
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona,Spain, July 9-13, 2018

ICCFD10-003

Adaptive time steps for compressible flows based on dual-time
stepping and a RK/Implicit smoother scheme

O. Peles∗,∗∗ and E. Turkel∗

Corresponding author: oren_peles@walla.co.il

∗ School of Mathematics/Tel-Aviv University, Israel.
∗∗ IMI systems, Ramat Ha-Sharon, 4711001, Israel.

Abstract

We present an adaptive time stepping technique, based on a dual-time stepping scheme together with a RK/implicit
smoother for physical time marching. This method is found to be very efficient for transient problem characterized
by large variations of time scales during the physical time and hence a wide a range of required physical time steps.
We discuss the method and present several examples of compressible flow problems.

1 Introduction
Dual time stepping with Backward Differentiation (BDF) of order two in physical time is a common algorithm for time
dependent problems, both for inviscid, viscous flows and URANS (Unsteady RANS) simulations (See [8]). There are
also optimized versions of BDF [28]. Jameson [8] combined BDF with a low-storage Runge-Kutta for the pseudo-time
marching technique [10]. This scheme is point implicit in the physical time and unconditionally stable with respect to
the physical time steps. However, the accuracy decreases when using large time steps.

Acceleration of the convergence in pseudo-time is one way to reduce the CPU time. Many techniques are used in
the literature such as multigrid methods, low Mach preconditioning and residual smoothing. [17] and [20] introduced
the pseudo-time RK/imlicit smoother as a convergence acceleration method for steady viscous flows. The method was
extended by Peles et al. [14] for turbulent flows and for reactive flows in [15] and general multiphysics problems in
[16]. For low Mach problem preconditioning methods were developed in [21, 22, 24, 26, 27]. Instead, Rossow [17]
used an intrinsic treatment for the low Mach accuracy. This was combined with the RK/Implicit smoother in [15] and
[12] using the corresponding flux Jacobian in a Roe-type scheme. Langer [13] extended the method for unstructured
grids.

Large physical time steps, using implicit schemes, is another way to reduce the CPU time. A standard implicit
scheme used is BDF (backward difference formula). However, for the BDF method to be unconditionally stable it can
only be at most second-order in time. Thus, if we wish a higher order accurate scheme, in time, implicit RK methods
for the physical time steps can be a good choice. Several techniques have been developed for the implementation of
dual time stepping with implicit RK for the physical time. In [3] a method using dual time stepping with multi-stage
schemes in physical time for unsteady low Mach number compressible flows was developed. [4] and [9] presented a
formulations of a dual time stepping procedures for implicit Runge-Kutta schemes. In [9] Jameson used a pseudo-time
RK/Implicit smoother for time dependent problems. The method was tested on both subsonic and transonic tests cases.
The CPU time cost for DIRK methods with n stages is n evaluations of the residuals and n−1 residual smoothing so
the gain in terms of CPU time is small. However, an intrinsic weakness of the BDF method is the need of constant
time steps. DIRK methods allow varying and adaptive time steps. This is important for problems with time scales
that vary sharply during the physical time range. For problems using constant time steps, the optimum time step of
BDF method can be more efficient then the optimal DIRK time step. However, in the BDF scheme, without prior
knowledge about the required time steps, a time-step sensitivity analysis needs to be done. This process also costs
CPU time so in total, an adaptive time step with DIRK methods can be more efficient. Adaptive time stepping for

1



incompressible flows based on a BDF formulation was developed by Hay et al. [7]. A method for adaptive time steps
with IRK scheme was presented in [11] for incompressible Navier-Stokes flows.

In this paper, we present a dual time stepping technique for compressible flow based on a low-storage RK with an
implicit residual smoother (RK/implicit smoother) scheme for the pseudo time marching and DIRK scheme for the
physical time steps with adaptive time stepping. The governing equations will presented in section 2. In section 3.1
the dual time stepping with BDF method will be discussed and in section 3.2 the dual-time stepping with DIRK will
be presented. In section 4 the adaptive time step technique will be described and several examples of compressible
flows will be presented in section 5.

2 Governing equations
We consider the three dimensional, compressible Navier-Stokes questions, given in conservation form as

∂Q

∂t
+∇~F (Q) = ∇~Fv(Q) + S (1)

where Q is the vector of variables - Q = (ρ, ρu, ρv, ρw, ρE)T , ρ is the gas density, u, v and w are the components of

the velocity vector, p is the pressure, related to the total internal energy E by

ρE =
p

γ − 1
+

1

2
· ρ · (u2 + v2 + w2).

F is the inviscid flux, given by

F = (ρ~u, ρ~uu+ px̂, ρ~uv + pŷ, ρ~uw + pẑ, ρ~u(E + p))T .

S is any source term and Fv is the viscous flux, given by

Fv = (0, ~τx, ~τy, ~τz, u~τx + v~τy + w~τz + k∇T )T

where ~τx, ~τy and ~τz are the stress vectors in the directions x, y and z and k is the thermal conductivity.

3 Dual Time Stepping Approach

3.1 RK/Implicit smoother scheme for Dual Time Stepping with Backward Differencing
When solving (1) with a dual-time stepping method we solve the equation set

∂W

∂τ
+
∂W

∂t
+∇~F (W ) = ∇~Fv(W ) (2)

where τ is the pseudo-time. We integrate and then apply the Gauss theorem for a control volume (grid cell) to get a
semi-discrete scheme

∂W

∂τ
= −∂W

∂t
−R (3)

where the residual R is given by

R =
1

V

∮
S

(~F − ~Fv) · d~S =
∑

cellfaces

(~F − ~Fv) · d~S. (4)

We approximate the derivative with respect to the physical time in (3) by a second order backward difference formula
(BDF) -

∂W

∂t
≈ 3Wn+1 − 4Wn +Wn−1

2∆t
. (5)
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For each physical time step we solve (3) using a low-storage Runge-Kutta scheme for the pseudo-time marching -

W (0) = Wn

W (k+1) = W (0) − αk+1R(W (k)) ; k = 0...p− 1 (6)

Wn+1 = W (p)

where p is the number of stages. Following [17] and [20] linearization of (3) with respect to the pseudo time yields(
I +

∆τ

V

∑
cellfaces

A · d~S + ∆τ
∂S

∂W

)
∆W = R (7)

where A is the flux Jacobian matrix and ∂S
∂W is the Jacobian of the source term.

Following [17] and [20] for the residual smoothing operator we write the flux Jacobian as the sum of two matrices,
A+ with non-negative eigenvalues, and A− with non-positive eigenvalues, defined as A± = 1

2 (A ± |A|). We leave
A+ in the left side multiply ∆W of the local cell and move A− to the right side multiply ∆W of the neighbor cells.
This yields a set of linear equations for the smoothed ∆W which replaces the unsmoothed residuals -(

I + ε
∆τ

V

∑
cellfaces

A+ · d~S + ∆τ
∂S

∂W

)
∆Wlocal = R− ε∆τ

V

∑
cellfaces

A− ·∆WNB · d~S. (8)

This linear system for the smoothed residual can be solved using an iterative solver such as Gauss-Seidel or Red-
black iterations (RB can be used for parallel computing). Since the solver is explicit and we use the resulting ∆W as
smoothed residuals we perform only few number of implicit iterations, typically 2-3, in each RK step. ε is used as a
relaxation parameter. Usually ε ≤ 1 is used. ε > 1 is an over-relaxation and can be used for very stiff problems.

In [25] (2) was preconditioned and was solved in semi-discrete form using the scheme

P−1 ∂W

∂τ
+
∂W

∂t
+∇~F (W ) = ∇~Fv(W )− hx

∂

∂x

(
P−1|PA|∂W

∂x

)
(9)

where the last term is the artificial viscosity and the matrix P is the low-Mach number preconditioner which aims
to control the consistency of the scheme for low Mach number flow as M → 0 (see [23] and [2]). Since in the
approximation of the derivative with respect to physical time ((5)),Wn+1 is unknown, it was approximated byW (k+1).
They derived the point implicit scheme -(

I + αkct
∆τ

∆t
P

)
w(k+1) = w0 − αk∆τP

{
Rk +

ctw
k − F (wn, wn−1, ...)

∆t

}
+ αkct

∆τ

∆t
Pwk. (10)

Later in [20], the matrix P−1 multiplying the ∂W
∂τ term was replaced by any L−1 convergence acceleration

operator (e.g. multigrid or residual smoothing). Since ∂W
∂t is considered to be a source term where its Jacobian is ct

∆t ,
the smoother operator takes the form(

I + ε
∆τ

V

∑
cellfaces

A+ · d~S + ct
∆τ

∆t
+ ∆τ

∂S

∂W

)
∆Wlocal = Rk − ε∆τ

V

∑
cellfaces

A− ·∆WNB · d~S (11a)

where

Rk =
∑

cellfaces

(~F − ~Fv) · d~S −
3W k − 4Wn +Wn−1

2∆t
. (11b)

Equations (11a) and (11b) define the standard scheme for dual time stepping with RK/implicit smoother.
We adopt the strategy of [17] and [20] for low Mach treatment by using a modified speed of sound c′ in the flux

Jacobian matrix in the implicit smoother operator. We also apply a Roe-like scheme with artificial viscosity with the
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same modified flux Jacobian A(c′) where the artificial viscosity flux is given by fad = −|A(c′)|∂W∂x (see also [12]).
Hence, we set the preconditioning matrix P = I and (10) can be written (for scalar equation) as

W (k+1) = W 0 − αk∆τ
R̃k

1 + αkct
∆τ
∆t

(12)

where

R̃k = Rk +
ctW

0 − F (Wn,Wn−1, ...)

∆t
. (13)

We identify
(
1 +αkct

∆τ
∆t

)−1
as the smoother operator for the scalar equation while keeping the same structure for

the residual smoother. We define the new residual smoother scheme as(
I + ε

∆τ

V

∑
cellfaces

A+ · d~S + αkct
∆τ

∆t
+ ∆τ

∂S

∂W

)
∆Wlocal = Rk − ε∆τ

V

∑
cellfaces

A− ·∆WNB · d~S. (14a)

where

Rk =
∑

cellfaces

(~F − ~Fv) · d~S −
3W 0 − 4Wn +Wn−1

2∆t
. (14b)

To summarize the differences between the standard (equations (11a) and (11b)) and the new scheme (equations (14a)
and (14b)) -

1. In the right hand side of the standard scheme (11b) the approximation of the derivative with respect to physical
time contains W k and in the new scheme W k is replaced by W 0 (14b).

2. In the smoother operator of the new scheme (14a) we have αk multiplying ct∆τ
∆t .

To validate the new dual time stepping scheme, included within the RK/implicit smoother, we consider the solution
of the Riemann problem for Sod’s shock tube [19].

For this problem the initial conditions are{
p=1 PSI and T =231.11K on the right side of the tube
p=10 PSI and T =288.89K on the left side

(15)

with Mach number zero in both sides.
The convergence for a series of CFL numbers is presented in figure 3.1 for three physical time steps. Improved

convergence is obtained as the CFL number increases until reaching an asymptotic convergence. Comparison of the
results to the analytic solution is presented in figure 3.2.

The computations demonstrate that the new approach is more robust especially at very low Mach numbers. Figure
3.3 shows a comparison between the conversion histories of the standard and the new methods for the Shu-Osher
problem (see details in [18]). For ten pseudo-time iterations with CFL=64, the results are practically the same but the
new method converges much quicker. It reaches the same error level after about five iterations so it saves almost half
of the CPU time.

4



Figure 3.1: Convergence history for series of CFL numbers for three physical time steps

Figure 3.2: Sod’s tube results - Analytical solution vs. numerical simulation. Pressure (top) and density (bottom)
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Figure 3.3: Convergence history comparison between the standard dual time-stepping method (A) and the new dual-
time stepping method (B) for the one-dimension Shu-Osher problem. The CFL used was 64

3.2 Dual Time Stepping with DIRK
The algorithm for dual-time stepping with a DIRK scheme for the physical time marching is based on [4]. We want to
solve the semi-discrete equation of the form

du

dt
= −R(u). (16)

The DIRK scheme is given by

u(j) = un −∆t

j∑
i=1

aijR(u(i)) j = 1..s (17a)

un+1 = un −∆t

s∑
j=1

bjR(u(i)) (17b)

where un = u(tn), u(j) is the solution at the j-th internal RK stage and s is the number of RK stages. Also, a11 = 0
and so u(1) = un. Furthermore, ajj 6= 0 ∀j > 1 and bj = ajs hence un+1 = u(s). We then write (17a) as

R∗(u(j)) = R(u(j))− un − u(j)

ajj∆t
− 1

ajj

j−1∑
i=1

aijR(u(i)) = 0. (18)

Equation (18) is solved for u(j) with pseudo-time stepping

du(j)

dτ
= R∗(u(j)). (19)
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We solve (19) with a low-storage RK with an implicit smoother, where the residual smoother operator is defined
similar to the new scheme (14a) by

(
I + ε

∆τ

V

∑
cellfaces

A+ · d~S +
1

ajj

∆τ

∆t
+ ∆τ

∂S

∂W

)
∆Wlocal = Rk − ε∆τ

V

∑
cellfaces

A− ·∆WNB · d~S. (20)

3.3 DIRK coefficients
We choose the DIRK3 scheme from [11]. The non-zero coefficients aij are given by

a21 = a22 = a33 =
1

2
+

√
3

6

a32 = − 1

12a22(2a22 − 1)
(21)

a31 = 1− a32 − a33

We recall that bj=ajs while the coefficients b̂j for the lower order embedded scheme are given by

b̂1 =
5

12
+

√
3

12

b̂2 =
9

12
+

√
3

12
(22)

b̂3 = − 2

12
− 2
√

3

12

4 Adaptive Time Steps
For a given DIRK scheme of order p, the embedded scheme is a scheme of lower order, p − 1 with the same aij but
b̂i instead of bi. Hence, we don’t need another evaluation of the residual to find the lower order approximation. We
note that this notation is slightly different than that used for explicit RK schemes where an embedded scheme means
one using fewer stages than the full scheme. Let un+1 be the solution of the given DIRK scheme after one time step
of size ∆t and let ûn+1 be the solution of the embedded scheme, both with initial condition un. We therefore have:

un+1 = u+ c∆tp (23)

and
ûn+1 = u+ ĉ∆tp−1. (24)

Subtracting equation (23) from (24) yields

ûn+1 − un+1 = ĉ∆tp−1. (25)

Hence,
‖ûn+1 − un+1‖
‖ûn − un‖

=

(
∆tn+1

∆tn

)p−1

. (26)

We want ‖ûn+1 − un+1‖ bounded relative to the norm of the solution ‖u‖ such that

‖ûn+1 − un+1‖ = ‖ûn − un‖ ·
(

∆tn+1

∆tn

)p−1

≤ ε‖un‖. (27)
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From (27) we get

∆tn+1 ≤ ∆tn ·
(

ε‖un‖
‖ûn − un‖

) 1
p−1

(28)

We use the PI-like controller [5]. The time step size for the next time step is thus given by

∆tn+1 = max

(
min

(
∆tn ·

(
TOL‖un‖
‖ûn − un‖

) 1
p−1

, C2∆tn

)
, C1∆tn

)
(29)

The TOL parameter determines the required accuracy. A large TOL enables large time steps with low accuracy while
smaller TOL yields a more accurate solution with smaller time steps (so an increased CPU time).

5 Examples
We consider three test cases. Two of them are one-dimensional and one is a two dimensional problem.

5.1 Riemann problem (Sod’s tube)
Sod’s tube problem was defined in (15). Figure 5.1 presents the solution for two values of the tolerance parameter
(TOL) and compares this result also to the analytical solution. We see that the solution is getting better as TOL is
getting smaller especially in the vicinity to the shock-wave. For TOL = 10−3, figure 5.2 presents the evolution of
the selected time steps for two different initial time steps. The shock-wave is moving with a constant speed along a
uniform mesh. We indeed see that we reach constant time steps without a dependency on the initial time step.

For the Riemann problem, the CPU time with the adaptive time steps was about equal to the optimal time step with
the BDF method, however, unlike in the BDF method, the algorithm reaches the final time step automatically.

Figure 5.1: Comparison solutions for two values of convergence tolerances and the analytical solution at t=200 ms.
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Figure 5.2: Evolution of the selected time steps for different tolerances and initial time steps (Sods tube problem)

Velocity Pressure Density Gas
Post-shock 0.3118 1.57 1.3764 air
Pre-shock 0 1 1 air
Bubble 0 1 0.1358 helium

Table 5.1: initial conditions for the shockwave bubble interaction

5.2 Shock-Sine wave interaction (Shu-Osher problem)
The Shu-Osher problem is described the interaction between a one-dimensional shock-wave with a sine wave [18].
The initial conditions are given by{

ρ = 3.857143; u = 2.629369; P = 10.33333 when x ≤ −4

ρ = 1 + 0.2 sin (5x); u = 0 P = 1 when x > −4
(30)

Figure 5.3 compares the solutions for two values of the tolerances to the solution of the BDF method (there is no
analytical solution). It can be seen that for a smaller tolerance, the solution is closer to the BDF solution. Figure 5.4
shows the evolution of the selected time step. The oscillatory behavior of the problem is manifested in the time steps
evolution. In addition, a constant trend of increasing of the time steps can be seen. The reason for this phenomena is
unclear.

5.3 Shock-wave-bubble interaction
The shockwave-bubble interaction is a two-dimensional problem describing the interaction of a shock-wave with a
bubble. Details and experimental results can be found in [6]. The schematic description of the problem is presented in
figure 5.5. The exact initial condition are presented in table 5.1.

The properties of air are γ = 1.4 and molecular weight 29 gr/cm3 and the properties of helium are γ = 1.67 and
molecular weight 4 gr/cm3.

This problem, is characterized by strongly varying time scales in physical time. We display in figure 5.6 the time
step evolution. Before the bubble, the grid itself is getting denser and so the time step must be decrease in order to
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Figure 5.3: Comparison of two adaptive time steps DIRK simulations with two values of Tol and simulation with BDF
with ∆t = 10−3. The smaller Tol = 2e-3 is almost identical to BDF but with time steps more about twice larger. The
larger Tol = 1e-2 with times steps about 3 to 5 larger.

Figure 5.4: Time steps evolution for the Shu-Osher problem for two values of Tol. The oscillatory nature of the
problem is reflected in the time steps as well as unexplained yet of time step increasing trend

keep a constant error. After exiting from the bubble, the grid becomes sparser and the time step again increases. The
standard time steps for this problem with the BDF method is about 10−4sec. and the CPU time gain, using DIRK, was
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approximately a factor of four. In figure 5.7 we display a comparison between the solutions (density) of BDF and RK
with adaptive time steps. We see a good agreement between the two solutions while the adaptive RK scheme is much
more efficient.

Figure 5.5: Schematic description of the initial conditions for the shockwave-bubble interaction problem

Figure 5.6: Time steps evolution for the Shock-wave/bubble interaction problem. the deceasing of the time step before
the shock-wave/bubble impingement due to the grid clustering can be seem as well as the time step increasing after
the shock-wave is leaves the bubble.

6 Conclusions
We have presented an adaptive time stepping technique based on dual time steps method combined with a high-order
implicit Runge-Kutta method in physical time and a RK/implicit smoother for the pseudo time integration. The method
gives a high gain of CPU time for problems with a large variation of time scales. It also replaces the process of time-
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Figure 5.7: Comparison of the results between adaptive time steps DIRK and BDF (density) at time t = 0.03 sec.

steps sensitivity check needed to find the optimal time step for BDF. The most important parameter is the tolerance
parameter, TOLwhich determines the required accuracy and the CPU time is a direct outcome of the desired accuracy.

We also found that the present method requires more inner iterations in pseudo-time and the improvement of
the internal convergence will improve the worthiness of the method. Another yet, unresolved issue is the stability
analysis of the method. [1] gives the linear stability of the implicit time integration using a dual-time stepping.
They analyzed several temporal schemes and show that the inner iterations in pseudo-time introduces a secondary
convergence criterion to the numerical method.
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