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1   Introduction 

Recently, there has been a significant international effort to develop high-order methods in the field 

of Computational Fluid Dynamics (CFD) with the goal of incorporating them into design tools for 

aerospace industries. Evidence of such efforts includes: the series of International Workshop on High-

Order CFD methods I-V, the TILDA project (Towards Industrial LES/DNS in Aeronautics) supported 

by the European Commission, NASA RCA (Revolutionary Computational Aerosciences) subproject, 

as well as the numerous papers on high-order CFD methods presented at conferences worldwide. 

These methods require solid curved boundaries to be represented by high-order polynomials, resulting 

in high-order meshes. Generating such meshes is currently a focus at research institutions and 

commercial CFD and mesh-generation companies. In addition, standard plotting packages deal only 

with linear meshes. Plotting tools and visualization for high-order solutions remain to be developed. 

For high-order as well as many second-order accurate methods, flow field calculations are carried 

out using coordinate transformations between reference and physical domains. The metric quantities, 

i.e., quantities associated with the derivatives of the transformation, are typically obtained algebraically. 

Their geometric descriptions and relations are not always easily grasped. These metric terms also satisfy 

a set of identities known as “free stream preservation”, a subject widely studied in the finite difference 
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community (Thomas and Lombard 1979, Thompson et al. 1982, 1985). For the case of high-order, free 

stream preservation was investigated in (Kopriva 2006) and (Abe et al. 2015).  

In this paper, the derivation of coordinate transformations and metric quantities for arbitrary high-

order meshes is carried out using the symbolic manipulation, three-dimensional plotting, and object 

rotating capabilities of Mathematica. The geometric description, relations among the metric quantities, 

and the metric identity are derived in a manner considerably simpler than the standard derivation (e.g., 

Thompson et al. 1985). The resulting Mathematica program facilitates the visualization of these 

quantities and may enhance understanding and/or improve intuition on coordinate transformation. 

This paper is self-contained and organized as follows. Transformation, metric quantities, and their 

relations are presented in Section 2. The divergence formula in the reference frame and the fundamental 

metric identity are derived in Section 3. Conclusions can be found in Section 4. Finally, the Appendix 

contains the Mathematica program, which can be copied in pdf format and paste into a Mathematica 

notebook. 

2   Transformation and Metric Quantities 

2.1   Reference (Master) Domain 

Consider the case of hexahedral meshes. For such a mesh, the reference or master domain is the unit 

or the bi-unit cube 𝐶 as shown in Figure 2.1. The reference interval for the unit cube is 𝐼 = [0, 1] and 

for the biunit cube, 𝐼 = [−1, 1]. The coordinates in the reference domain are denoted interchangeably 

by (note the superscripts and the bold face letter for a vector) 

 𝚵 = (𝜉1, 𝜉2, 𝜉3) = (𝜉, 𝜂, 𝜁).  

The top and bottom surfaces are mapped to curved surfaces in the physical domain. (The program 

can be easily modified to allow for high-order vertical sides; however, only high-order top and bottom 

surfaces are considered here for ease of observation and since most solid curved surfaces in applications 

can be accommodated by meshes of this type.) 

Let 𝑀 ≥ 2 be the number of points per line segment for the (high-order) top and bottom surfaces. 

Let the indices 𝑖, 𝑗, 𝑘 correspond to the grid points in the 𝜉, 𝜂, and 𝜁 directions, respectively, such that 

1 ≤ 𝑖, 𝑗 ≤ 𝑀 and 1 ≤ 𝑘 ≤ 2. The grid points are represented by the dots in Figure 2.1. The case 𝑀 = 2 

corresponds to the standard cube defined by 8 corner vertices. 

Let 𝜉𝑖 and 𝜂𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑀, be either the equidistant points including the two boundaries or the 

Lobatto points on 𝐼. Thus 𝜉1 = 0 for the unit cube whereas 𝜉1 = −1 for the biunit cube, and 𝜉𝑀 = 1 

for both. A similar statement holds for 𝜂. 

 

 

(a) Unit cube; 𝑀 = 3; 3-equidistant points 

per line segment on top and bottom surfaces. 

 

(b) Bi-unit cube; 𝑀 = 4; 4-Lobatto points per 

line segment on top and bottom surfaces. 

Figure 2.1: The cube 𝐶 in the reference domain, (a) unit and (b) bi-unit. Red, green, and blue line 

segments are lines with varying 𝜉, 𝜂, and 𝜁, respectively. 
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For ease of discussion, the reference interval is set to 𝐼 = [−1, 1] in the remainder of this paper, i.e., 

we will only consider the case of the biunit cube; the unit cube case involves a straightforward scaling 

and appropriate 𝜉1. 

2.2   Physical Domain 

Curved surfaces can be defined analytically or numerically as output of a Computer Aided Design 

(CAD) program. From such definitions, we can obtain the point data for the curved mesh.  

Figure 2.2 shows (a) spherical surfaces and (b) perturbed spherical surfaces, both are analytical. 

From here on, it is assumed that the point data represented by the dots on the curved surfaces are given. 

They are called grid points. 

 

 

(a) Spherical surfaces. The dots correspond 

to 3 equidistant points per line segment.  

Figure 2.2: Physical domains (hexahedron with curved faces) and grid points.  
 

2.3   Transformations 

A point in the physical space is denoted interchangeably by (note the subscripts) 

 𝑿 = (𝑥1, 𝑥2, 𝑥3) = (𝑥, 𝑦, 𝑧).   

Consider the points 𝜉𝑛, 1 ≤ 𝑛 ≤ 𝑀, which are the Lobatto or equidistant points.  For each 𝑛, let 𝑙𝑛 

be the corresponding Lagrange polynomial, i.e., 𝑙𝑛 is of degree 𝑀 − 1 taking on the value 1 at 𝜉𝑛 and 

0 at all other 𝜉𝑚, 

 𝑙𝑛(𝜉) =∏   
𝜉 − 𝜉𝑚
 𝜉𝑛 − 𝜉𝑚

𝑀

𝑚=1
𝑚≠𝑛

  . (2.1) 

Figure 2.3 shows the Lagrange polynomials on 𝐼 = [−1, 1] for (a) eleven Lobatto points and (b) 

eleven equidistant points. For the general case of 𝑀 Lobatto points, these polynomials have the peculiar 

property that for each 𝑛, the Lagrange polynomial 𝑙𝑛 attains its maximum value of 1 on 𝐼 at 𝜉𝑛. Note 

that the Lagrange polynomials defined by equidistant points do not have this property; their maximum 

take place near the boundary and grow with the number of points as can be seen in Fig. 2.3(b).  

The 𝜂 direction is similar to that of 𝜉. As for the 𝜁 direction, with the superscript (1) representing 

degree 1, let 𝑙1
(1)

 and 𝑙2
(1)

 be the linear Lagrange polynomials for the points 𝜁1 = −1 and 𝜁2 = 1, 

respectively: 

(b) Perturbed spherical surfaces. The dots 

correspond to 4 Lobatto points per line segment. 
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 𝑙1
(1)
(𝜁) =

1 − 𝜁

 2
      and      𝑙2

(1)
(𝜁) =

1 + 𝜁

 2
 . (2.2) 

If the four side faces are of the same order as the top and bottom faces, the Lagrange polynomials 

𝑙𝑛
(1)

 above must be replaced by 𝑙𝑛 of (2.1). 

 

(a) 11 Lobatto points  

 

(b) 11 equidistant points. 

Figure 2.3: Lagrange polynomials. 

 

Let the grid points 𝑿𝑖,𝑗,𝑘 = (𝑥𝑖, 𝑦𝑗, 𝑧𝑘), 1 ≤ 𝑖, 𝑗 ≤  𝑀 and 1 ≤ 𝑘 ≤  2, in the physical space be given; 

there are 2𝑀2 such points. A hexahedron with curved faces defined by polynomials is called a 

polynomial hexahedron here. The transformation from the biunit cube to the polynomial hexahedron is 

defined by: 

  𝑿(𝚵) = 𝑿(𝜉, 𝜂, 𝜁) =∑∑∑𝑙𝑖(𝜉)𝑙𝑗(𝜂)𝑙𝑘
(1)(𝜁)𝑿𝑖,𝑗,𝑘

2

𝑘=1

𝑀

𝑗=1

𝑀

𝑖=1

. (2.3) 

The above transformation can easily be coded to arbitrary order with 𝑀 as an input. 

The inverse transformation from the polynomial hexahedron to the biunit cube is denoted by 𝚵(𝑿). 
As opposed to 𝑿(𝚵) defined explicitly by (2.3), 𝚵(𝑿) is generally not a polynomial function and is 

difficult to be expressed explicitly. Figure 2.4 depicts the transformation 𝑿(𝚵)  and its inverse 𝚵(𝑿). 

 

 

 

 

 

(a) Cube 𝐶  

Figure 2.4: Transformation 𝑿(𝚵) from reference to physical space and its inverse 𝚵(𝑿). Red, 

green, and blue curves or lines are coordinate curves with respectively varying 𝜉, 𝜂, and 𝜁. 

 

The polynomial surfaces provide an accurate approximation to the smooth physical or analytical 

surfaces as can be seen in Figure 2.5; here, the purple and dark blue surfaces are those defined by the 

𝑿(𝚵) 

𝚵(𝑿) 

𝚵 
𝑿 

(b) Polynomial hexahedron 𝐻 
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polynomial approximations, and the yellow and light blue surfaces are analytical. Between the 

polynomial and analytical surfaces, only the one on top can be seen. 

It is generally believed that Lobatto points provide higher accuracy than equidistant points for 

approximating curved surfaces. This belief could relate to the behavior of the maximum values of the 

Lagrange polynomials discussed in Fig. 2.3 or the fact that quadratures using Lobatto points are more 

accurate than those using equidistant points. The comparison of accuracy between these two sets of 

points for approximating curved geometries in CFD remains to be investigated. 

 

  

Figure 2.5: Physical (analytical) surfaces are in yellow and light blue, polynomial ones in purple 

and dark blue.  

 

2.4   Coordinate Curves (or Curvilinear Coordinate Lines) and Surfaces 

Below, we only deal with the polynomial hexahedron as defined in (2.3). 

Let 𝚵0 = (𝜉0, 𝜂0, 𝜁0) be a fixed point in the reference cube. In the physical space, set 𝑿0 = 𝑿(𝚵0). 
A coordinate curve through 𝑿0 is a curve along which only one of the reference coordinates varies.  

Figure 2.6 shows (a) 𝚵0 = (𝜉0, 𝜂0, 𝜁0) = (0.6, −0.8, 1) on the top surface of the reference cube 

represented by the red dot, and (b) the three coordinate curves in physical space through 𝑿0: 

 𝑿(𝜉0 + 𝜏, 𝜂0, 𝜁0), 𝑿(𝜉0, 𝜂0 + 𝜏, 𝜁0), and 𝑿(𝜉0, 𝜂0, 𝜁0 + 𝜏), where 𝜏 varies on [−1, 1].  

A surface through 𝑿0 along which two of the coordinates vary and one remains constant is called a 

coordinate surface. It is referred to by the constant coordinate, e.g., the coordinate surface 𝜉 = 𝜉0. 

2.5   Derivative of the Transformation and Covariant Base Vectors 

With 𝑿(𝚵) defined by (2.3), its derivative is a 3 × 3 matrix called the Jacobian matrix: 

  
𝑑𝑿

𝑑𝚵
 =  

(

 
 
 
 

𝜕𝑥1
𝜕𝜉1

𝜕𝑥1
𝜕𝜉2

𝜕𝑥1
𝜕𝜉3

𝜕𝑥2
𝜕𝜉1

𝜕𝑥2
𝜕𝜉2

𝜕𝑥2
𝜕𝜉3

𝜕𝑥3
𝜕𝜉1

𝜕𝑥3
𝜕𝜉2

𝜕𝑥3
𝜕𝜉3)

 
 
 
 

 =  

(

 
 
 
 

𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑥

𝜕𝜁
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂

𝜕𝑦

𝜕𝜁
𝜕𝑧

𝜕𝜉

𝜕𝑧

𝜕𝜂

𝜕𝑧

𝜕𝜁)

 
 
 
 

. (2.4) 

(a) Equidistant points (b) Lobatto points 
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The Jacobian matrix  
𝑑𝑿

𝑑𝚵
  is sometimes called the Jacobian. However, here, the term Jacobian refers to 

the determinant of the Jacobian matrix, i.e., det (
𝑑𝑿

𝑑𝚵
).  

For 1 ≤ 𝑖 ≤ 3,  the 𝑖-th column of  
𝑑𝑿

𝑑𝚵
  is denoted by 𝒂𝑖 and called a covariant base vector; that is, 

  𝒂𝑖 =
𝜕𝑿

𝜕𝜉𝑖
. (2.5) 

The above definition implies that 𝒂𝑖 is tangent to the 𝜉𝑖-th coordinate curve.  

 

 

(a) 𝚵0 = (0.6, −0.8, 1) on top surface 
 

Figure 2.6: Coordinate curves through 𝑿0. Red, green, and blue curves correspond to lines with 

respectively varying 𝜉, 𝜂, and 𝜁. Also shown are the coordinate surfaces 𝜁 = −1 (yellow) and 𝜁 = 1 

(blue).  

 

Denote the basis for 𝑅3 by   

  𝝐1 = (
1
0
0
),   𝝐2 = (

0
1
0
)     and   𝝐3 = (

0
0
1
) .  (2.6) 

The matrix  
𝑑𝑿

𝑑𝚵
  maps the vector space 𝑅3 in the reference frame to 𝑅3 in the physical frame. In 

particular, by (2.4) and the above definition, 
𝑑𝑿

𝑑𝚵
  maps 𝝐𝑖 of the reference space to the covariant base 

vector 𝒂𝑖 in the physical space:  

 
 
𝑑𝑿

𝑑𝚵
 𝝐𝑖 = 𝒂𝑖  .  

(2.7) 

Figure 2.7 shows the three covariant base vectors together with the coordinate curves at (a) 𝑿0 

corresponding to 𝚵0 = (0.6, −0.8, 1) and (b) 𝑿0 corresponding to 𝚵0 = (−0.2, 0.4, 1). 

2.6   Jacobian 𝐽.  

The determinant of  
𝑑𝑿

𝑑𝚵
  is called the Jacobian and denoted by 𝐽. For simplicity of notation, set 

  (

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

) = 
𝑑𝑿

𝑑𝚵
  . (2.8) 

(b) Coordinate curves through 𝑿0 = 𝑿(𝚵0). 
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Then the covariant base vectors are the columns 𝒂𝑖 = (𝑎1𝑖, 𝑎2𝑖, 𝑎3𝑖)
𝑇, 1 ≤ 𝑖 ≤ 3, where the superscript 

𝑇 denotes the transpose. By the definition of the determinant using the cofactor along the first column, 

det (
𝑑𝑿

𝑑𝚵
) = 𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) + 𝑎21(𝑎32𝑎13 − 𝑎12𝑎33) + 𝑎31(𝑎12𝑎23 − 𝑎22𝑎13) . 

Recall the cross product formula: 

 𝒂2 × 𝒂3   = (𝑎22𝑎33 − 𝑎23𝑎32,   𝑎32𝑎13 − 𝑎12𝑎33,   𝑎12𝑎23 − 𝑎22𝑎13).  

The above two equations imply 

 𝐽 = 𝒂1. (𝒂2 × 𝒂3) .  

In fact, if (𝑖, 𝑗, 𝑘) is cyclic, the same argument yields 

 𝐽 = 𝒂𝑖. (𝒂𝑗 × 𝒂𝑘) . (2.9) 

Thus, 𝐽 is the (signed) volume of the parallelepiped defined by 𝒂𝑖, 𝒂𝑗, and 𝒂𝑘. 

 

 

  

Figure 2.7: Covariant base vectors. 

 

2.7   Contravariant Base Vectors 

The inverse of 𝑿(𝚵) is denoted by 𝚵(𝑿). It maps the polynomial hexahedron to the reference cube. 

Its derivative is 

  
𝑑𝚵

𝑑𝑿
 =  

(

 
 
 
 

𝜕𝜉1

𝜕𝑥1

𝜕𝜉1

𝜕𝑥2

𝜕𝜉1

𝜕𝑥3
𝜕𝜉2

𝜕𝑥1

𝜕𝜉2

𝜕𝑥2

𝜕𝜉2

𝜕𝑥3
𝜕𝜉3

𝜕𝑥1

𝜕𝜉3

𝜕𝑥2

𝜕𝜉3

𝜕𝑥3)

 
 
 
 

 =  

(

 
 
 
 

𝜕𝜉

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑧
𝜕𝜂

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

𝜕𝑧
𝜕𝜁

𝜕𝑥

𝜕𝜁

𝜕𝑦

𝜕𝜁

𝜕𝑧)

 
 
 
 

. (2.10) 

How should we describe the ‘geometry’ of this matrix? The columns of  
𝑑𝑿

𝑑𝚵
  are described in the 

previous subsection as vectors tangent to the coordinate curves in the physical frame; therefore, the 

(a) At 𝑿0 with 𝚵0 = (0.6,−0.8, 1) (b) At 𝑿0 with 𝚵0 = (−0.2, 0.4, 1) 
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columns of  
𝑑𝚵

𝑑𝑿
  can be described as vectors in the reference frame; however, such a description is not 

fruitful. 

The relation between  
𝑑𝑿

𝑑𝚵
  and  

𝑑𝚵

𝑑𝑿
  is better demonstrated by considering, for the matrix  

𝑑𝚵

𝑑𝑿
 , not its 

column but its row vectors in the physical space as discussed below.  

Denote by 𝑰 the 3 × 3 identity matrix. Since 𝚵(𝑿) is the inverse of 𝑿(𝚵),  
𝑑𝚵

𝑑𝑿
  is the inverse of  

𝑑𝑿

𝑑𝚵
 :  

 
 
𝑑𝚵

𝑑𝑿
 
𝑑𝑿

𝑑𝚵
 = 𝑰.  

(2.11) 

The 𝑖-th row of  
𝑑𝚵

𝑑𝑿
  is denoted by 𝒂𝑖 and called a contravariant base vector; that is, in the physical 

space, with 𝛁 denote the gradient operator (
𝜕

𝜕𝑥1
,
𝜕

𝜕𝑥2
,
𝜕

𝜕𝑥3
) or (

𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
), by (2.10), 

  𝒂𝑖 = 𝛁𝜉𝑖. (2.12) 

Since 𝒂𝑖 is the 𝑖-th row of  
𝑑𝚵

𝑑𝑿
  and 𝒂𝑗 is the 𝑗-th column of  

𝑑𝑿

𝑑𝚵
 , for  1 ≤ 𝑖, 𝑗 ≤ 3, Eq. (2.11) implies 

  𝒂𝑖 . 𝒂𝑗 = { 
1  if  𝑖 = 𝑗
0  if  𝑖 ≠ 𝑗

 . (2.13) 

For cyclic (𝑖, 𝑗, 𝑘), (i.e., it equals the permutation (1, 2, 3), (2, 3, 1), or (3, 1, 2)), the above means 

 𝒂𝑖 . 𝒂𝑗 = 𝒂
𝑖 . 𝒂𝑘 = 0. That is, the contravariant base vector 𝒂𝑖 is orthogonal to the two covariant base 

vectors 𝒂𝑗 and 𝒂𝑘. As a result, 𝒂𝑖 is orthogonal to the coordinate surface defined by 𝜉𝑖 = constant. 

This fact is also consistent with (2.12) above. 

Since the vector 𝒂𝑗 × 𝒂𝑘 is also orthogonal to 𝒂𝑗 and 𝒂𝑘, we have 

  𝒂𝑖 = 𝑐 (𝒂𝑗 × 𝒂𝑘) (2.14) 

for some constant 𝑐. Applying the dot product by 𝒂𝑖 on the right to both sides of the above equation, 

  𝒂𝑖 . 𝒂𝑖 = 𝑐 (𝒂𝑗 × 𝒂𝑘). 𝒂𝑖 = 𝑐 [𝒂𝑖. (𝒂𝑗 × 𝒂𝑘)].  

By (2.13), 𝒂𝑖 . 𝒂𝑖 = 1. Therefore, 

  𝑐 [𝒂𝑖. (𝒂𝑗 × 𝒂𝑘)] = 1.  

That is, by (2.9), 

  𝑐 =
1

𝐽
.  (2.15) 

Thus, (2.14) implies for cyclic (𝑖, 𝑗, 𝑘), 

  𝒂𝑖 =
1

𝐽
 (𝒂𝑗 × 𝒂𝑘) =

𝒂𝑗 × 𝒂𝑘

𝒂𝑖 . (𝒂𝑗 × 𝒂𝑘)
 , (2.16) 

or 

  𝐽𝒂𝑖 = 𝒂𝑗 × 𝒂𝑘. (2.17) 

Loosely put,  𝒂𝑖 is a sort of ‘inverse vector’ of 𝒂𝑖, but since the inverse of a vector is not well-

defined, the precise relation is given by (2.16).  

As will be shown below, the contravariant vector 𝐽𝒂𝑖 is employed more often than the contravariant 

base vector 𝒂𝑖. In addition, in the case of a singularity such as collapsing one face of the hexahedron to 

a point, 𝐽 becomes zero at the singularity and 𝒂𝑖 becomes undefined, whereas 𝐽𝒂𝑖 is still well defined. 

Since each components of the covariant base vectors  𝒂𝑖 =
𝜕𝑿

𝜕𝜉𝑖
  is a polynomial, (2.17) implies that 

each component of 𝐽𝒂𝑖 is also a polynomial. Each component of 𝒂𝑖, however, is not a polynomial. As 

can be seen by (2.16), it is a rational function (ratio of two polynomials). 
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In linear algebra, the inverse of an arbitrary 3 × 3 matrix is defined and calculated algebraically. 

The above discussion of covariant and contravariant base vectors provides the geometric relation 

between the columns of a 3 × 3 matrix and the rows of its inverse. 

By assuming that the reference frame is non-dimensional, the (components of the) covariant base 

vectors 𝒂𝑖 have dimension length, and the contravariant base vectors 𝒂𝑖 have dimension 1 length⁄ . 

Since 𝐽 has dimension volume, the contravariant vectors 𝐽𝒂𝑖 have dimension area, a fact consistent with 

(2.17). 

The contravariant vector 𝐽𝒂𝑖 calculated via (2.17) is in cross product form. It can also be expressed 

in conservative or curl form; for more discussion on these forms, see (Thomas and Lombard 1979, 

Kopriva 2005). 

Figure 2.8 shows the contravariant vector 𝐽𝒂3 (thick arrow) together with the coordinate curves and 

the covariant base vectors (thin arrows) at (a) 𝑿0 corresponding to 𝚵0 = (0.6, −0.8, 1) and (b) 𝑿0 

corresponding to 𝚵0 = (−0.2, 0.4, 1). 

 

 

 

  

 

Figure 2.8: Contravariant vector 𝐽𝒂3 represented by thick arrows and the 3 covariant base vectors 

by thin arrows. 

 

3  Divergence Theorem and Fundamental Metric Identity 

3.1   Divergence Theorem 

The divergence theorem in physical space plays a key role in Computational Fluid Dynamics. The 

corresponding divergence operator in the reference frame involves the previously defined metrics as 

discussed below. 

In physical space, let 𝑭 = (𝐹1, 𝐹2, 𝐹3) be a (smooth) vector field on a volume 𝑉 bounded by a surface 

𝜕𝑉 = 𝑆 with outward unit normal 𝒏 (e.g., 𝑭 is a velocity field). Following common practice, the vector 

(b) At 𝑿0 with 𝚵0 = (0.6,−0.8, 1) (b) At 𝑿0 with 𝚵0 = (−0.2, 0.4, 1) 
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field 𝑭(𝑿(𝚵)) with domain in the reference frame is abbreviated to 𝑭 when there is no ambiguity. This 

practice is employed in, e.g., the chain rule  
𝑑𝑦

𝑑𝑥
=
𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
. 

The divergence theorem in physical space takes the form 

 ∫ 𝛁 ∙ 𝑭 𝑑𝑉
𝑉

= ∫ 𝑭 ∙ 𝒏 𝑑𝑠
𝑆

. (3.1) 

Next, we apply this theorem to a volume increment to derive formulas for the divergence in the 

reference frame.  

At a fixed point 𝚵0 = (𝜉0
1, 𝜉0

2, 𝜉0
3), consider an increment, ∆𝚵 = (∆𝜉1, ∆𝜉2, ∆𝜉3).  With  𝝐𝑖 defined 

in (2.6), denote 

 ∆𝚵𝑖 = ∆𝜉𝑖𝝐𝑖, (3.2) 

e.g., ∆𝚵2 = (0, ∆𝜉2, 0).  

Figure 3.1 shows an example of a volume increment in the reference and physical domains. 

 

 

 

 

 

Figure 3.1: Volume increments in the reference and physical domains 

 

 

Along the 𝜉𝑖-coordinate curve, since 𝒂𝑖 =
𝜕𝑿

𝜕𝜉𝑖
,   

 
 𝑿(𝚵0 + ∆𝚵

𝑖) − 𝑿(𝚵0)

∆𝜉𝑖
  ≈  𝒂𝑖(𝚵0). (3.3) 

Thus, 

 𝑿(𝚵0 + ∆𝚵
𝑖)  ≈ 𝑿(𝚵0) + ∆𝜉

𝑖𝒂𝑖(𝚵0). (3.4) 

Along the diagonal, 𝑿(𝚵0 + ∆𝚵
𝑖 + ∆𝚵𝑗) can be approximated by  

 
𝑿(𝚵0 + ∆𝚵

𝑖 + ∆𝚵𝑗)  ≈ 𝑿(𝚵0 + ∆𝚵
𝑖) +  ∆𝜉𝑗𝒂𝑗(𝚵0 + ∆𝚵

𝑖) 

                                       ≈ 𝑿(𝚵0) + ∆𝜉
𝑖𝒂𝑖(𝚵0) + ∆𝜉

𝑗𝒂𝑗(𝚵0) 
(3.5) 

where, for the second approximation, the higher order terms 𝑂(∆𝜉𝑖∆𝜉𝑗) are omitted. 

(b) Parallelepiped 𝑃 at 𝑿0 in the physical frame (a) Small cube at 𝚵0 in the reference frame 
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As a result of (3.4) and (3.5), for cyclic (𝑖, 𝑗, 𝑘), the square defined by the four corners 𝚵0, 𝚵0 + ∆𝚵
𝑖, 

𝚵0 + ∆𝚵
𝑗, and 𝚵0 + ∆𝚵

𝑖 + ∆𝚵𝑗 in the reference frame is mapped to a quadrilateral in the physical space 

with corners 𝑿(𝚵0), 𝑿(𝚵0 + ∆𝚵
𝑖), 𝑿(𝚵0 + ∆𝚵

𝑗), and 𝑿(𝚵0 + ∆𝚵
𝑖 + ∆𝚵𝑗). This quadrilateral can be 

approximated by the parallelogram defined by the corner 𝑿(𝚵0) and the two vectors ∆𝜉𝑖𝒂𝑖(𝚵0) and 

∆𝜉𝑗𝒂𝑗(𝚵0) representing the two edges. 

In a similar manner, the small cube defined by the point 𝚵0 with the increments ∆𝚵𝑖 along the three 

directions is mapped to a hexahedron, which can be approximated by the parallelepiped 𝑃 defined by 

the corner 𝑿0 = 𝑿(𝚵0) and the three vectors ∆𝜉𝑖𝒂𝑗(𝚵0) or ∆𝜉𝑖𝒂𝑖, 1 ≤ 𝑖 ≤ 3. Using (3.4) and 2.9), the 

volume of the parallelepiped 𝑃 is 

 (∆𝜉1∆𝜉2∆𝜉3)[𝒂𝑖. (𝒂𝑗 × 𝒂𝑘)](𝚵0) = 𝐽(𝚵0) ∆𝜉
1∆𝜉2∆𝜉3. (3.6) 

In the physical frame, denote the two faces of 𝑃 with constant 𝜉𝑖 by 𝜕𝑃+
𝑖  and 𝜕𝑃−

𝑖  where the 

subscripts + and – represent respectively the larger and smaller values of 𝜉𝑖.   

For cyclic (𝑖, 𝑗, 𝑘), the cross product (∆𝜉𝑗∆𝜉𝑘)𝒂𝑗 × 𝒂𝑘 provides the normal direction as well as the 

area for the corresponding parallelogram: 

 (∆𝜉𝑗∆𝜉𝑘)(𝒂𝑗 × 𝒂𝑘)(𝚵0) = 𝒏 Area(𝜕𝑃−
𝑖) (3.7) 

where 𝒏 is in the direction of increasing 𝜉𝑖 for the rest of this subsection. Similarly, 

 (∆𝜉𝑗∆𝜉𝑘)(𝒂𝑗 × 𝒂𝑘)(𝚵0 + ∆𝚵
𝑖) = 𝒏 Area(𝜕𝑃+

𝑖 ). (3.8) 

Instead of the above, 𝒏 Area(𝜕𝑃+
𝑖 ) can be estimated by the left hand side of (3.7) as well. The result is 

the nonconservation form of the divergence formula as discussed below.  

Applying the divergence theorem to the parallelepiped 𝑃 

 ∫ 𝛁 ∙ 𝑭 𝑑𝑉
𝑃

= ∫  𝑭 ∙ 𝒏 𝑑𝑠
𝜕𝑃

. (3.9) 

For the above left hand side, since the volume of P is estimated by (3.6), 

 ∫ 𝛁 ∙ 𝑭 𝑑𝑉
𝑃

≈  𝐽(𝚵0) (∆𝜉
𝑖∆𝜉𝑗∆𝜉𝑘)(𝛁 ∙ 𝑭)(𝚵0). (3.10) 

Concerning the right hand side of (3.9), for the surfaces 𝜕𝑃+
𝑖  and 𝜕𝑃−

𝑖 , (3.7) and (3.8) can be employed. 

With cyclic (𝑖, 𝑗, 𝑘), the right hand side can be estimated by  

 ∑ ∆𝜉𝑗∆𝜉𝑘 { [ 𝑭. (𝒂𝑗 × 𝒂𝑘)](𝚵0 + ∆𝚵
𝑖) − [𝑭. (𝒂𝑗 × 𝒂𝑘)](𝚵0)} 

3

𝑖=1
. (3.11) 

The above can be written as   

 ∑ (∆𝜉𝑖∆𝜉𝑗∆𝜉𝑘)  
[ 𝑭. (𝒂𝑗 × 𝒂𝑘)](𝚵0 + ∆𝚵

𝑖) − [𝑭. (𝒂𝑗 × 𝒂𝑘)](𝚵0)

∆𝜉𝑖

3

𝑖=1
.  

That is, since ∆𝜉𝑖∆𝜉𝑗∆𝜉𝑘 = ∆𝜉1∆𝜉2∆𝜉3, 

 (∆𝜉𝑖∆𝜉𝑗∆𝜉𝑘) ∑  
[ 𝑭. (𝒂𝑗 × 𝒂𝑘)](𝚵0 + ∆𝚵

𝑖) − [𝑭. (𝒂𝑗 × 𝒂𝑘)](𝚵0)

∆𝜉𝑖

3

𝑖=1
. (3.12) 

Using (3.10) and (3.12), as the small cube size shrinks to zero, (3.9) implies 

 𝐽(𝚵0)(𝛁 ∙ 𝑭)(𝚵0) =∑ [ 𝑭. (𝒂𝑗 × 𝒂𝑘)]𝜉𝑖
(𝚵0)

3

𝑖=1
  (3.13) 

Since 𝚵0 is arbitrary on the reference cube, 

 𝛁 ∙ 𝑭 =  
1

𝐽
∑ [ (𝒂𝑗 × 𝒂𝑘). 𝑭]𝜉𝑖

3

𝑖=1
 , (3.14) 
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Recall (2.17): 𝒂𝑗 × 𝒂𝑘 = 𝐽𝒂
𝑖. The above results in the ‘conservation form’ for the divergence in the 

reference frame: 

 𝐽 𝛁 ∙ 𝑭  =  ∑ ( 𝐽𝒂𝑖. 𝑭)
𝜉𝑖

3

𝑖=1
 . (3.15) 

If we use the left hand side of (3.7), namely (∆𝜉𝑗∆𝜉𝑘)(𝒂𝑗 × 𝒂𝑘)(𝚵0) to estimate 𝒏 Area(𝜕𝑃+
𝑖 ), the 

result for the right hand side of (3.9) is the following instead of (3.11): 

 ∑ ∆𝜉𝑗∆𝜉𝑘  (𝒂𝑗 × 𝒂𝑘)(𝚵0)[𝑭(𝚵0 + ∆𝚵
𝑖) −  𝑭(𝚵0)] 

3

𝑖=1
.  

Therefore, in place of (3.15), we obtain the following ‘nonconservation form’ of the divergence: 

 𝛁 ∙ 𝑭  =  ∑ 𝒂𝑖. (𝑭𝜉𝑖)
3

𝑖=1
  (3.16) 

The two forms (3.15) and (3.16) yield the same result analytically; however, they generally yield 

different results numerically. The conservation form (3.15) is often preferred especially in the presence 

of shocks. 

3.2   Fundamental Metric Identity 

By expanding (3.15), 

 𝛁 ∙ 𝑭  =  
1

𝐽
∑ ( 𝐽𝒂𝑖)

𝜉𝑖
 . 𝑭

3

𝑖=1
 +  
1

𝐽
∑ ( 𝐽𝒂𝑖) . (𝑭𝜉𝑖)

3

𝑖=1
 .  

The above and (3.16) imply, for any vector field 𝑭, 

  
1

𝐽
∑ ( 𝐽𝒂𝑖)

𝜉𝑖
 . 𝑭

3

𝑖=1
= 0. (3.17) 

Since 𝑭 is arbitrary,  

  ∑ ( 𝐽𝒂𝑖)
𝜉𝑖

3

𝑖=1
= 𝟎, (3.18) 

or 

  ( 𝐽𝒂1)𝜉 + ( 𝐽𝒂
2)𝜂 + ( 𝐽𝒂

3)𝜁 = 𝟎. (3.19) 

Note that the above two equations are vector equations whereas (3.17) is a scalar one.  

As discussed on p. 104 of (Thompson et al. 1985), (3.19) above is “a fundamental metric identity”. 

It is sometimes referred to as “metric identity” (e.g., Kopriva 2005) or “geometric conservation law” 

(Thomas and Lombard 1979). It is also called the ‘surface closure law’ representing the closed surface 

of the infinitesimal hexahedron approximated by the parallelepiped 𝑃.  

The above proof shows that the metric identity holds analytically for any smooth transformation, 

polynomial ones in particular. Numerically, however, it may not. The reason is that formulas for 

numerical derivative are based on a certain number of points, which may not be enough to estimate the 

derivative of  𝐽𝒂𝑖 = 𝒂𝑗 × 𝒂𝑘 exactly. For more discussions, see, e.g., (Kopriva 2005, Abe et al. 2015). 

The fact that (3.17) implies each component of (3.18) equals zero can also be shown by setting 𝑭 =
𝝐𝑖 in (3.17). Equivalently, if 𝑭 = (𝑐1, 𝑐2, 𝑐3) is a constant velocity field in physical space, then 𝛁 ∙ 𝑭 

equals zero. For the calculation of  𝛁 ∙ 𝑭 in the reference frame using (3.15) to result in zero, (3.18) or 

(3.19) must hold. For this reason, in discretized form, if (3.19) holds, the discretization is said to have 

the property of “free stream preservation” in the sense that a constant velocity field remains constant 

with time. 



 13 

4   Conclusions and Discussion 

The derivation of coordinate transformations and various metric quantities for the case of arbitrary 

high-order order meshes was carried out using the capabilities of symbolic manipulation, three-

dimensional plotting, and object rotating of Mathematica. The geometric description, relations among 

the metric quantities, and the metric identity are derived in a manner considerably simpler than the 

standard derivation. The resulting Mathematica program facilitates the visualization of these quantities 

and may enhance understanding and/or improve intuition on coordinate transformation. Concerning 

additional research needed, the discretized metric identity for the case of high-order tetrahedral as well 

as hexahedral meshes, the high-order mesh generation, and the post processing of large data remain to 

be studied and developed. 
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Appendix 
 

(*Coordinate Transformations and High-Order Meshes with Mathematica.  

By H.T.Huynh,huynh@grc.nasa.gov,July 2018,NASA Glenn Research Center, Cleveland, Ohio, 

USA. This program can be copied in pdf form and paste into a Mathematica notebook. It can be 

broken into cells along the blank lines for ease of relating outputs with commands. *) 

 

(* 1.  Inputs  

M: number of gridpoints in 1D including the two boundaries; 

optLo \[NotEqual] 0 for Lobatto points, = 0 for equi-distant points; 

optCube = 2 bi-unit cube, = 1 unit cube for the master or reference domain; 

optPhys = 1 spherical surfaces in the physical domain, = 2 perturbed spherical surfaces, = 3 another 

pair of curved surfaces, = 4 collapsing the square at y = 1 to its midpoint. HO: High-Order  *) 

M = 4; optLo = 1; optCube = 2; optPhys = 2; If[optPhys==4, M = 2]; 

(* 2. Reference domain; first, define Lobatto polynomial function on [-1,1] *)  

Lo[k_,x_]:=LegendreP[k,x]-LegendreP[k-2,x];  

(* This function gets the zeros of a polynomial and output as a table *)  

getZeros[f_,x_]:=Module[{deg,solu,tz}, deg=Exponent[f,x]; solu=Simplify[NSolve[f,x]]; 

tz=Table[Chop[ x/.solu[[k]] ],{k,1,deg}]] ; 

(* Get \[Tau][k] on [0,1] for locations of 1D HO curve; also use to define physical surfaces *) 

If[optLo==0, (*equi-distant else Lobatto points*) 

ts=Table[\[Tau][k]=N[(k-1)/(M-1)],{k,1,M}],  

pts1D=getZeros[Lo[M,x],x]; 

ts1=(pts1D+1.)/2; ts=Table[\[Tau][k]=ts1[[k]],{k,1,M}] 

];  
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(* on [0,1] or [-1,1] depending on optCube = 1 or 2*) IgnorePdfPageNumber; 

If[optCube==1,txi=Table[xi[k]=\[Tau][k],{k,1,M}],txi=Table[xi[k]=-1+2*\[Tau][k],{k,1,M}]]; 

teta=Table[eta[k]=xi[k],{k,1,M}]; tzeta={zeta[1]=xi[1],zeta[2]=xi[M]}; 

(* Plot lines on reference cube that yield HO grid; tp_List: table of grid points; np1D: number of 

points for HO curve in 1D; color1: color for \[Xi]^1-lines, default black; color2: \[Xi]^2-lines; color3, 

\[Xi]^3-lines; thick: thickness of lines *)   

plotLinesHOCube[tp_List,np1D_:Integer,{color1_:Black,color2_:Black,color3_:Black, 

thick_:0.006}]:= 

Module[{t1,t2,t3}, t1=Flatten[Table[Line[{tp[[1,j,k]],tp[[np1D,j,k]]}],{j,1,np1D},{k,1,2}]]; 

t2=Flatten[Table[Line[{tp[[i,1,k]],tp[[i,np1D,k]]}],{i,1,np1D},{k,1,2}]]; 

t3=Flatten[Table[Line[{tp[[i,j,1]],tp[[i,j,2]]}],{i,1,np1D,np1D-1},{j,1,np1D,np1D-1}]]; 

Graphics3D[{color1,Thickness[thick],t1,color2,t2,color3,t3}]]; 

(* Reference Domain; G for grid; high-order for bottom (k=1) and top (k=2) surfaces *) 

t\[CapitalXi]G=Table[\[CapitalXi]G[i,j,k]={xi[i],eta[j],zeta[k]},{i,1,M},{j,1,M},{k,1,2}]; 

plotPtsRef=Graphics3D[{PointSize[0.025],Point[Flatten[t\[CapitalXi]G,2]]}]; 

plotLinesRef=plotLinesHOCube[t\[CapitalXi]G,M,{Darker[Red,.2],Darker[Green,.2],Darker[Blue,.2]

}]; 

(*so that we don't have to type this line many times when plot*) 

pltOption1=Sequence[BaseStyle->{FontSize->20,FontFamily->"Times"},PlotRange->All, 

Axes->True]; 

plotCubeRef=Show[plotPtsRef,plotLinesRef,Evaluate@pltOption1, 

AxesLabel->{"\[Xi]^1",\[Xi]^2,\[Xi]^3}] 

(* Export for copying into paper in png*)  

Export["plotCubeRef.png",plotCubeRef,ImageResolution->500];  

(* table of points for linear mesh on reference domain *) 

t\[CapitalXi]G2=Table[\[CapitalXi]G2[i,j,k]={zeta[i],zeta[j],zeta[k]},{i,1,2},{j,1,2},{k,1,2}];  

plotPtsRef2=Graphics3D[{PointSize[0.025],Point[Flatten[t\[CapitalXi]G2,2]]}];  

plotLinesRef2=plotLinesHOCube[t\[CapitalXi]G2,2, 

{Darker[Red,.2],Darker[Green,.2],Darker[Blue,.2]}];  

plotCubeRef2=Show[plotPtsRef2,plotLinesRef2,Evaluate@pltOption1, 

AxesLabel->{"\[Xi]^1",\[Xi]^2,\[Xi]^3}] 

 

(* 3a. Physical Domain. Define XT={xT,yT,zT} as functions of r \[Theta] and \[Phi] *) 

Clear[r,rb,re,\[Theta],\[Theta]b,\[Theta]e,\[Phi],\[Phi]b,\[Phi]e]; 

Which[ 

optPhys==1, (*spherical surfaces*)  rb=2.; re=3.5;  

\[Theta]b=\[Pi]/6.; \[Theta]e=\[Theta]b+\[Pi]/4; \[Phi]b=0; \[Phi]e=\[Phi]b+\[Pi]/4;  

XT={xT=r*Sin[\[Theta]]*Cos[\[Phi]],yT=r*Sin[\[Theta]]*Sin[\[Phi]],zT=r*Cos[\[Theta]]};  

XTb=(XT/.r->rb); XTe=(XT/.r->re), 

optPhys==2, (* perturbed spherical surfaces *)  rb=2.; re=4.; 

\[Theta]b=\[Pi]/6.; \[Theta]e=\[Theta]b+\[Pi]/4; \[Phi]b=0; \[Phi]e=\[Phi]b+\[Pi]/4;  

xT=r*Sin[\[Theta]]*Cos[\[Phi]]+.5(\[Theta]-\[Theta]b)^6 (\[Phi]-\[Phi]b)^7; 

yT=r*Sin[\[Theta]]*Sin[\[Phi]]+xT/2;  

zT=r*Cos[\[Theta]]+yT/2+.3*Sin[r]Sin[\[Pi] (\[Phi]-.5(\[Phi]b+\[Phi]e))/(\[Phi]e-\[Phi]b)]* 

Sin[\[Pi] (\[Theta]-.5(\[Theta]b+\[Theta]e))/(\[Theta]e-\[Theta]b)];  

xT=xT+.1*zT; XT={xT,yT,zT};  

XTb=(XT/.r->rb); XTe=(XT/.r->re),  

optPhys==3, (* another set of smooth surfaces *)   

rb=0; re=.7; \[Theta]b=-.5; \[Theta]e=.5;  

\[Phi]b=-.5; \[Phi]e=.5;  

XTb={.5+.5\[Theta]-.1\[Phi],.6\[Phi]-.1\[Theta],rb-.1\[Theta]^7+.2\[Phi]^5-.2Sin[\[Theta]*\[Phi]]};  

XTe={.8+.6\[Theta]+.1\[Phi]+.1\[Phi]^6 \[Theta]^5,.2\[Theta]+.5\[Phi]-.1Sin[\[Theta]]Cos[\[Phi]], 

re +.4(\[Theta]-.5)^4-.4\[Phi]^2-.4*Sin[\[Theta]*\[Phi]]};  

XT=(1-r)*XTb+r*XTe];  
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(* 3b Physical Domain. 

k=1 for b or inner, results in k+(k-1)(M-2) = 1, and \[Tau][k] = \[Tau][1] = 0; k=2 for e or outer, 

results in k+(k-1)(M-2) = M, and \[Tau][k] = \[Tau][M] = 1 *) IgnorePdfPageNumber; 

If[ (* for curved surfaces*)  optPhys<=3,  

tXG = Table[XG[i,j,k]= 

Chop[XT/.{r->(rb+(re-rb)\[Tau][k+(k-1)(M-2)]), 

\[Theta]->\[Theta]b+\[Tau][i]*(\[Theta]e-\[Theta]b),\[Phi]->\[Phi]b+\[Tau][j]*(\[Phi]e-\[Phi]b)}], 

{i,1,M},{j,1,M},{k,1,2}]; 

plotPtsPhys=Graphics3D[{PointSize[0.025],Point[Flatten[tXG,2]]}]; 

plotCv\[Xi]=ParametricPlot3D[{(XT/.{r->re,\[Phi]->\[Phi]b}), 

(XT/.{r->re,\[Phi]->\[Phi]e})}, 

{\[Theta],\[Theta]b,\[Theta]e}, PlotStyle->{Darker[Red,.2]}]; 

plotCv\[Eta]=ParametricPlot3D[{(XT/.{r->re,\[Theta]->\[Theta]b}), 

(XT/.{r->re,\[Theta]->\[Theta]e})}, 

{\[Phi],\[Phi]b,\[Phi]e},PlotStyle->{Darker[Green,.2]}]; 

t1=Flatten[Table[Line[{XG[i,j,1],XG[i,j,2]}],{i,1,M,M-1},{j,1,M,M-1}]]; 

plot4VLines=Graphics3D[{Darker[Blue,.2],Thickness[0.006],t1}]; Clear[t1];  

plotSurfsPhys=ParametricPlot3D[{(XT/.{r->re}), 

(XT/.{r->rb})},{\[Theta],\[Theta]b,\[Theta]e},{\[Phi],\[Phi]b,\[Phi]e},Evaluate@pltOption1, 

AxesLabel->{Subscript[x, 1],Subscript[x, 2],Subscript[x, 3]},ViewPoint->{3,-3,3}]; 

plotData=Show[plotSurfsPhys,plot4VLines,plotCv\[Xi],plotCv\[Eta],plotPtsPhys, 

PlotLabel->"Physical Domain"]] 

 

(* 3c. Collapsed cube *) 

If[optPhys==4,  

If[optCube==1, Do[If[i==1,XG[i,j,k]={i-1,j-1,k-1},XG[i,j,k]={i-1,0.5,0.5} ], 

{i,1,2},{j,1,2},{k,1,2}],  

(* otherwise optCube = 2 *)  

Do[If[i==1,XG[i,j,k]={2i-3,2j-3,2k-3}, 

XG[i,j,k]={2i-3,0.,0.} ],  

{i,1,2}, {j,1,2},{k,1,2}]]; 

tXG=Table[XG[i,j,k],{i,1,2},{j,1,2},{k,1,2}];   

plotPtsPhys=Graphics3D[{PointSize[0.025],Point[Flatten[tXG,2]]}];   

plotLines=plotLinesHOCube[tXG,M,{Darker[Red,.2],Darker[Green,.2],Darker[Blue,.2],0.01}];   

plotData=Show[plotPtsPhys,plotLines,Evaluate@pltOption1, 

AxesLabel->{Subscript[x, 1],Subscript[x, 2],Subscript[x, 3]}, PlotLabel->"Physical Domain"]] 

 

(* Verify that spherical coordinate is orthogonal *)   

If[optPhys==1,u1=D[XT,\[Theta]]; u2=D[XT,\[Phi]]; u3=D[XT,r];   

Simplify[{u1.u2, u2.u3,u3.u1}]] 

 

(* 4a. Transformation from reference domain to physical domain*) 

tLa\[Xi]=Table[La\[Xi][n]=(\!\( 

\*UnderoverscriptBox[\(\[Product]\), \(m = 1\), \(n - 1\)] 

\*FractionBox[\(\[Xi] - xi[m]\), \(xi[n] - xi[m]\)]\))(\!\( 

\*UnderoverscriptBox[\(\[Product]\), \(m = n + 1\), \(M\)] 

\*FractionBox[\(\[Xi] - xi[m]\), \(xi[n] - xi[m]\)]\)),{n,1,M}]; 

La\[Zeta][1]=(\[Zeta]-zeta[2])/(zeta[1]-zeta[2]); 

La\[Zeta][2]=(\[Zeta]-zeta[1])/(zeta[2]-zeta[1]);  t1=Flatten[Table[{{xi[n],0},{xi[n],1}},{n,1,M}],1];  

plotLagrange=Show[Plot[tLa\[Xi],{\[Xi],xi[1],xi[M]},Evaluate@pltOption1, 

GridLines->Automatic,AxesLabel->{\[Xi],u}], 

ListPlot[t1,PlotStyle->PointSize[0.025]],PlotLabel->"Lagrange Polys for Grid"] 

 

(* 4b. *) IgnorePdfPageNumber;  
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(* 4b. Basis functions for grid in 3D*)  IgnorePdfPageNumber; 

Table[bfG[i,j,k]=(La\[Xi][i])(La\[Xi][j]/.\[Xi]->\[Eta])(La\[Zeta][k]), 

{k,1,2},{j,1,M},{i,1,M}];  

(*Mapping X from reference cube to physical domain *)  

X=Chop[Expand[\!\( 

\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(M\)]\( 

\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(M\)]\( 

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(2\)]bfG[i, j, k]*XG[i, j, k]\)\)\)]];  

 

(* 4c. Plot polynomial surfaces and curves*) 

Xb=Simplify[X/.\[Zeta]->zeta[1]]; Xe=Simplify[X/.\[Zeta]->zeta[2]];   

plotbe=ParametricPlot3D[{Xb,Xe},{\[Xi],xi[1],xi[M]},{\[Eta],eta[1],eta[M]},  

AxesLabel->{Subscript[x, 1],Subscript[x, 2],Subscript[x, 3]},Mesh->None, 

Evaluate@pltOption1,ViewPoint->{3,-3,3}];  

(* Grid curves *) 

tXe1=Table[Xe/.\[Eta]->eta[j],{j,1,M}]; 

plCvPoly\[Xi]=ParametricPlot3D[tXe1,{\[Xi],xi[1],xi[M]}, 

PlotStyle->{Darker[Red,.2],Thickness[0.008]}]; 

tXe2=Table[Xe/.\[Xi]->xi[j],{j,1,M}];   

plCvPoly\[Eta]=ParametricPlot3D[tXe2,{\[Eta],eta[1],eta[M]}, 

PlotStyle->{Darker[Green,.2],Thickness[0.008]}];   

t1=Flatten[Table[Chop[Simplify[X/.{\[Xi]->xi[i],\[Eta]->eta[j]}]],{i,1,M,M-1},{j,1,M}],1]; 

t2=Flatten[Table[Chop[Simplify[X/.{\[Xi]->xi[i],\[Eta]->eta[j]}]],{i,1,M},{j,1,M,M-1}],1];   

t3=Union[t1,t2]; 

plCvPoly\[Zeta]=ParametricPlot3D[t3,{\[Zeta],zeta[1],zeta[2]}, 

PlotStyle->{{Darker[Blue,.5],Thickness[0.006]}}];   

t1=Flatten[Table[Chop[Simplify[X/.{\[Xi]->xi[i],\[Eta]->eta[j]}]], 

{i,1,M,M-1},{j,1,M,M-1}],1];  t2=Flatten[Table[Chop[Simplify[X/.{\[Xi]->xi[i],\[Eta]->eta[j]}]], 

{i,1,M,M-1},{j,1,M,M-1}],1]; 

t3=Union[t1,t2]; 

plCvPoly\[Zeta]4=ParametricPlot3D[t3,{\[Zeta],zeta[1],zeta[2]}, 

PlotStyle->{{Darker[Blue,.5],Thickness[0.006]}}];  

plotPoly=Show[plotbe,plCvPoly\[Xi],plCvPoly\[Eta],plCvPoly\[Zeta]4, 

PlotLabel->"Polynomial Hexahedra"] 

 

(* 4d. Plot polynomial surfaces and curves*)   

plotbe1=ParametricPlot3D[{Xb,Xe},{\[Xi],xi[1],xi[M]},{\[Eta],eta[1],eta[M]}, 

PlotStyle->Directive[Blue,Opacity[0.5]],Lighting->Automatic, 

Evaluate@pltOption1,AxesLabel->{Subscript[x, 1],Subscript[x, 2],Subscript[x, 3]}]; 

If[optPhys==4,plotSurfsPhys=plotbe1]; 

plotPolyPhys=Show[plotSurfsPhys,plotbe1,plotPtsPhys, 

PlotLabel->"Phys. & Poly. Surfaces"] 

 

(* 5a. Jacobian Matrix,Covariant Vectors, and J*Contravariant Vectors*) 

\[CapitalXi]={\[Xi],\[Eta],\[Zeta]};  

JM=dXd\[CapitalXi]=Table[dXd\[CapitalXi]e[i,j]=Chop[Simplify[D[X[[i]],\[CapitalXi][[j]] 

]]],{i,1,3},{j,1,3}]; 

(* we can also use the command Outer *)  Clear[t1];   

t1=Outer[D,X,\[CapitalXi]];  Chop[Simplify[t1-dXd\[CapitalXi]]]; 

 

(* 5b. Covariant base vectors Subscript[a, i] as functions of (\[Xi], \[Eta], \[Zeta]) *)   

Clear[a]; dXd\[CapitalXi]T=Transpose[dXd\[CapitalXi]]; 

(* The i-th column of dXd\[CapitalXi], i.e., i-th row of dXd\[CapitalXi]T, is Subscript[a, i] *)   

Table[Subscript[a, i]=Chop[Expand[dXd\[CapitalXi]T[[i]]]],{i,1,3}]; 
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(*J*Contravariant base vectors Ja^i=Subscript[JaSup, i] as functions of (\[Xi], \[Eta], \[Zeta])*)  

IgnorePdfPageNumber; 

crossPro[{a_,b_,c_},{x_,y_,z_}]:={b z-c y,c x-a z,a y-b x}; 

Subscript[JaSup, 1] =Chop[Expand[crossPro[Subscript[a, 2], Subscript[a, 3]]]];  

Subscript[JaSup, 2] =Chop[Expand[crossPro[Subscript[a, 3], Subscript[a, 1]]]];  

Subscript[JaSup, 3] =Chop[Expand[crossPro[Subscript[a, 1], Subscript[a, 2]]]]; 

 

(* 6a. Fixed point \[CapitalXi]N in reference domain, N for numerical, red point *)   

(* \[CapitalXi]s is set relative to [0,1]*)   

case=1; (* -2 \[LessEqual] case \[LessEqual] 3 *) 

Which[case==-2,\[CapitalXi]s={1,0,1},case==-

1,\[CapitalXi]s={0,0,0},case==0,\[CapitalXi]s={0,0,1}, 

case==1,\[CapitalXi]s={.7,.2,1},case==2,\[CapitalXi]s={.4,.7,1},case==3,\[CapitalXi]s={.7,.4,.3}]; 

(* \[CapitalXi]N is defined relative to either [0,1] or [-1,1] *) 

If[optCube==2,\[CapitalXi]N={-1,-1,-1}+2\[CapitalXi]s,\[CapitalXi]N=\[CapitalXi]s]; 

t0=Graphics3D[{Red,PointSize[0.04],Point[\[CapitalXi]N], Red, Thickness[0.015], 

Line[{\[CapitalXi]N+{xi[1],0,0},\[CapitalXi]N+{xi[M],0,0}}],Green, 

Line[{\[CapitalXi]N+{0,eta[1],0},\[CapitalXi]N+{0,eta[M],0}}],Blue, 

Line[{\[CapitalXi]N+{0,0,zeta[1]},\[CapitalXi]N+{0,0,zeta[2]}}]}]; 

plotCube\[CapitalXi]N=Show[plotCubeRef2,t0,PlotLabel->"Fixed Pt & Cood Lines", 

ViewPoint->{3,-2.5,2}] 

 

(* 7a. Coordinate Lines in Physical Space*) 

XN=Chop[X/.{\[Xi]->\[CapitalXi]N[[1]],\[Eta]->\[CapitalXi]N[[2]],\[Zeta]->\[CapitalXi]N[[3]]}];  

pt0=Graphics3D[{Red,PointSize[0.04],Point[XN]}];  Clear[t]; 

curv\[Xi]=X/.{\[Xi]->\[CapitalXi]N[[1]]+t,\[Eta]->\[CapitalXi]N[[2]],\[Zeta]->\[CapitalXi]N[[3]]}; 

curv\[Eta]=X/.{\[Xi]->\[CapitalXi]N[[1]],\[Eta]->\[CapitalXi]N[[2]]+t,\[Zeta]->\[CapitalXi]N[[3]]}; 

curv\[Zeta]=X/.{\[Xi]->\[CapitalXi]N[[1]],\[Eta]->\[CapitalXi]N[[2]],\[Zeta]->\[CapitalXi]N[[3]]+t}; 

pcurvs=ParametricPlot3D[{curv\[Xi],curv\[Eta],curv\[Zeta]},{t,xi[1],xi[M]}, 

PlotStyle->{{Thickness[0.01],Red},{Thickness[0.01],Darker[Green,.2]},{Thickness[0.01],Blue}}]; 

plotCoordCurves=Show[plotbe,pt0,pcurvs,PlotRange->All, 

PlotLabel->"Coordinate Curves"] 

 

(* 7b. Covariant base vectors are the columns of dXd\[CapitalXi]N, N for numerical*) 

dXd\[CapitalXi]N=Chop[dXd\[CapitalXi]/.{\[Xi]->\[CapitalXi]N[[1]], 

\[Eta]->\[CapitalXi]N[[2]],\[Zeta]->\[CapitalXi]N[[3]]}]; 

dXd\[CapitalXi]NT=Transpose[dXd\[CapitalXi]N]; 

taN=Table[Subscript[aN, i]=dXd\[CapitalXi]NT[[i]],{i,1,3}]; 

Subscript[v, 1]=Graphics3D[{Red,Arrowheads[0.03],Thickness[.008],Arrow[{XN,XN+Subscript[aN, 

1]}]}]; 

Subscript[v, 

2]=Graphics3D[{Darker[Green,.2],Arrowheads[0.03],Thickness[.008],Arrow[{XN,XN+Subscript[aN

, 2]}]}]; 

Subscript[v, 

3]=Graphics3D[{Blue,Arrowheads[0.03],Thickness[.008],Arrow[{XN,XN+Subscript[aN, 3]}]}]; 

tCoVec={Subscript[v, 1],Subscript[v, 2],Subscript[v, 3]}; 

plotCo=Show[plotCoordCurves,tCoVec,PlotLabel->"Covariant Vectors (Thin Arrows)", 

PlotRange->All] 

 

length[v_List]:=Chop[Sqrt[v.v]];   

tlaN=Table[Subscript[laN, k]=length[Subscript[aN, k]],{k,1,3}]; 

JDet=J=Det[dXd\[CapitalXi]N]; 
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(* 7c. J*Contravariant Base Vectors, Thick Arrows*)  IgnorePdfPageNumber; 

tJaNSup={ 

Subscript[JaNSup, 1]=Chop[crossPro[Subscript[aN, 2], Subscript[aN, 3]]], 

Subscript[JaNSup, 2]=Chop[crossPro[Subscript[aN, 3], Subscript[aN, 1]]], 

Subscript[JaNSup, 3]=Chop[crossPro[Subscript[aN, 1], Subscript[aN, 2]]]}; 

Subscript[JvCon, 1]=Graphics3D[{Thickness[0.005],Red,Arrowheads[0.06], 

Arrow[{XN,XN+Subscript[JaNSup, 1]}]}]; 

Subscript[JvCon, 2]=Graphics3D[{Thickness[0.005],Green,Arrowheads[0.06], 

Arrow[{XN,XN+Subscript[JaNSup, 2]}]}]; 

 Subscript[JvCon, 3]=Graphics3D[{Thickness[0.005],Blue,Arrowheads[0.06], 

Arrow[{XN,XN+Subscript[JaNSup, 3]}]}]; 

(*Table of length of J*contravariant base vectors*) 

tlJaNSup=Table[Subscript[lJaNSup, k]=length[Subscript[JaNSup, k]],{k,1,3}]; 

plotJContra=Show[plotbe,pcurvs,pt0,Subscript[JvCon, 1],Subscript[JvCon, 2],Subscript[JvCon, 3], 

PlotLabel->"J*Contr Vectors (Thick Arrows)",PlotRange->All] 

(* 7d. One J*Contravariant Base Vectors, set n1 to either 1,2,or 3*) 

{n1=3, n2=Mod[n1,3]+1,n3=Mod[n1+1,3]+1}; 

plotJContra=Show[plotbe,pcurvs,pt0, 

Subscript[JvCon, n1],Subscript[v, 1],Subscript[v, 2],Subscript[v, 3], 

PlotLabel->"1 J*Contr. & 3 Cov. Vectors",PlotRange->All] 

 

(* 8a. Differential Volume increment, reference space*) 

d\[Xi]=.15*optCube;   

d\[CapitalXi]={Subscript[d\[Xi]Sup, 1]=d\[Xi],Subscript[d\[Xi]Sup, 2]=d\[Xi], 

Subscript[d\[Xi]Sup, 3]=d\[Xi]}; 

t\[CapitalXi]PSmCu=Table[\[CapitalXi]PSmCu[i,j,k]=\[CapitalXi]N+ 

Subscript[d\[Xi]Sup, 1](i-1){1,0,0}+Subscript[d\[Xi]Sup, 2](j-1){0,1,0}+ 

Subscript[d\[Xi]Sup, 3](k-1){0,0,1},{i,1,2},{j,1,2},{k,1,2}]; 

plotPtsSmCu=Graphics3D[{PointSize[0.02],Point[Flatten[t\[CapitalXi]PSmCu,2]], 

Red,PointSize[0.04],Point[\[CapitalXi]N]}]; 

plotLinesSmCu=plotLinesHOCube[t\[CapitalXi]PSmCu,2,{Darker[Red,0.2], 

Darker[Green,0.2],Darker[Blue,0.2], 0.005}];  

IncrVolRef=Show[plotCubeRef2,plotPtsSmCu,plotLinesSmCu, 

BaseStyle->{FontSize->20,FontFamily->"Times"},Axes->True, 

AxesLabel->{"\[Xi]^1",\[Xi]^2,\[Xi]^3},ViewPoint->{2,-4,2}]  

 

(* 8b. Differential Volume increment, physical space*) 

tXPSmCu=Table[XPSmCu[i,j,k]= 

Chop[X/.{\[Xi]->\[CapitalXi]PSmCu[i,j,k][[1]],\[Eta]->\[CapitalXi]PSmCu[i,j,k][[2]], 

\[Zeta]->\[CapitalXi]PSmCu[i,j,k][[3]]}],{i,1,2},{j,1,2},{k,1,2}];  

plotPtsPhysSmCu=Graphics3D[{PointSize[0.012],Point[Flatten[tXPSmCu,2]],PointSize[0.02], 

Red,Point[XPSmCu[1,1,1]]}];  

plotLinesPhysSmCu=plotLinesHOCube[tXPSmCu,2,{Darker[Red,.2],Darker[Green,.2], 

Darker[Blue,.2], 0.005}];  

IncrVolPhys=Show[plotbe,pt0,pcurvs,plotPtsPhysSmCu,plotLinesPhysSmCu, 

ViewPoint->{3,-3,3}]  

(* end program *) IgnorePdfPageNumber; 

 

 

 


