξ, η) =

p+1∑
m=1

p+1∑
n=1

Umni ϕm(ξ)ϕn(η), (3)

where ψmn(ξ, η) = ϕm(ξ)ϕn(η), with ϕm(ξ), ϕn(η) being the one-dimensional Lagrangian interpolation basis following
the de�nition

ϕm (ξ) =
p+1

Π
k=1,k 6=m

ξ − ξk
ξm − ξk

.

Thus the one-dimensional interpolation satis�es ϕm(ξl) = δml, with δ being the Kronecker symbol. ξk, k = 1, ..., p + 1
are the abscissa values of the one-dimensional GL points. For brevity, we use the pk scheme to denote the scheme with
approximate solution of k-th order polynomial.

Choosing the interpolation function ψkl(ξ, η) as the test function W in Eq. (2), and substituting Eq. (3) into Eq. (2),
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Figure 1: The distribution of solution points and face �ux points on the quadrilateral grids for p2 DGSEM schemes.
Solution point is marked in black dot and �ux point in red square.

one can obtain
p+1∑
m=1

p+1∑
n=1

∂Umni

∂t

∫
Ωi

ψklψmndΩ +

∮
∂Ωi

F̂n
(
Uhi , U

h
i+, ~n

)
ψklds−

∫
Ωi

~Fn · ∇ψkldΩ = 0. (4)

For the mass matrix, the use of the tensor-product GL quadrature leads to∫
Ωi

ψklψmndΩ = δkmδlnωkωlJk,l,

where Jk,l is the Jacobian determinant in the (k, l)-th GL point of the control volume Ωi, ωk is the weight of GL quadrature.

Thus the �rst term in Eq. (4) is simpli�ed as
∂Ukl

i

∂t ωkωlJk,l. The second term in Eq. (4) uses the GL quadrature on the
face and the typical face �ux points of p2 schemes are shown in Fig. 1 . The evaluation of variable values on the face �ux
points can use the one-dimensional interpolation, e.g., the value of the n-th �ux point in the ξ = 1 face is

Uhi (1, ηn) =

p+1∑
l=1

U lni ϕl (1).

The gradient of interpolation function in the third term can be written as

∇ψkl = J−1∇~ξψkl =

(
∂ϕk
∂ξ

ξxϕl +
∂ϕl
∂η

ηxϕk,
∂ϕk
∂ξ

ξyϕl +
∂ϕl
∂η

ηyϕk

)
, (5)

with the Jacobian matrix J = D(x,y)
D(ξ,η) . Eq. (5) is used in evaluating ∇Uhi and the third term of Eq. (4). Elements in the

inverse Jacobian matrices ξx, ξy, ηx, ηy are evaluated and stored for every solution points.

3 The projection-WENO limiter

One challenge for the high order limiter in DGSEM is to suppress the oscillations in the inner DOFs. A key ingredient of
the projection-WENO limiter proposed in this section is the linear/bilinear candidate polynomials constructed through
the L2 projection in the central and face-neighboring cells. With a modi�ed WENO weighted procedure, the �nal limited
polynomial can smoothly switch from the high order one in the smooth region to the linear one near strong discontinuities.
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3.1 The projection-WENO limiter on one-dimensional grids

3.1.1 The construction of the linear candidate polynomials

We �rst consider DGSEM on the one-dimensional grids. The numerical scheme is similar to the description in Section 2.
The approximate solution in the central cell i (Ci) is written as,

Uhi (ξ) =

p+1∑
l=1

U liϕl(ξ). (6)

The linear candidate polynomials constructed for the limiting can be written as

Uj→i(ξ) = Ūi + Uξ,jξ, ξ =
x− xi
2∆x

, j ∈ {i− 1, i, i+ 1}, (7)

where xi is the center of Ci and ∆x is grid size of Ci. Thus this polynomial can conserve the mean value Ūi on Ci. The
gradient Uξ,j is obtained by minimizing the following value,

I1 =

∫
Cj

(Uj→i(x)− Uj(x))
2
dx.

The meaning of this formula is to �nd an approximate linear polynomial Uj→i(ξ) for Uj(ξ) on Cj with minimum L2 error.
On the uniform one-dimensional grids, the gradient Uξ,j could be analytically expressed as

Uξ,i =
3

2

p+1∑
l=1

(U li − Ūi)ωlξl,

Uξ,i−1 =
3

26

p+1∑
l=1

(U li−1 − Ūi)ωl(ξl + 2),

Uξ,i+1 =
3

26

p+1∑
l=1

(U li+1 − Ūi)ωl(ξl − 2).

(8)

The linear candidate polynomials instead of high order candidate polynomials in [14, 15, 16] are constructed for the
following reasons. First, a linear polynomial is much easier to construct especially on higher-dimensional grids. Second,
high order limiter can also be constructed with linear candidates as described in the next section. Last and most important,
a linear polynomial is better for oscillation suppressing in the inner DOFs of DGSEM. The source term in DGSEM needs
a smooth polynomial across the whole cell. It is quite di�cult to provide a high order smooth polynomial in a cell with
strong shock waves.

3.1.2 The modi�ed WENO limiter

From the last section, we have four candidate polynomials, the central high order one Ui(ξ) and three constructed linear
ones Uj→i(ξ), j ∈ {i − 1, i, i + 1} in Eq. (7). These candidate polynomials are transformed to the characteristic space
and denoted as V0(ξ) for the central one and V1(ξ), V2(ξ), V3(ξ) for the three linear ones, with index 1, 2, 3 denoting
construction from cells i− 1, i, i+ 1 respectively. The �nal weighted polynomial is

ṽ(ξ) = w0v0(ξ) + w1v1(ξ) + w2v2(ξ) + w3v3(ξ), (9)

where v is one component of V . The weights wl are de�ned as

wl =
αl∑3
k=0 αk

, αl =
λl

β2
l + εl

, l = 0, 1, 2, 3. (10)
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The WENO smooth indicator is evaluated as

β0 =

p∑
k=1

∫ 1

−1

(
∂vk0 (ξ)

∂kξ

)2

dξ,

βl = 2v2
ξ,l, l = 1, 2, 3.

(11)

where β0 is equivalent to the below one in the physical coordinate,

β0 =

p∑
k=1

∫
Ci

(
∆x

2

)2k−1(
∂vk0 (x)

∂kx

)2

dx. (12)

This smooth indicator is a slight modi�cation of the classical one in [20] on the length scale and can work better in the
proposed limiter here. The analytical expression for calculating β0 is referred to Appendix A. In Eq. (10), the linear
weights λ are chosen as

λ1 = λ3 = 1, λ2 = 100, λ0 = 102p =


102, p = 1;

104, p = 2;

106, p = 3,

to emphasize the contribution of polynomials in the central cell. ε0 is chosen to be 10−16 preventing the denominator
from being 0. Since βl(l = 1, 2, 3) could be very close to 0 near the extrema, we need to set a relatively large value for the
WENO small εl(l = 1, 2, 3) for better accuracy. Whereas large values of εl might cause numerical oscillations. A careful
choice for εl will be discussed later.

After the limiting of each characteristic variable, the limited polynomials Ṽ (ξ) in the characteristic space are trans-
formed back to Ũi(ξ) in the conservative space. Finally Ũi(ξ) is used to evaluate the DOFs on Ci,

Ũ li = Ũ li (ξl), (13)

where ξl is the local coordinate of the l-th solution point.
The Shu-Osher [21] and Lax tube [22] problems are used to study the e�ect of WENO small εl on the accuracy and

shock capturing abilities. No shock detector is used in the calculation. To simplify the discussion, we �rst set ε2 = ε1 +ε3.
The results using constant ε1 = ε3 = 10−6 and 10−4 are shown in Figs. 2 and 3. The shock-vortex interaction in the
Shu-Osher problem is well captured in higher resolution with larger ε and no numerical oscillations are generated. In Lax
tube problem, smaller ε can suppress numerical oscillations with much lower magnitude. Thus large ε could only capture
weak shock waves and preserve higher order accuracy, while small ε could capture the strong shock waves with more
numerical di�usion. To preserve the numerical accuracy and capture strong shocks simultaneously, ε is varied according
to the discontinuity strength (DS) and the following function is designed,

εk = 10−12/π·arctan(DS−DSstrong)−6, k = 1, 3, with DS =

∣∣ρLk − ρRk ∣∣
∆x(p+1)/2ρ̄i

,DSstrong =


1, p = 1;

5, p = 2;

50, p = 3,

ε2 = ε1 + ε3,

(14)

where ρ
L/R
k are the left and right density values at the cell interface. DS takes a very similar form as the KXRCF shock

detector [23], but is evaluated on the face instead of the cell. The ε in Eq. (14) can change from 1 to 10−12 smoothly
near DS = DSstrong as indicated in Fig. 4. The results using the varied ε are shown in Fig. 5. We could observe that
the projection-WENO limiter with varied ε can suppress the numerical oscillation near strong shocks and capture the
shock-vortex interaction in high resolution. Two more test cases, the Sod tube problem [22] and the interaction of two
blast waves [24], are calculated and the results shown in Fig. 6 contain very few numerical oscillations.

The projection-WENO limiter with the parameters ε, λ chosen in the above section can be accuracy preserving in
smooth regions. According to Eq. (14), ε is larger than 10−6 on weak shock regions and of order O(1) to O(10−2) on
smooth regions. The smoothness indicators β0 and βl, l = 1, 2, 3 are of O(∆x2) according to [20] and are denoted as,

β0 = C0∆x2, βl = Cl∆x
2, l = 1, 2, 3.
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Figure 2: Shu-Osher problem with ε = 10−4 and 10−6. Grid number is 200 and all DOFs are plotted.

C0 and Cl are of the same magnitude away from extrema and Cl approximates 0 near extrema. The WENO weight w0

is then evaluated as (ε0 is very small and omitted here),

w0 =

102p

C2
0∆x4

102p

C2
0∆x4 + 100

C2
2∆x4+ε2

+
∑
l=1,3

1
C2

l ∆x4+εl

. (15)

When cell i is away from extrema, Eq. (15) leads to

w0 >
102p

102p + 100(C0/C2)2 + (C0/C1)2 + (C0/C3)2
. (16)

When cell i is near extrema, Eq. (15) leads to

w0 >
102p

102p + ∆x4C2
0 (100/ε2 + 1/ε1 + 1/ε3)

. (17)

In the denominator of Eq. (16), C0 and Cl are of the same magnitude; in Eq. (17), εl, l = 1, 2, 3 is of order O(1) to
O(10−2) on smooth regions. Thus 102p is much larger than other three terms whether near or away from extrema. We
can conclude that w0 is very close to 1. Although it is di�cult to rigorously prove the order of accuracy after applying
the limiter, numerical experiments of this paper verify that the present limiter is accuracy preserving for smooth �ows.

[Remark 1] The projection-WENO limiter is di�erent from the traditional WENO limiter in �nite di�erence or dis-
continuous Galerkin methods [25, 15, 16]. First and foremost, the construction way and the degree for the candidate
polynomials are di�erent. Second, the WENO smooth indicator is slightly modi�ed. The current smoothness indicator
β0 places less emphasis on high order derivatives as shown in Eq. (12). Third, the WENO small ε is related with the
discontinuity strength DS.
[Remark 2] Unlike the shock detector, the discontinuity strength DS is used to adjust the di�usion in the limiter. The
threshold DSstrong is used to estimate the strong shock waves. As indicated in Fig. 4, when DS < DSstrong, ε will smoothly
increase to 1 which is small enough to capture the weak shocks. When DS > DSstrong, ε decreases to 10−12 and the �nal
limited polynomial will be approximately a linear one. Although there exist some other ways to improve the accuracy by
modifying ε such as [26], Eq. (14) is a new one and more suitable to use in DGSEM. Parameters ε, DS and DSstrong are
used to adjust the dissipation in the limiter and their forms are still under improvement.

3.2 Extension to unstructured quadrilateral grids

This section generalizes the projection-WENO limiter in Section 3.1 to unstructured quadrilateral grids. It is not a
straightforward job. The candidate linear polynomials cannot be easily obtained through the face-neighboring cells since

6



x

D
en

si
ty

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2

ε=1.e-4
ε=1.e-6
Exact

(a) p1

x

D
en

si
ty

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2

ε=1.e-4
ε=1.e-6
Exact

(b) p2

x

D
en

si
ty

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2

ε=1.e-4
ε=1.e-6
Exact

(c) p3

Figure 3: Lax tube problem with ε = 10−4 and 10−6. Grid number is 200 and all DOFs are plotted.
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Figure 5: The Shu-Osher (left) and Lax tube (right) problems with varied ε in Eq. (14). Grid number is 200 and all
DOFs are plotted.
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Figure 6: The Sod tube (left) and two blast waves interaction (right) problems with varied ε in Eq. (14). Grid number
is 200 and all DOFs are plotted.
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Figure 7: The limiting stencils Ti = {j1, j2, j3, j4} in unstructured quadrilateral grids.

the local iso-prametric coordinates are used in each cell as described in Section 2. The WENO weight will be very
time consuming on the multi-dimensional grids. This section will give a simple way to construct the linear candidate
polynomials and perform the limiting through the dimension-by-dimension way to reduce computational cost.

Firstly a bilinear polynomial is constructed in physical coordinates using the mean value in the central cell,

u1(x, y) = ūi + uxX + uyY + uxy(XY −XY ), X = x− xi, Y = y − yi, XY =
1

Vi

∫
Ωi

XY dΩ, (18)

where u is a component of conservative variables U , (xi, yi) is the gravity center and Vi is the area of cell i. The coe�cients
ux, uy and uxy are obtained by minimizing the value

I2 =

∫
Ωj

(u1(x, y)− uj(ξ, η))2dΩ, j ∈ Ti = {j1, j2, j3, j4}.

The stencil Ti is shown in Fig. 7. By solving the equations

∂I2
∂u1x

= 0,
∂I2
∂u1y

= 0,
∂I2
∂u1xy

= 0,

the coe�cients in Eq. (18) can be obtained.
Then we interpolate the values in solution points in cell i and have the candidate polynomial, uj→i(ξ, η), following

the same form of ui(ξ, η) in Eq. (3),

uj→i(ξ, η) =

p+1∑
m=1

p+1∑
n=1

umnj→iϕm(ξ)ϕn(η), with umnj→i = u1(xmni , ymni ), j ∈ Ti.

where (xmni , ymni ) is the physical coordinate of the mn-th solution point in cell i. Using the central and four candidate
polynomials, the limiting procedure combines the projection-WENO limiter in Section 3.1 and the time-saving character-
istic limiting idea in [27]. Detailed steps are described as follows.
(1). For the f -th face with the direction ~nf , transform the polynomial Ui(ξ, η) and Ujf→i(ξ, η) to the characteristic space
which are denoted as V0(ξ, η) and Vf (ξ, η) respectively. One component of the characteristic polynomials is expressed as

vk(ξ, η) =

p+1∑
m=1

p+1∑
n=1

vmnk ϕm(ξ)ϕn(η), k = 0, f.

(2). For the g-th face �ux point on the f -th face, we extract the 1D line values which are used to interpolate this �ux
point and form the 1D polynomial. Speci�cally speaking, if the f -th face is in the ξ direction, the 1D polynomials are
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q0(ξ), q1(ξ), de�ned as

q0(ξ) =

p+1∑
l=1

ql0ϕl(ξ), q
l
0 = vlg0 ,

q1(ξ) =

p+1∑
l=1

ql1ϕl(ξ), q
l
1 = vlgf .

The candidate polynomials are the high order polynomial q0(ξ) and the linear ones s0(ξ) and s1(ξ), which are obtained
by projecting q0(ξ) and q1(ξ) to linear polynomials using the �rst formula in Eq. (8).
(3). Perform the WENO limiting procedure following Section 3.1.2 for all the face �ux points on the f -th face. The �nal
limited polynomial Ṽf (ξ, η) is obtained in the characteristic space on the f -th face. Transform back to the conservative

space and we have Ũf (ξ, η).

(4). Perform the above limiting steps (1) to (3) for all the four faces of cell i and four limited polynomial, Ũf (ξ, η), f =
1, · · · , 4, can be obtained. The �nal limited polynomial would be the arithmetic average of the four polynomials,

Ũ(ξ, η) =
1

4

4∑
f=1

Ũf (ξ, η). (19)

The comment for the limiting procedure is given in the following remarks.

[Remark 1] The limiting on quadrilateral grids fully utilizes the tensor-product property of the approximate solution.
The limiter could be applied on high order quadrilateral grids without special treatment and is computationally e�cient
comparing with other multi-dimensional WENO limiters such as [16].
[Remark 2] In step (3), the number of candidate polynomials is one less than that in Section 3.1.2. We do not consider,
e.g., j1 and j3, as a pair like the 1D case for ~n1 and ~n3 are not parallel on general quadrilateral grids.
[Remark 3] The characteristic limiting way adopted from [16] could provide better numerical accuracy and be robust in
shock capturing. An ongoing job engages on the nonlinear wighting in the �nal conservative space instead of the simple
arithmetic average in Eq. (19).

4 Numerical tests

The cases in Sections 4.1, 4.2 and 4.3 are calculated without any shock detectors to demonstrate the high order accuracy
of the developed limiter. Eq. (14) is used to evaluate ε by default, and also constant ε is used in the accuracy study for
comparisons. The time consuming cases in Sections 4.4 are calculated with a modi�ed KXRCF detector adopted by [17],

Si =

∣∣∣∫∂Ω−
i

(
uhi − uhj

)
ds
∣∣∣

h |∂Ω−i | ūiMp

, (20)

where h is the grid size, ∂Ω−i denotes the surface of cell i through which the �uid �ows into cell i, and cell j is adjacent
to cell i with ∂Ω−i as the interface. ūi is the cell average on cell i and u is chosen to be the density in this paper. Mp is
chosen to be 0.2 for all cases. When Si > 1, cell i is marked as the troubled cell.

All the contours are output with (p+ 1)2 uniform quadrilateral sub-cells shown in Fig. 8 to display all the inner DOFs
of the DGSEM.

4.1 Accuracy study on the projection-WENO limiter

4.1.1 Isentropic vortex problem

The isentropic vortex transport problem [28] is used to examine the accuracy of numerical schemes in computing multi-
dimensional �ows without shock waves. The mean �ow is ρ = 1, p = 1, and (u, v) = (1, 1). We add, to mean �ow, an
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Figure 8: The sub-cells for outputting the inner DOFs of p1 to p3 DGSEM schemes from left to right respectively.

Table 1: Accuracy study on the project-WENO limiter using the isentropic vortex problem.
Unlimited Projection-WENO, ε = 10−6 Projection-WENO, ε uses Eq. (14)

Scheme Grid L2 error Order L2 error Order L2 error Order
p1 h=1 1.054E-02 2.607E-02 1.246E-02

h=1/2 2.330E-03 2.18 4.607E-03 2.50 2.379E-03 2.39
h=1/4 5.044E-04 2.21 5.885E-04 2.97 5.049E-04 2.24
h=1/8 1.183E-04 2.09 4.389E-06 7.07 1.183E-04 2.09

p2 h=1 1.517E-03 1.914E-02 1.522E-03
h=1/2 1.873E-04 3.02 1.662E-03 3.53 1.871E-04 3.02
h=1/4 2.010E-05 3.22 8.691E-05 4.26 2.010E-05 3.22
h=1/8 2.314E-06 3.12 4.389E-06 4.31 2.314E-06 3.12

p3 h=1 2.552E-04 1.423E-02 2.553E-04
h=1/2 1.544E-05 4.05 2.991E-04 5.57 1.544E-05 4.05
h=1/4 7.978E-07 4.27 2.771E-06 6.75 7.978E-07 4.27
h=1/8 4.469E-08 4.16 1.028E-07 4.75 4.469E-08 4.16

isentropic vortex expressed by the following perturbations,

(δu, δv) =
χ

2π
e0.5(1−r2) (−ȳ, x̄) ,

δT = − (γ − 1)ε2

8γπ2
e1−r2 , δS = 0,

with (x, y) = (x − 5, y − 5), r2 = x2 + y2, and the vortex strength χ = 5. The computational domain is taken as
[0, 10] × [0, 10], and periodic boundary conditions are used. We compute the solution at t = 2.0 to test the accuracy of
DGSEM schemes on uniform quadrilateral grids of size h = 1, 1/2, 1/4 and 1/8.

The L2 errors with p1 to p3 unlimited and limited DGSEM schemes are shown in Table 1. We can observe that all the
schemes can achieve the expected orders. The limited DGSEM schemes with ε in Eq. (14) give almost the same errors as
the unlimited schemes, while the limited DGSEM schemes with constant ε = 10−6 are more dissipative and give larger
errors.

4.1.2 Accuracy study on subsonic �ows around the cylinder

The subsection uses the subsonic �ow past a circular cylinder at a Mach number of inlet Mach number Ma∞ = 0.38.
The purpose is to validate the accuracy of DGSEM schemes on quadrilateral grids with curved wall boundary. The four
successively re�ned o-type grids having 16× 5, 32× 9, 64× 17, and 128× 33 grid points are used for the calculation and
the former three ones are shown in Fig. 9. Details on generating such grids can be referred to [8]. The following entropy
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(a) 16× 5 (b) 32× 9 (c) 64× 17

Figure 9: The series of re�ned quadrilateral grids for calculating the subsonic �ow around the cylinder.

Table 2: Accuracy study on the project-WENO limiter using the subsonic �ow around the cylinder
Unlimited Projection-WENO, ε = 10−6 Projection-WENO, ε uses Eq. (14)

Scheme Grid L2 error Order L2 error Order L2 error Order
p1 16×5 2.662E-03 3.451E-03 2.813E-03

32× 9 5.311E-04 2.33 6.302E-04 2.45 5.419E-04 2.38
64×17 8.965E-05 2.57 9.474E-05 2.73 8.985E-05 2.59
128 ×33 1.453E-05 2.63 1.481E-05 2.68 1.453E-05 2.63

p2 16×5 5.534E-04 1.207E-03 5.013E-04
32×9 4.865E-05 3.51 6.969E-05 4.11 4.863E-05 3.37
64×17 5.073E-06 3.26 4.179E-06 4.06 5.080E-06 3.26
128×33 6.321E-07 3.00 6.320E-07 2.73 6.318E-07 3.01

p3 16×5 4.312E-05 1.934E-04 4.319E-05
32×9 1.414E-06 4.93 3.054E-06 5.98 1.415E-06 4.93
64×17 6.117E-08 4.53 1.462E-07 4.38 6.116E-08 4.53

production ε de�ned as

ε =
S − S∞
S∞

=
p

p∞

(
ρ∞
ρ

)γ
− 1,

is served as the error measurement, where S is the entropy. In this case, HLL Riemann solver is used.
The L2 errors on a series of re�ned quadrilateral grids with p1 to p3 unlimited and limited DGSEM schemes are shown

in Table 2. Similar to the analysis in Section 4.1.1, all the schemes can achieve the expected orders. The limited DGSEM
schemes with ε in Eq. (14) give almost the same errors as the unlimited schemes, while the limited DGSEM schemes with
constant ε = 10−6 is more dissipative and give larger errors. The limited schemes exhibit good accuracy and convergence
properties in the steady �ows.

4.2 Two-dimensional Riemann problems

This subsection tests the performance of the project-WENO limiter in computing multi-dimensional waves over a broader
range of conditions. We consider a two-dimensional region [−1, 1]× [−1, 1] that is partitioned into four zones, [−1,−1]×
[0, 0] for zone 1, [0,−1] × [1, 0] for zone 2, [0, 0] × [1, 1] for zone 3, [−1, 0] × [0, 1] for zone 4. The grids are composed of
80× 80 uniform quadrilaterals. Two di�erent initial settings are selected from [29] and listed in Table 3. HLL Riemann
solver is used. The calculation has been performed to t = 0.52.

The results are shown in Fig. 10. Few numerical oscillations generate near the discontinuities for p1 to p3 schemes.
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Table 3: Initial conditions of two-dimensional Riemann problems.
Problem I Problem II

zone 1 zone 2 zone 3 zone 4 zone 1 zone 2 zone 3 zone 4
ρ 0.8 1 0.5197 1 0.8 1 0.5313 1
u 0.1 0.1 0.1 -0.6259 0 0 0 0.7276
v 0.1 -0.6259 0.1 0.1 0 0.7276 0 0
p 1 1 0.4 1 1 1 0.4 1

Higher order schemes show sharper gradients near discontinuities and capture more small �ow structures than lower order
ones.

4.3 The di�raction of a supersonic shock moving over a 90o corner

This case is taken from [30]. The shock Mach number is 5.09. The computational domain is a unit square [0,1]×[0,1].
The corner is at (x, y) = (0.05, 0.625) and the region [0,0.05]×[0,0.625] is solid. Initially, the shock is at x = 0.05. To the
right of the shock, the �ow �eld is initialized to

(ρ, u, v, p)R = (1.4, 0, 0, 1).

To the left of the shock, the �ow variables are computed using moving shock relations, i.e.,

(ρ, u, v, p)L = (7.04113, 4.07795, 0, 30.0595).

At the left, right, and bottom boundaries, all �ow quantities are prescribed. At the top, time-dependent conditions
determined by the exact motion of the shock are used, i.e.

(ρ, u, v, p) =

{
(ρ, u, v, p)L, if x < 5.09t;

(ρ, u, v, p)R, if x > 5.09t.

The solid walls are treated using the re�ecting boundary condition. Two kinds of uniform quadrilateral grids, h = 1/80
and h = 1/160, are used in the calculation. HLL Riemann solver is used.

The p1 to p3 schemes are used in the calculation and the results are shown in Fig. 11. Few numerical oscillations gener-
ate near the discontinuities for three numerical schemes. Higher order schemes show sharper gradients near discontinuities
and capture more small �ow structures than lower order ones.

4.4 Double Mach re�ection problem

One of the popular test cases for high-resolution schemes is the double Mach re�ection problem [24]. The whole computa-
tional domain is [0, 4]× [0, 1] with uniform quadrilateral grids of size h = 1/120. The wall is located at the bottom of the
computational domain beginning at x = 1/6. Initially, a right-moving shock with Ma = 10 is located at x = 1/6, y = 0,
inclined 60o with respect to the x-axis. HLL Riemann solver is used. The computation is carried out until t = 0.2.

The p1 to p3 DGSEM schemes are used for the calculation. The shock region marked by the modi�ed KXRCF
detector in Eq. (20) is shown in Fig. 12. The density contours shown in Fig. 13 indicate that the numerical oscillations
are small for di�erent orders of schemes. From Fig. 14 we can observe that higher order schemes capture more detailed
�ow structures near the Mach stem than lower order schemes.

5 Conclusions

This paper proposed a high-order projection-WENO limiter for the shock capturing for DGSEM schemes on quadrilateral
grids. Unlike the traditional WENO limiters, the projection-WENO limiter weights the high order polynomial in the
central cell and linear ones from the central and face-neighboring cells. A L2 projection is used to construct all linear
candidate polynomials. The limiting procedure uses the modi�ed WENO weight, which changes the smooth indicator and
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(a) Problem I, p1 (b) Problem I, p2 (c) Problem I, p3

(d) Problem II, p1 (e) Problem II, p2 (f) Problem II, p3

Figure 10: Density contour for the two 2D Riemann problems using p1 to p3 DGSEM schemes. Quadrilateral grid size is
h = 1/40 on the region [-1,1]×[-1,1].
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(a) p1, h=1/80 (b) p2, h=1/80 (c) p3, h=1/80

(d) p1, h=1/160 (e) p2, h=1/160 (f) p3, h=1/160

Figure 11: Density contours for the di�raction of a supersonic shock moving over a 90o corner using p1 to p3 (from left
to right) DGSEM schemes. Quadrilateral grids size is h = 1/80 on the up side and h = 1/160 on the down side on the
region [0,1]×[0,1].
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Figure 12: The shock region marked by the modi�ed KXRCF detector for double Mach re�ection with grid size h = 1/120
using p1 to p3 (from top to bottom) DGSEM schemes.
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Figure 13: Density contours for double Mach re�ection with grid size h = 1/120 using p1 to p3 (from top to bottom)
DGSEM schemes . Thirty equally spaced contour lines from ρ = 1.7 to 21.5.

Figure 14: Machstem density contours for double Mach re�ection with grids of size h = 1/120 using p1 to p3 (from left
to right) DGSEM schemes. Thirty equally spaced contour lines from ρ = 1.7 to 21.5.
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relates the WENO small ε with the discontinuity strength for better shock-capturing and accuracy-preserving capabilities.
The extension to quadrilateral grids uses the construction of bilinear candidate polynomials and performs the limiting
in a dimension-by-dimension way. The shock capturing ability is veri�ed through abundance of test cases including the
accuracy study, inviscid and viscous shock �ows. This work will continue to validate the projection-WENO limiter for
DGSEM on hexahedral grids in calculating three-dimensional turbulent �ows with shock waves.
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Appendix

A The expression of the smoothness indicator

For evaluating the smoothness indicator in Eq. (11), we use one component ak to denote the DOF vk0 in the polynomial
v0(ξ). The smoothness indicator β0 for p1 polynomial is

β0 =
3

2
(a1 − a2)2.

β0 for p2 polynomial is

β0 = ((16 + 3s2)a2
1 + 64a2

2 − 64a2a3 + (16 + 3s2)a2
3 + a1(−64a2 + 32a3 − 6s2a3))/(6s4), s =

√
6.

β0 for p3 polynomial is

β0 =(3s2(249 + 5s2(−2 + s2))(a2 − a3)2 − 30q3s(−1 + s2)(a2 − a3)(a1 − a4) + 6qs(−249 + 5s2)(a2 − a3)(a1 − a4)−
30q4(a1 − a4)2 + 15q6(a1 − a4)2 + q2((747 + 80s2)a2

1 + 80s2(a2 + a3 − a4)2+

747a2
4 − 2a1(80s2(a2 + a3 − a4) + 747a4)))/(30q2(q − s)2s2(q + s)2),

s =

√
3

7
+

2

7

√
6

5
, q =

√
3

7
− 2

7

√
6

5
.
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