
 1 

Tenth International Conference on        
Computational Fluid Dynamics (ICCFD10), 
Barcelona, Spain, July 9-13, 2018 
 

ICCFD10-0287 

 

Research and Application of Discrete Adjoint Optimization 

based on Unstructured Grid 
 

B. Li, J. Tang, H.Y. Jia, Y.B. Zhang, and Y.Q. Deng 

Corresponding author: leebin2018@icloud.com 
 

China Aerodynamic Research and Development Center, China 
 

 
 

Abstract: Based on unstructured grid, a discrete adjoint optimization 

framework is developed for a 3D RANS solver MFlow, while FFD 

technology is utilized to transform mesh for the next optimization cycle. 

Discrete adjoint equation is acquired directly by formula derivation method 

and solved through LU-SGS iteration. The convergence of LU-SGS method 

for adjoint equation and the simplified strategy for limiter are validated in this 

paper. The optimization system is successfully demonstrated for a DLR F6 

wing-body transonic shape optimization design, in which 112 design 

variables are selected with the purpose of reducing drag. The another 

application is bump optimization, with the aim of increasing total pressure 

recovery coefficient. It shows that the efficient optimization framework has a 

bright application prospect for three-dimensional complex shape design. 
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1     Introduction 
 
Shape is crucial for aircraft, by which aerodynamic characteristic is determined. With the 

development of computer and CFD technology, it is more and more valued to combine CFD and 

optimizing methods, which are utilized to aerodynamic shape optimization. Combined with 

optimization methods, adjoint optimization method is utilized by solving the adjoint equations of 

flowfield to obtain sensitive derivative of the objective function indirectly. Because solving 

adjoint equation doesn’t depend on the number of design variables, there is no relationship 

between the calculation amount of iterative optimization and the number of design variables. 

This isthe most significant advantage of adjoint optimization, avoiding the problem of a great 

amount of calculation, andmaking it become viable that masses of variable are used in 

engineering design optimization problems. 

It is very convenient to distribute grids in complex shape using unstructured grid which has good 

flexibility, but doesn't have the limit of nodes, thus, the unstructured grid is widely used in the 

application of numerical simulation. Based on unstructured grid, discrete adjoint optimization 

method is developed widely. 
Elliottand Peraire solved the laminar flow optimization using 3D unstructured grid[1]. Nielsen 

and Anderson adopted Reynolds Averaged Navier-Stokes equation, combining one-equation 

turbulence model, to develop a parallel discrete adjoint optimization method, by which the 

optimization of multi-element airfoil and ONREA M6 was finished[2-3]。Nielsen and Kleb 

continuously implemented complex variables to discrete adjoint operators[4]. Mavriplis 

developed multigrid technology to the adjoint solver to speedup the convergence[5-6]. 

Brezillonand Dwight added the adjoint optimization model into TAU, which was developed by 
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DLR[7][8].Other adjoint solvers were developed independently based on unstructured grid, such 

as Carpentieri and Koren[9], Giles and Duta[10], Guan[11]. 

In this paper, we present the development of a manual-chain-based derivation discrete adjoint 

framework on a RANS code Mflow, which is defeloped to industry by China Aerodynamic 

Research and Development Center,for applications to aerodynamic optimization problems. The 

framework of the paper is organized as follows. In part 2, the MFlow solver and the developing 

optimization framework including Free-Form Deformation approach for mesh moving as well as 

the LU-SGS for  discrete adjoint solver are presented. Optimization results on DLR F6 wing-

body transonic shape and bump are presented in part 3. Conclusions and directions for future 

activities are outlined in part 4. 

 

2     Optimization Framework 
 

2.1     Industry Aerodynamic Solver MFlow 
 
Autonomous numerical simulation solver MFlow is specifically developed to predict the 

subsonic and supersonic flowfields of complex aircraft for aerospace industry[12, 13]. The control 

equation is compressible Navier-Stokes equation, which is spatially discretized using the finite 

volume method, based on unstructured grid. The solver has many kinds of spatial format, 

limiter, gradient solution, boundary condition and turbulence model, which could be choose 

according to the problem. 

Sovler MFlow participated in the 5th and the 6th AIAA CFD Drag Prediction Workshop and the 

2nd AIAA CFD Hihg-Lift Prediction Workshop[14-16].Comparing the calculation results with 

other CFD codes or commercal softwares, it shows that the prediction precision of Mflow Solver 

is excellent as well. Figure 1and 2 give the results, shown by the organizing committee.  

 
Figure 1: Result comparation from 5th DPW  

  

Figure 2: Result comparation from HiliftPW-2 
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2.2     Discrete Adjoint Solver 
As we known, discrete adjoint equation is shown as 
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whereFis the objective function, and the vector R is the residual of flow-field equation solved 

using MFlow while the vector Wis theconserved variables for mass, momentum, and energy. 

The vector Λis Lagrange multipliers associated with the flow-field equation. 

To improve the stability of solving adjoint equation, pseudo time term is added, 
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Most ways to solver the equation is to adopt PETS. In this paper, LU-SGS method is developed 

to solve the adjoint equation. For each cell i, cell j is defined as the adjacent cell of i. The 

equation above can be instead as 
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Where nijis an outward-pointing unit face normal from cell i to cell j. 

First order assumption is used to left term, 
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The adjoint equation can be shown as follows, considering 
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The LU-SGS iteration can be derived in the fixed cell form as 

Forward sweep: 
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Backward sweep: 
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is utilized to simplify, where Q is the vector of primitive variable. 

Barth limiter is used for computing the residual R of flow-field equation. In the adjoint solver, 
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the limiter is considered as a constant to avoid the complication of computing Limiter Q . 

 

2.3     Free-Form Deformation and design variables 
Free-Form Deformation (FFD)[17] is used to move mesh by transforming a hull, within which the 

mesh is enclosed. Moving the points which comprise the hull, can transform the surface and 

volume meshes, to simulate the deformation of shape. NURBS[18] is implemented in this section. 

The design variables are chosen as the points of the hull. Figure 3 shows the original hull and the 

new surface and volume mesh after moving the normal coordinates of the points in the second 

and third rows. 

            
Figure 3: The movement of points of hull 

 

2.4     Objective Function and Sensitivity Gradient 
In the present analysis, the objective funtion is considered as a scalar quantity: 
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Where *
LC  and *

DC are given target lift and drag coefficients, respectively, which are  integrals of 

the normal and tangential components of the pressure and the stress tensor over the boundary 

surface. L and D  represent user-defined weighting factors. 

The sensitivity gradient can be computed from the adjoint solutions for each design variable, 
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Where  represent the design variable,   is the minimal variation (10-5). 

Line Search method is implemented to compute the new design variable, after the sensitivity 

gradient is computed. Armijo-Goldstein rule is used for the step length factor, while Quasi-

Newton method is uitilized for the search direction. 

 

3     Application 
 

3.1     Convergence of Adjoint Solver 
The statement of  ONERA M6 at subsonic flowfield is utilized to verificate the convergence of 

adjoint solver. The CFL number is consistent with the one which is used in flowfield. The 

statement of caculation is  

0.8395Ma = , 3.06 =  

The history of residual for the first adjoint equation is shown in Figure 4, as well as the one for 

the first RANS equation, using LU-SGS as the iterator. The slope of the convergence curve is 

similar with the one obtained from RANS equation, It reveals that the LU-SGS method 

developed presently for the adjoint equation works successfully and efficiently. 
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Figure 4: The history of residual for the first adjoint equation 

 

3.2     Effectiveness of Simplified Derivative for Limiter 
 
In this section, four control points on the upper surface of ONERA M6 are selected for 

verification. As shown in Figure 5, the points 1~4 are distributed from tip to root. The normal 

coordinates of the four points are selected as the design variables, and the objective functionsfor 

comparison are the lift and drag coefficients. Adjoint optimization framework is used to 

calculate the sensitivity gradient, which will be copared with the result from the central 

difference method. The statement of caculation is  

0.8395Ma = , 3.06 =  

 
Figure 5: The points as design variables 

Table 1 shows the derivatives obtained from the central difference and the adjoint method. The 

Barth limiter is considered as a constant for the adjoint solver. It can be shown that the 

simpilified derivativesare basically consistent with the central difference. In this paper, the 

simpilified strategy is implemented. 

The point finite difference adjoint code Δ% 

LdC

d
 

1 1.485068E-01 1.462452E-01 -1.52% 

2 2.694556E-01 2.657428E-01 -1.38% 

3 3.694516E-01 3.568215E-01 -3.42% 

4 1.890147E-01 1.820659E-01 -3.68% 

DdC

d
 

1 4.584685E-03 4.518409E-03 -1.45% 

2 2.441046E-02 2.415800E-02 -1.03% 

3 5.265283E-02 5.151338E-02 -2.16% 

4 2.765520E-02 2.691176E-02 -2.69% 
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3.3     DLR-F6 Configuration 
 
The first example is a wing-body configuration DLR-F6 in transonic and turbulent flow regime. 

The mach number is 0.75, while the angle of attack is -0.1247°.The mesh includes 1.2 million 

unstructured cells. In this optimization progress, geometrical constraint is considered to prevent 

the volume from being smaller than the minimal level. The target coefficients and weighting 

factors are as follows, 

*
L 0.588C = ， L 200 = ； *

D 0.02C = ， D 1 = ； 

The design variables are defined as the nomal coordinates of the points which enclose the wing 

of DLR-F6. The number of design variables is 112, as shown in Figure 6. 

 
Figure 6: The 112 points for DLR-F6Figure 7: The 112 points for DLR-F6 

Figure 7 gives the variation tendency of drag coeffiecient. It has the trend of gradually decreasin. 

The fractional variation of objective function, lift and drag coeffiecients are shown in table 2. As 

we seen, the lift is basically kept during the progress, while 17 counts are reduced for drag 

coeffiecient. 

 

 Initial Final Δ% 

F 0.3072 0.2252 -26.7% 

LC  0.5847 0.5842 -0.09% 

DC  0.0310 0.0293 -17count 

K 18.86 19.94 +5.7% 
Figure 8 shows comparison of the surface pressure contour. The left part is obtained from the 

baseline configuration, while the right part is caculated from the optimiesd configuration. The 

shock structure closed to the wing is given in Figure 9, from which it is shown that the shock 

intensity is weakened by the optimization progress.  

 

Figure 8: The 112 points for DLR-F6 
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Figure 9: The 112 points for DLR-F6 

 

3.4     Bump Configuration 
The another application is bump optimization. The diverterless supersonic inlet (DSI) is suitable 

for wide range of Mach number and structure design.The shape of bump in front of the air intake 

of inlet makes a great influence on the flowfieldat supersonic speed, which directly affects the 

performance of DSI inlet.  

In this section, the optimization is implemented to the bump with the aim of increasing total 

pressure recovery coefficient t,rP , while the distortion index C60D  is prevented from increasing. 
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Where M is Mach number, and p is static pressure. C60,0D represents thedistortion index at the 

initial statement, which is shown as 

1.5, 22700 , 216Ma p Pa T K  = = =  

Figure 10 is the unstructured mesh for calculation, while 18 design variables are given in Figure 

11. 

 
Figure 10: Surface mesh for bump optimization  Figure11: 18 design variables for bump shape 

After finishing the optimization, total pressure recovery coefficient increases6%, from 0.84 to 

0.89, while the distortion index decreases about 0.03. The optimization history is shown in 

Figure 12. 

 

 
Figure 12:Optimization historyof bump 
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Figure 13 shows the total pressure distribution of outlet. The difference of pressure distribution 

is weakened by the adjoint optimization framework on the plane of outlet. The normal height of 

bump is decreased as well, shown in Figure 14. 

  
(a) before optimization (b) after optimization 

Figure 13: Optimization history of bump 

 
Figure 14:Comparison of bump shape on Symmetry plane before and after optimization 

 

4     Conclusion and Future Work 
 
In this paper, we present an aerodynamic optimization framework in which adjoint method and 

Free-Form Deformation are applied to the solver MFlow to obtain design sensitivities. A 

discrete adjoint solver is developed by implementing LU-SGS iterator and simplified strategy of 

limiterderivative, which is validated effectively by the example of ONERA M6.  

The resultant discrete adjoint solver is applied to two test cases – lift-constrained drag 

minimization of DLR-F6 wing-body configuration in transonic turbulent flow and total 

pressurerecovery coefficientmaximization of a bump in supersonic flow.The results reveal that 

the adjoint information provided by hand discrete adjoint framework isrobustand accurate. The 

drag value is reduced in the first case with the lift being kept, while shock intensity closed to the 

wing changes. The second test caseshows that the total pressuredistribution at the plane of outlet 

has been changed to be average by the optimization progress. The total pressure is improved. 

In the near future, we plan to apply this methology to problems with more complex geometries 

as well as more geometries constraint, such as the twist, thickness, angle of sweepback of wing. 

Furthermore, development efforts on unsteady aerodynamic optimization based on the current 

framework is ongoing as well. 
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